
Secure and reliable control systems: Matlab basics

Gianluca Bianchin
gianluca@engr.ucr.edu

Skype: giangi61978

Department of Mechanical Engineering
University of California, Riverside

MSC 003 & Online - April 10, 2019

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 1 / 39



Matlab: a brief description

MATLAB = Matrix Laboratory, developed by MathWorks

Includes a proprietary programming language

Includes optional toolboxes for specific applications (Simulink,
Computer Vision, SimBiology, Econometrics, ... )

Great integration with Python, R, C++, LATEX, ...

In short, MATLAB is an environment (programming language + desktop
interface) to perform computations on vectors and matrices

UCR provides a free academic license to all students (link)

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 2 / 39

http://mysoftware.ucr.edu/mysoftware/authentication.processLogin?iticket=ST-47164-UldaRbxC1GnP1CXZlhnu-auth-prd-3


Desktop interface

Current folder

Editor

Workspace

Command window

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 3 / 39



Outline of this lecture

1 Matlab fundamentals

2 State-space models in Matlab

3 Dynamical systems with Matlab Simulink

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 4 / 39



Matlab fundamentals

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 4 / 39



Operators, operations, and variables

We can type operations in the command window:

Operators: +, -, *, /, ˆ

Operations: 3*2, 5*2ˆ3+4*(3),

Variables assignment:
a = 3, b = 2, c = a*b, month = 'August'

Variables can be visualized in the “Workspace” section

Some notes:
1 No need to define variable types!!
2 All variables are handled by value (and not by reference)
3 Variable names must begin with a letter
4 Case sensitive
5 Avoid names that correspond to functions

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 5 / 39



Operators, operations, and variables

We can type operations in the command window:

Operators: +, -, *, /, ˆ

Operations: 3*2, 5*2ˆ3+4*(3),

Variables assignment:
a = 3, b = 2, c = a*b, month = 'August'

Variables can be visualized in the “Workspace” section

Some notes:
1 No need to define variable types!!
2 All variables are handled by value (and not by reference)
3 Variable names must begin with a letter
4 Case sensitive
5 Avoid names that correspond to functions

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 5 / 39



Pre-defined functions and variables

Pre-defined functions can be applied to a variable:
sqrt(x), sin(x), cos(x), tan(x), exp(x), log(x)

round(x), floor(x), ceil(x), ...

Pre-defined variables: pi=3.14159, i = j =
√
−1, Inf, NaN

To obtain function description: help 'functionName' or click
“help“ from the toolbar

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 6 / 39



Scripts and Functions

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 7 / 39



Script files

A script file is a collection of commands that are executed in sequence

Extension “.m”

Click on the new script icon

To run: Hit the green arrow in the toolbar

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 8 / 39



Functions

A function is a group of commands that together perform a certain task

Syntax:
function [outVariables] = myfun(invariables)

Example of function:

1 function [v1] = myFunction(v1, v2)
2 %Sets to zero the entries of vector v1 if the
3 %corresponding entry in v2 has value 1
4 for ind=1:length(v1)
5 if v2(ind)==1
6 v1(ind)=0;
7 end
8 end
9 end

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 9 / 39



Functions: files

Functions in Matlab are typically saved in separate files

MAIN.m MYFUNCTION.m

NOTE: The name of the file and of the function name should be the same

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 10 / 39



Calling Functions

1 % "Main" script
2 v1 = [3 4 6];
3 v2 = [0 1 1];
4 v3 = myFunction(v1, v2)

1 function [v1] = myFunction(v1, v2)
2 %Sets to zero the entries of vector v1 if the
3 %corresponding entry in v2 has value 1
4 for ind=1:length(v1)
5 if v2(ind)==1
6 v1(ind)=0;
7 end
8 end
9 end

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 11 / 39



An important difference with respect to C++ and Python
(Base and local workspaces)

Functions operate on variables within their own workspace, which is also
called the local workspace, separate from the workspace you access at

the MATLAB command prompt which is called the base workspace

MAIN.m
FUNCTION INSTANCE

BASE WORKSPACE

LOCAL WORKSPACE

FUNCTION INSTANCE

LOCAL WORKSPACE

In MATLAB, all variables are referenced by value

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 12 / 39



Vectors and matrices: storing data through arrays

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 12 / 39



Arrays and Matrices

One-dimensional arrays can be row vectors or column vectors

v =

 1
.9
−3.7

 w =
[
2 −5 0.9 11.4

]

A matrix is represented through two-dimensional array

M =

3 1
2 3
4 2



Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 13 / 39



Arrays and Matrices

One-dimensional arrays can be row vectors or column vectors

v =

 1
.9
−3.7

 w =
[
2 −5 0.9 11.4

]

