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Harmful consequences of transportation

Carbon Dioxide Levels Now
Higher Than Ever in Human
History

Transportation is the largest source
of emissions in the EU
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o Increasing complexity and heterogeneity
o Faster dynamics
o Complex models and problems

o Resilience and security

Multi-modal transit

Micro vehicles

Ridesharing
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Emerging features

o Sustainability and transition
o Increasing complexity and heterogeneity
o Faster dynamics

o Complex models and problems

o Resilience and security

Uéers—in—the—loop

Connected vehicles

New features = new challenges

All these new features make it difficult to operate the system optimally
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Dynamic factors:
Response to congestion
Transport demands
Vehicle type

Tolls

Dynamic factors:
*  Multi-modal routes
* User adaptation

* Transport demands
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Dynamic factors:

« Cargo loads

* Vehicle type

« Cargo modes

* Seasonal demand
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Talk outline Decision-making in dynamic environments
1 — Making dynamic decisions General optimization problem:
HE NTERHAL ML PAINGIPLE OF THEARYING OPTMZATON i 0t
min f(z,6(t))
The. Internal .MOdel Prl.nCIPle of o f(t) € © C RP — time-varying parameter vector
Time-Varying Optimization - ) o | _
Gianluca Bianchin, Member, IEEE, and Bryan Van Scoy, Member, IEEE © f(l" 9) - SmOOth convex fUnCthﬂ tO be mmlmlzed Time ¢
. . . . . o .
2 - Making dynamic decisions in dynamic (!) environments Temporal variability satisfies:
6(t) = s(0(1))
Objective: At each time ¢, determine an optimal decision z*(t)
3 - Conclusions
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Gradient-type methods

Gradient-type algorithms:

Algorithm has access to gradient oracles:

(t,z) = Vo f(z,0(t))

Basic gradient-flow

&(t) = —nVaf(x(t),0(t))

Prediction-correction
Correction
d?(t) = _H_l[ Jvzf(j(t)v 6(t))
| Voo (a(0),00)) - 5(0(1))]

_Prediction
10 —a) —a (0 10
0 0
-10 -10 ‘ i i
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Time ¢ Time ¢

Computes an approximate optimizer

[Hazan 2016, Absil 2006, Hall 2015, .. ]

Computes an exact optimizer
...but very strong assumptions:

(strongly cvx, hessian, sensitivity, s(6), ....)
[Zhao 1998, Fazylab 2017, Raveendran 2022, ...]
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Optimization algorithms as feedback controllers

“Plant” to be regulated

General class of optimization algorithms: “Controller” to be designed

#(t) = Fu(2(t),y(t))
I(t) = GP(Z(t))

Problem 1 (Algorithm design):

Design Fi(z,y) and G.(z) such that y(t) — 0 as ¢t — co

Problem 0 (Minimal knowledge):

What is the “minimal knowledge" required to design an algorithm from the class achieving
exact asymptotic tracking?

Gianluca Bianchin 9

Minimal knowledge: considerations

Temporal-variability properties:
(E1) 6(¢) is measurable

[Hazan 2016, Hall 2015, ..]
(E2) 5(6)

[Bastianello 2024]

(E3) 6(t) and s(#) are known

[Zhao 1998, Fazylab 2017, Raveendran 2022, ...]

Optimization properties:
(O1) Oracle gradient evaluations:
(t,x) = Vaf(z,0(t))

[Hazan 2016, Hall 2015, ...]
(02) Gradient V, f(z, )
(O3) Sensitivity Vo f(x, 6)
(04) Hessian V2_ f(x,6)

[Zhao 1998, Fazylab 2017, Raveendran 2022, ..]
(O5) Loss is quadratic

[Bastianello 2024, ...]
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Talk outline

1 — Making dynamic decisions
but the variability is measurable

and the variability is unmeasurable

2 - Making dynamic decisions in dynamic (!) environments

3 - Conclusions
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The parameter feedback problem

Static optimization algorithm:

z(t) = He(6(1))
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Instrumental notions

Definition

The algorithm exactly asymptotically tracks an optimizer if there exists O, neighborhood of
the origin, such that for each 6(0) € ©, the solution of the interconnection satisfies y(t) — 0

Definition

o 8, is a limit point of 0(t) = s(0(t)) wrt the initialization 6, if 6(t;) — 6,, for some sequence

t; when starting at 6,

o The set of all limit points (8, is called limit set
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The parameter feedback problem (continued)

z(t) = He(6(t))

Static optimization algorithm:

x(t) = He(6())

Result

The static optimization algorithm achieves exact asymptotic tracking if and only if
0= sz(Hc(aw),Gu)
at all limit points 6, € Q(O,)

Answer to PO: when 6(t) is measurable, minimum knowledge required is V. f(z,6)
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Talk outline

1 — Making dynamic decisions
but the variability is measurable

and the variability is unmeasurable

2 - Making dynamic decisions in dynamic (!) environments

3 - Conclusions
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The gradient feedback problem

Dynamic optimization algorithm:

(t) = Fe(2(8), y(2))
z(t) = Ge(2(1))

Result

Assumption:

0(t) is exponentially detectable from y(t):

“é(t) - 0(t)|| < Me~et

0(0) — 9<o)||

An algorithm that achieves exact asymptotic tracking exists if and only if

0= sz(f!\c(ew)ﬂw)

for some H,(6) at all limit points §,, € Q(6,)

Static and dynamic algorithms exist
under the same conditions!
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The internal model principle of optimization

Theorem

The optimization algorithm:
(t) = Fe(2(t),y(t))
z(t) = Ge(2(t))

achieves exact asymptotic tracking if and only if there exists o(6):

9o (0)
00

5(0u) = Fe(o(0.,),0),
Q

0=V f(Ge(o(b.)),b.)

