
ME133 LAB 6: Introduction to Arduino TA: Gianluca Bianchin

University of California, Riverside
Mechanical Engineering Department
ME133: Introduction to Mechatronics

Dr. Fabio Pasqualetti TA: Gianluca Bianchin
Lab 6: February 28, 2018

Lab Report Due on March 6, 2018

OBJECTIVES:

1. Get familiar with the Arduino microcontroller, its pin-out, input, output, principles of operation,

and its software.
2. Use the Arduino S/W to write simple programs, debug and produce executable, and run

programs on the microcontroller in stand-alone mode.
3. Design and test a simple game with Arduino.

BILL OF MATERIALS:

• 1x Arduino UNO
• 10x 220 Ohm Resistor
• 4x Red LED’s
• 1x Green LED
• 4x Pushbuttons
• 1x Breadboard

USEFUL LINKS:

1. http://www.melabs.com/products/usbprog.htm
2. http://arduino.cc/en/Tutorial/HomePage.

SUBMISSION GUIDELINES: (READ CAREFULLY)
(a) Before moving on to the next task SHOW THE TA YOUR CIRCUIT IS PROPERLY WORKING. Make

sure your circuit is “clean” and well organized.
(b) In your report your code will not be evaluated during the grading process. Attach a copy of your

code at the appendix, after reducing the number of lines to a minimum and including proper
comments.

(c) Part of the grading will depend on the group’s autonomy and results during the lab session.

ME133 LAB 6: Introduction to Arduino TA: Gianluca Bianchin

ARDUINO CODE STRUCTURE:

• The setup() function is called when a sketch starts. Use it to initialize variables, pin modes, start

using libraries, etc. The setup function will only run once, after each powerup or reset of the
Arduino board.

• After creating a setup() function, the loop() function does precisely what its name suggests, and
loops consecutively, allowing your program to change and respond as it runs. Code in the loop()
section of your sketch is used to actively control the Arduino board.

• The code below won't actually do anything, but it's structure is useful for copying and pasting to
get you started on any sketch of your own. It also shows you how to make comments in your code.

• Any line that starts with two slashes (//) will not be read by the compiler, so you can write anything
you want after it. Commenting your code like this can be particularly helpful in explaining, both to
yourself and others, how your program functions step by step.  

ME133 LAB 6: Introduction to Arduino TA: Gianluca Bianchin

TASK 1: Wiring & coding Arduino for blinking LED

Figure: Arduino with LED connected for blinking Program

In the program below, the first thing you do is to initialize pin 13 as an output pin with the line

pinMode(13, OUTPUT);

In the main loop, you turn the LED on with the line:

digitalWrite(13, HIGH);

This supplies 5 volts to pin 13. That creates a voltage difference across the pins of the LED, and lights it
up. Then you turn it off with the line:

digitalWrite(13, LOW);

That takes pin 13 back to 0 volts and turns the LED off. In between the on and the off, you want
enough time for a person to see the change, so the delay() command tell the Arduino to do nothing for
1000 milliseconds. When you use the delay() command, nothing else happens for that amount of time.

a) Demonstrate to the TA that code is properly working

b) Accurately describe the procedure on your report

ME133 LAB 6: Introduction to Arduino TA: Gianluca Bianchin

• Once you've understood the basic examples, check out the BlinkWithoutDelay example to learn
how to create a delay while doing other things.

• Once you've understood this example, check out the DigitalReadSerial example to learn how
read a switch connected to the Arduino.

ME133 LAB 6: Introduction to Arduino TA: Gianluca Bianchin

TASK 2: Digital Read Serial

Wire the following circuit, where R1 = 10K ohm:

Pushbuttons or switches connect two points in a circuit when you press them. When the pushbutton is
open (unpressed) there is no connection between the two legs of the pushbutton, so the pin is
connected to ground (through the pull-down resistor) and reads as LOW, or 0. When the button is
closed (pressed), it makes a connection between its two legs, connecting the pin to 5 volts, so that the
pin reads as HIGH, or 1.

If you disconnect the digital i/o pin from everything, the LED may blink erratically. This is because the
input is "floating" - that is, it doesn't have a solid connection to voltage or ground, and it will randomly
return either HIGH or LOW. That's why you need a pull-down resistor in the circuit.

In the program below, the very first thing that you do in the setup function is to begin serial
communication, at 9600 bits of data per second, between your Arduino and your computer. We use
the line:

Serial.begin(9600);

Next, initialize digital pin 2, the pin that will read the output from your button, as an input:

pinMode(2,INPUT);

ME133 LAB 6: Introduction to Arduino TA: Gianluca Bianchin

Now that your setup has been completed, move into the main loop of your code. When your button is
pressed, 5 volts will freely flow through your circuit, and when it is not pressed, the input pin will be
connected to ground through the 10-kilohm resistor. This is a digital input, meaning that the switch can
only be in either an on state (seen by your Arduino as a "1", or HIGH) or an off state (seen by your
Arduino as a "0", or LOW), with nothing in between.

The first thing you need to do in the main loop of your program is to establish a variable to hold the
information coming in from your switch. Since the information coming in from the switch will be either
a "1" or a "0", you can use an int datatype. Call this variable sensorValue and set it to equal whatever is
being read on digital pin 2. You can accomplish all this with just one line of code:

int sensorValue = digitalRead(2);

Once the Arduino has read the input, make it print this information back to the computer as a decimal
(DEC) value. You can do this with the command Serial.println() in our last line of code:

Serial.println(sensorValue, DEC);

Now, when you open your Serial Monitor in the Arduino environment, you will see a stream of "0"s if
your switch is open, or "1"s if your switch is closed.

a) Demonstrate to the TA that code is properly working

b) Accurately describe the procedure on your report

ME133 LAB 6: Introduction to Arduino TA: Gianluca Bianchin

TASK 3: Analog Read Serial

This example shows you how to read analog input from the physical world using a potentiometer. A
potentiometer is a simple mechanical device that provides a varying amount of resistance when its
shaft is turned. By passing voltage through a potentiometer and into an analog input on your Arduino,
it is possible to measure the amount of resistance produced by a potentiometer (or pot for short) as an
analog value. In this example you will monitor the state of your potentiometer after establishing serial
communication between your Arduino and your computer.