A matrix is represented through two-dimensional array

M =

3 1
2 3
4 2



Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 13 / 39



Arrays definition

To create a column vector, separate the elements with semicolons:
v = [1; 2; 3; 4]

To create a row vector, separate the elements with either a comma or
a space:
w = [1, 2, 3 4]

Notice that v 6= w. In particular, v = w'

To create a multidimensional array, combine the two notations:
M = [3, 1; 2, 3; 4, 2]

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 14 / 39



Arrays definition

To create a column vector, separate the elements with semicolons:
v = [1; 2; 3; 4]

To create a row vector, separate the elements with either a comma or
a space:
w = [1, 2, 3 4]

Notice that v 6= w. In particular, v = w'

To create a multidimensional array, combine the two notations:
M = [3, 1; 2, 3; 4, 2]

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 14 / 39



Arrays definition

To create a column vector, separate the elements with semicolons:
v = [1; 2; 3; 4]

To create a row vector, separate the elements with either a comma or
a space:
w = [1, 2, 3 4]

Notice that v 6= w. In particular, v = w'

To create a multidimensional array, combine the two notations:
M = [3, 1; 2, 3; 4, 2]

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 14 / 39



Arrays definition

To create a column vector, separate the elements with semicolons:
v = [1; 2; 3; 4]

To create a row vector, separate the elements with either a comma or
a space:
w = [1, 2, 3 4]

Notice that v 6= w. In particular, v = w'

To create a multidimensional array, combine the two notations:
M = [3, 1; 2, 3; 4, 2]

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 14 / 39



Arrays definition (2)

Other common ways to define arrays are:

v = ones(m,n) (m by n array of all ones)

v = zeros(m,n) (m by n array of all zeros)

v = rand(m,n) (m by n array of random [0, 1])

v = start:step:end (equally spaced entries)

Arrays can be combined as blocks:

A = [A11, A12; A21, A22]

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 15 / 39



Array slicing

To “read” a certain entry of an array:
v(1), M(3,1)

“Slicing” allows to read groups of entries of an array:
M(1:2,1), M([1 3],1:end), M([1 3],:)

1 v = [1, 2, 3, 4, 5];
2 w = v(3:end) % w = [3, 4, 5]
3
4 w(1) = 10 % w = [10, 4, 5]
5 % v = [1, 2, 3, 4, 5]

Note:

1 Array indices start from 1

2 Slicing assignments are handled by value

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 16 / 39



Array slicing

To “read” a certain entry of an array:
v(1), M(3,1)

“Slicing” allows to read groups of entries of an array:
M(1:2,1), M([1 3],1:end), M([1 3],:)

1 v = [1, 2, 3, 4, 5];
2 w = v(3:end) % w = [3, 4, 5]
3
4 w(1) = 10 % w = [10, 4, 5]
5 % v = [1, 2, 3, 4, 5]

Note:

1 Array indices start from 1

2 Slicing assignments are handled by value

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 16 / 39



Operations on arrays

While other programming languages mostly work with a single array entry
at a time, functions and operations in Matlab are optimized for fast
processing on entire arrays

v + 10, v+w, 2.1*v, v/6

Function computed over arrays return an array with the output
sqrt(v), sin(v), ...

Some functions operate on the array and return a scalar
max(v), mean(v), ...

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 17 / 39



Efficient functions that operate on entire arrays

Some useful functions for arrays:
max(), min()

mean(), median(), cov(), var()

sum(), diff(), cumsum()

Sorting: sort(v)

Find: find(v==3), find(v>1)

Size: length(v), size(M)

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 18 / 39



Matrix multiplication

Given two matrices A = [aij ] ∈ Rm×n and B = [bij ] ∈ Rn×p, matrix
multiplication X = [xij ] = A ·B produces a m× p matrix, where

xij =

m∑
k=1

aik · bkj

Example:

x12 = a11b12 + a12b22

x33 = a31b13 + a32b23

In Matlab: X = A * B

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 19 / 39



Matrix multiplication (2)

Not to be confused with entry-wise multiplication E = A ◦B, that
can be applied to two matrices of identical dimensions
A = [aij ] ∈ Rm×n and B = [aij ] ∈ Rm×n, where

eij = aij · bij

In Matlab: E = A.*B

Similarly, matrix exponential: Aˆ2

Entry-wise exponential: A.ˆ2

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 20 / 39



Useful matrix operations for this class

Identity matrix of size n: eye(n)

Rank of matrix A: rank(A)

Eigenvalues of matrix A: eig(A)

Null space of A: null(A)

Inverse of matrix A: inv(A)