6=0.,

at all limit points 6, € Q(©,)

Implications:

0(t) and z(t) must be related, at optimality, by a change of variables:
2(t) = o(0(2))

Answer to P0O: when 6(t) is not measurable, minimum knowledge kequired is v, f(x;,§) and s(6)

The Robust Control of a Servomechanism
The Internal Model Principle of Control Problem for Linear Time-Invariant
Theory* Multivariable Systems

The “internal model principle”

an algorithm can track time-varying
optimizers if and only if it incorporates a
model of the temporal variability

B AL FRANCIS!and WM. WONHANE EDWARD 1 DAVSON,sasn. s

Gianluca Bianchin 17

Implications

Basic gradient-flow

i(t) = —nVa f(x(t),6(2))

satisfies internal model conditions with:

s(0) =0, o(0) = arbitrarily chosen

Basic gradient flow incorporates an internal
model of a constant parameter

What if we do not know internal model?

Prediction-correction
@(t) = —H [0V, f(2(t),0(1))

+ Vaof (2(1),0(1)) - s(6(1))]

Prediction-correction asymptotically
computes a mapping that zeros the gradient

o Fundamental limitation: no exact tracking is possible! (for any algorithm in the class!)

o Robustness-type guarantees can be given (when 6(t) is bounded):

lysol < cllB(O) 1S — S|
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Optimization design

Algorithm 1: Optimization algorithm design
Data: s(0), V, f(x,0), map zeroing gradient G.(6)
exponential observer @, S

1 ne 4+ p;

2 L + any matrix such that S — LQ is Hurwitz;

3 Ge(z) + He(2);

a Fo(z,y) < s(2) + Ly — Vo f(He(2), 2));

Result: F.(z,y), G.(z), and n,

When o(f) = Id (identity operator):

z(t) = 9(25) 5(9) = Fc(evo)

Optimization algorithm is a copy of the
temporal variability

Example
Optimization: ;’lél]llg fz(t),0(t) = %z(t)TRx(t) +2(t)TQO(t)

Temporal variability:  §(¢) = S6(t) 0(t) = 56(t)
y(t)
Mapping zeroing the gradient:  H.(f) = —R'Q -6

Internal model conditions: YS=A%, 0=RGX+Q

2=Ac.z+ By
7= G,

Optimization algorithm:  F.(z,y) = Sz + Ly, G.(0)=—-R'Q-0
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Dynamic traffic assignment

o Network state x — amount of flow routed on each road

o Travel time on road i: ¢,(z;)

o Travelers minimize their travel time to destination:

min y (s)ds
z€RIE| lezs/[] !

subject to: E xj—
jEEj-=uv JEE T =v

z; >0, Viel

3w =0,00), VeV,

Objective

Optimally split traffic demand A\
among alternative paths to minimize
travel time to destination

[)

Strengths and caveats
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o Convergence can be made arbitrarily fast

Error |z(t) — 2*(t)]|

Time ¢

o But, in general, it is of local nature

Time ¢
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Talk outline Optimal regulation in dynamic environments
Transportation systems with non-negligible dynamics
1 — Making dynamic decisions
b(t) = Az(t) + Bu(t) + Bw(t
but the variability is measurable a(t) @(t) + Bu(t) + Ew(t)
T y(t) = Cz(t) + Dw(t)
and the variability is unmeasurable
(Stable, controllable, observable)
2 - Making dynamic decisions in dynamic (!) environments Optimal output regulation:
min (¢ (u, y)
Contants lists avilable st ScenceDirect ] u,T,Y
Automatica I Two-point Random Gradient-frfee .Me?hods for st.  0=Az+ Bu+ Huw(t)
o e - Model-free Feedback Optimization

fe— y=Cz+ Duw(t)

Online optimization of switched LTI systems using continuous-time ) X . L

and hybrid accelerated gradient flows £ Amir Mehrnoosh and Gianluca Bianchin

Gianluca Bianchin **, Jorge |. Poveda, Emiliano Dall'Anese ”

. o x — time-dependent, smooth, strongly convex
3 - Conclusions Vil y) P 9w
Objective: Design a controller so that (u(t), z(¢),y(¢)) — (u*(t),2*(¢),y*(¢))
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Optimal regulation: related works

min 4y(u,y)
s.t. 0= Az + Bu+ Huw(t)
y = Cx + Dw(t)

* Output regulation: track a prescribed reference
[Davidson 76], [Francis & Wonham 76], [Yoon and Lin 16], ..., [Huang 03,04], [Isidori & Byrnes 90], ...