Connect the three wires from the potentiometer to your Arduino board. The first goes to ground from
one of the outer pins of the potentiometer. The second goes from 5 volts to the other outer pin of the
potentiometer. The third goes from analog input 2 to the middle pin of the potentiometer.

By turning the shaft of the potentiometer, you change the amount of resistance on either side of the
wiper which is connected to the center pin of the potentiometer. This changes the voltage at the
center pin. When the resistance between the center and the side connected to 5 volts is close to zero
(and the resistance on the other side is close to 10 K Ohms), the voltage at the center pin nears 5 volts.
When the resistances are reversed, the voltage at the center pin nears 0 volts, or ground. This voltage
is the analog voltage that you're reading as an input.

The Arduino has a circuit inside called an analog-to-digital converter that reads this changing voltage
and converts it to a number between 0 and 1023. When the shaft is turned all the way in one direction,
there are 0 volts going to the pin, and the input value is 0. When the shaft is turned all the way in the
opposite direction, there are 5 volts going to the pin and the input value is 1023. In between,

ME133 LAB 6: Introduction to Arduino TA: Gianluca Bianchin

analogRead() returns a number between 0 and 1023 that is proportional to the amount of voltage
being applied to the pin.

In the program below, the only thing that you do will in the setup function is to begin serial
communications, at 9600 bits of data per second, between your Arduino and your computer with the
command:

Serial.begin(9600);

Next, in the main loop of your code, you need to establish a variable to store the resistance value
(which will be between 0 and 1023, perfect for an int datatype) coming in from your potentiometer:

int sensorValue = analogRead(A0);

Finally, you need to print this information to your serial window as a decimal (DEC) value. You can do
this with the command Serial.println() in your last line of code:

Serial.println(sensorValue, DEC)

Now, when you open your Serial Monitor in the Arduino development environment (by clicking the
button directly to the right of the "Upload" button in the header of the program), you should see a
steady stream of numbers ranging from 0-1023, correlating to the position of the pot. As you turn your
potentiometer, these numbers will respond almost instantly.

a) Demonstrate to the TA that code is properly working

b) Accurately describe the procedure on your report

ME133 LAB 6: Introduction to Arduino TA: Gianluca Bianchin

TASK 4: Push Button Control of LED

Pushbuttons or switches connect two points in a circuit when you press them. This example turns on
the built-in LED on pin 13 when you press the button. Use a 10K resistor.

Connect three wires to the Arduino board. The first two, red and black, connect to the two long vertical
rows on the side of the breadboard to provide access to the 5 volt supply and ground. The third wire
goes from digital pin 2 to one leg of the pushbutton. That same leg of the button connects through a
pull-down resistor (here 10 K Ohms) to ground. The other leg of the button connects to the 5 volt
supply.
When the pushbutton is open (unpressed) there is no connection between the two legs of the
pushbutton, so the pin is connected to ground (through the pull-down resistor) and we read a LOW.
When the button is closed (pressed), it makes a connection between its two legs, connecting the pin to
5 volts, so that we read a HIGH.
You can also wire this circuit the opposite way, with a pull-up resistor keeping the input HIGH, and
going LOW when the button is pressed. If so, the behavior of the sketch will be reversed, with the LED
normally on and turning off when you press the button.
If you disconnect the digital i/o pin from everything, the LED may blink erratically. This is because the
input is "floating" - that is, it will randomly return either HIGH or LOW. That's why you need a pull-up
or pull-down resistor in the circuit.

ME133 LAB 6: Introduction to Arduino TA: Gianluca Bianchin

a) Demonstrate to the TA that code is properly working

b) Accurately describe the procedure on your report

ME133 LAB 6: Introduction to Arduino TA: Gianluca Bianchin

TASK 5: Button State Change Detection

Once you've got a pushbutton (TASK 4) working, often it is desirable to execute a certain action based on the
number of times the button is pushed. To do this, you need to know when the button changes state from off to
on, and count how many times this change of state happens. This is called edge detection.

 Note: Button switches may not happen fast enough, and your code may count more than one
switch at a time. Provide a solution to overcome this issue. Hint: Capacitor is a low pass filter.

ME133 LAB 6: Introduction to Arduino TA: Gianluca Bianchin

SECTION 6: GAME CHALLENGE

Write an Arduino program to play a game of Simon Says. The program starts each round of the game by flashing
all LEDs several times. The program flashes the four LEDs in a random sequence of length n. The player repeats
the sequence by pressing the buttons next to the LEDs. The program verifies that the sequence of pressed
buttons equals the sequence of flashed LEDs. If the sequence is correct, the program flashes all the LEDs once,
generates a sequence of n+1 LEDs, and waits for the user to enter the sequence by pressing the buttons. If the
sequence entered by the player is not correct, then the program flashes four times all LEDs, and starts over. The
game terminates with n = 8, and it shows a winning flashing pattern.

Bill of Materials:
5x pushbuttons
1x Blue led
1x Yellow led
1x Red led
1x Green Led
4x 1k resistors
4x 10k resisors