Pseudoinverse of matrix A: pinv(A)
1 If the columns of A are linearly independent, A+ is a left inverse
2 If the rows of A are linearly independent, A+ is a right inverse

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 21 / 39



Plots

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 21 / 39



Plots

Two-dimensional line and points can be plotted with the command:
plot(xdata,ydata)

1 t = 0 : 0.1 : 2*pi; % Time data (xdata)
2 y1 = sin(t); % First set of ydata
3 y2 = cos(t); % Second set of ydata
4 figure % Create a figure window
5 plot(t, y1, '-')
6 hold on % Plot in the same figure window
7 plot(t, y2, '+')

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

cos(x)

Figures can be edited and saved from the window menu

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 22 / 39



Linestyle, markers, and colors

We can specify our own colors, markers, and linestyles by giving plot a
third argument

Scanned by CamScanner

plot(x,y,'g-'), plot(x,y,'k+'),plot(x,y,'b:s')

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 23 / 39



Note on plot function

When the plot function is called with only one argument, e.g.,
plot(y)

the variable y is plotted versus an index of its values, that is, the
command is interpreted as follows

plot(1:1:length(y),y)

When y is a matrix, MATLAB plots its columns as individual signals

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 24 / 39



Plotting discrete-time functions

stairs(yData) draws a stairstep graph of the elements in yData

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

plot

stairs

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 25 / 39



State-space models in Matlab

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 25 / 39



Modeling

The state-space model for a continuous-time linear system is given by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

The state-space model for a discrete-time linear system is given by

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k]

x is an n× 1 vector representing the system’s state variables

u is a m× 1 vector representing the input

y is a p× 1 vector representing the output

In Matlab state-space systems can be defined through the command:
sys = ss(A,B,C,D,Ts);

Ts is the sampling time (0 for continuous, 1 for discrete)

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 26 / 39



Modeling

The state-space model for a continuous-time linear system is given by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

The state-space model for a discrete-time linear system is given by

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k]

x is an n× 1 vector representing the system’s state variables

u is a m× 1 vector representing the input

y is a p× 1 vector representing the output

In Matlab state-space systems can be defined through the command:
sys = ss(A,B,C,D,Ts);

Ts is the sampling time (0 for continuous, 1 for discrete)

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 26 / 39



Modeling: longitudinal vehicle dynamics

Example: longitudinal vehicle dynamics

pl

Fe
Fd

(Drag) (Engine)

mp̈l = Fe − Fd

Fe : longitudinal engine force

Fd : drag force

Assume linear friction:
Fd = αṗl

Define: x1 = pl (position), x2 = ṗl (velocity),[
ẋ1
ẋ2

]
=

[
0 1
0 −α/m

] [
x1
x2

]
+

[
0

1/m

]
Fe

If we can measure the position and velocity of the vehicle:[
y1
y2

]
=

[
1 0
0 1

] [
x1
x2

]
Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 27 / 39



Modeling: longitudinal vehicle dynamics

Example: longitudinal vehicle dynamics

pl

Fe
Fd

(Drag) (Engine)

mp̈l = Fe − Fd

Fe : longitudinal engine force

Fd : drag force

Assume linear friction:
Fd = αṗl

Define: x1 = pl (position), x2 = ṗl (velocity),[
ẋ1
ẋ2

]
=

[
0 1
0 −α/m

] [
x1
x2

]
+

[
0

1/m

]
Fe

If we can measure the position and velocity of the vehicle:[
y1
y2

]
=

[
1 0
0 1

] [
x1
x2

]
Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 27 / 39



Modeling: longitudinal vehicle dynamics (2)

1 alpha = 1;
2 m = 1;
3
4 A = [0 1;0 -alpha/m]; % System matrix
5 B = [0; 1/m]; % Input matrix
6 C = [1 0; 0 1]; % Output matrix
7 D = [0; 0]; % Feedthrough matrix
8
9 sysC = ss(A,B,C,D,0); % Continuous-time system

10
11 [Yc, Tc] = step(sysC,5); % Step response with final time=5
12 figure % Create figure window
13 plot(Tc, Yc,'Linewidth',2)
14
15 sysD = c2d(sysC,.2); % Discretize the system
16
17 [Yd, Td] = step(sysD,5); % Step response
18 hold on % Plot in the same figure window
19 stairs(Td, Yd,'Linewidth',2)

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 28 / 39



Modeling: longitudinal vehicle dynamics (3)

Step response:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

y1 Cont.

y2 Cont.

y1 Disc.

y1 Disc.

Discrete-time models are often obtained by discretizing continuous time
physical equations

Q: How do we check if the discrete-time system is stable?