* Extremum-seeking: estimate gradient online

[Leblanc 22], ... [Wittenmark & Urquhart 95], ... [Krsti¢ & Wang 00], ... , [Feiling et.al. 18]

+ Optimal control (e.g., LQR): more general control objective, requires disturbance knowledge
[Bertsekas 95], ...

* MPC (real-time/online): more general control objective, but harder to solve online

Real-time MPC [Zeilinger et.al. 09], Optimizing control [Garcia & Morari 81], ...

* Feedback optimization: this presentation

[Hauswirth-Bolognani-Hug-Dorfler 20], [Lawrence-Simpson Porco-Mallada 21], [Simpson Porco 22], [Belgioioso et.al. 24],
[Carnevale-Mimmo-Notarstefano 24, ...]
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Eliminate dependent variables

Constrained: Unconstrained:

min 9 (u,y) min ¥ (u, Gu+ Huw(t))
u,r,y u

st. 0= Az+ Bu+ Huw(t) »

y = Cx + Dw(t)

min f(z,0(t))

xeR™

Time ¢

Similar form as the first part of this talk!
...now with many additional challenges!
©) I
L U Y
Optimization Plant
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Challenge 1: optimization with feedback

Classical optimization Optimization with plant-in-the-loop:

min ¢ (u, Gu + Huw(t)) min i(u, Gu + Hw(t))

« Basic gradient-flow: * Gradient-flow with feedback:

& = Az + Bu+ Ew;
y = Cz+ Dwy
' =1, ¢"] o= —nI" Viby (u, y)

@ = —nIl' Vb (u, Gu + Huw)

Inapplicable!
wy,

t t Gradient flow H Plant Y

Gradient flow p——— !
with feedback

Classical optimization methods are inapplicable!
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Challenge 2: optimization and plant form a control loop

“Static” plant: “Dynamic” plant:

o "

v u Gradient flow Ju [2= Az + Bu + Ew, | y
I—-| y = Gu+ Huw, !
Gradient flow y u+ Huw, with feedback

y= Cx + Dw,
10* 10*
2
5 10
g
3 10°
g
S
102
; 107
10 0 20 40 60 80 100
0 20 40 60 80 100 Time

Time

Classical optimization algorithm design fails!
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Converge bounds

Gradient-flow with feedback:

b= Ac+ Bu+ E [
@ = Ar+ Bu+ Ewy Gradient flow | Plant
y=Cx + Dw, an

with feedback
i = =l Ve (u, y)

Theorem: Suppose

*+ 1,(+) strongly convex
* Vi),(-) Lipschitz
* t+— w; locally absolutely continuous

Then, provided that the plant is ‘much’ faster than the controller (n <7 ) :

(s, ) — (i @)l| < ae~"|(uo, wo) — (s, )| + d esssup i | + ¢ esssup | (i, &2)]
T T

[Bianchin et.al. Automatica, 2022]
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Ramp metering

Freeway ramp metering problem

Westlake

.,

-,

Bowntown

How it is currently done:

* Pl-type controller, local at ramps/corridors

* Simulation-based controller tuning, seasonal parameters update
Difficulties:

* Complex (nonlinear) model

« Rapid changes in traffic demand at peak hours

Objective

Control traffic inflows at on-
ramps to maximize network
throughput

Gianluca Bianchin
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Feedback optimization for ramp metering

Steady-state control, constrained to free-flow:

min  (u — u™H)TQy (u — uh) — (y) (reference tracking)
u,y

st. y=—((R"—I)F) 'Bu+w (steady-state map)

w; >0, y; < min{af™? 70 (free-flow traffic)
iy = = () + fi'(2)
2 (x) = min{d; (z:), {sj(2;)/rij }jei }
i i(Ti )y 185(Z5)/Tij s jei ..
di(as) = min{pizs, &) Application to Los Angeles, CA, USA
si(@i) = min{ (2™ — @q), 57" [—No Contol — Primal-Dl __ ALINEA —MPC
;n(z) _ Z f;ut(x) 102107

j€i~

if traffic is controlled
in free-flow

- 7 !
200 400 600 800 1000 0 200 400 600 800 1000
Time [min) Time [min]

C—NWRELURI®OD

Netw. Throughput [veh/min]

& = Az + Bu+ Fw;
y = Cx + Du,

°

without disturbances with disturbances

ALINEA:
Papageorgiou, Kotsialos, “Freeway ramp metering: An overview," /EEE T-/TS, 2002
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1 — Making dynamic decisions
but the variability is measurable
and the variability is unmeasurable

2 - Making dynamic decisions in dynamic (!) environments
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Part 1:

o Fundamental limitation 1: tracking only if one has an internal model
Special thanks to students & collaborators

Part 2:

o When transport system has non-negligible dynamics — “control loop”

o Fundamental limitation 2: optimization has to operate at a slower timescale than the plant ‘{595‘-5‘:1‘5,;;

-
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Thank you!