A: abs(eig(Ad))

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 29 / 39



Modeling: longitudinal vehicle dynamics (3)

Step response:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

y1 Cont.

y2 Cont.

y1 Disc.

y1 Disc.

Discrete-time models are often obtained by discretizing continuous time
physical equations

Q: How do we check if the discrete-time system is stable?

A: abs(eig(Ad))

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 29 / 39



Useful commands for state-space models

Obtain step response of the system:
[Y, T] = step(sysD,x0,tFinal)

Obtain impulse response of the system:
[Y, T] = impulse(sysD)

Obtain impulse response to initial conditions:
[Y, T] = initial(sysD,x0,tFinal)

Discretize a continuous-time system:
sysD = c2d(sysC,.2)

Obtain transfer function of the system:
TrFcn = tf(sys)

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 30 / 39



Controllability, Observability, and State Feedback

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 31 / 39



Controllability

Controllability

A discrete-time linear system is controllable if, for any initial state x[0] and
any desired state xf , there is a nonnegative integer T and a sequence of
inputs u[0], u[1], . . . , u[T ] such that x[T + 1] = xf

How do we check for controllability?

The system is controllable if and only if the rank of the controllability
matrix is equal to the system size n

In Matlab:

ctrb(A,B) (returns the controllability matrix)

rank(ctrb(A,B))

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 32 / 39



Controllability

Controllability

A discrete-time linear system is controllable if, for any initial state x[0] and
any desired state xf , there is a nonnegative integer T and a sequence of
inputs u[0], u[1], . . . , u[T ] such that x[T + 1] = xf

How do we check for controllability?

The system is controllable if and only if the rank of the controllability
matrix is equal to the system size n

In Matlab:

ctrb(A,B) (returns the controllability matrix)

rank(ctrb(A,B))

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 32 / 39



Observability

Observability

A discrete-time linear system is controllable if, for any initial state x[0] and
any known sequence of inputs u[0], u[1], . . . , there is a nonnegative integer
T such that x[0] can be recovered from the outputs y[0], y[1], ..., y[T ]

How do we check for observability?

The system is observable if and only if the rank of the observability matrix
is equal to the system size n

In Matlab:

obsv(A,C) (returns the observability matrix)

rank(obsv(A,C))

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 33 / 39



Observability

Observability

A discrete-time linear system is controllable if, for any initial state x[0] and
any known sequence of inputs u[0], u[1], . . . , there is a nonnegative integer
T such that x[0] can be recovered from the outputs y[0], y[1], ..., y[T ]

How do we check for observability?

The system is observable if and only if the rank of the observability matrix
is equal to the system size n

In Matlab:

obsv(A,C) (returns the observability matrix)

rank(obsv(A,C))

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 33 / 39



State feedback

Controllability

We would like use the state of the system to construct a feedback input so
that we can place the closed loop eigenvalues of the system at certain
(stable) locations

u[k] = −Kx[k]

x[k + 1] = Ax[k] +Bu[k] = (A−BK)x[k]

y[k] = (C −DK)x[k]

(Feedback control)

It is possible to arbitrarily place the closed loop eigenvalues via state
feedback control if and only if the pair (A, B) is controllable

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 34 / 39



State feedback (2)

The MATLAB commands place and acker can be used to find the
matrix K such that the poles of A - BK have certain desired values

K = place(A,B,P)

K = acker(A,B,P)

1 K = place(Ad,Bd,[.9 .8]); % Determine state feedback matrix
2
3 sysF = ss(Ad-Bd*K, 0*Dd, Cd-Dd*K, 0*Dd);% Feedback system
4 [Yd, Td] = step(sysF,[1; 0], 10); % Impulse response
5
6 figure
7 stairs(Td, Yd,'Linewidth',2)

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 35 / 39



Dynamical systems with Matlab Simulink

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 35 / 39



Linear system in Simulink

Recall the expression of a continuous-time linear system:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

We can study the step response by constructing its Simulink model:

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 36 / 39



Two-tank system

Recall the dynamical equations of Tank 1:

ḣ1(t) = qp(t)− qL(t)− q12(t)

qL(t) = cL(t)
√
h1(t)

qp(t) = u(t)

u(t) = PID controller to regulate h1 to hmax

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 37 / 39



Two-tank system: Simulink model

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 38 / 39



Secure and reliable control systems: Matlab basics

Gianluca Bianchin
gianluca@engr.ucr.edu

Skype: giangi61978

Department of Mechanical Engineering
University of California, Riverside

MSC 003 & Online - April 10, 2019

Gianluca Bianchin (UCR) Matlab basics for ME223 April 10, 2019 39 / 39


	Matlab fundamentals
	State-space models in Matlab
	Dynamical systems with Matlab Simulink

