

Optimization for Dynamic Transportation Systems via the Internal Model Principle

KTH - DCS & Digital Futures seminar 22.05.2025

Gianluca Bianchin

UCLouvain

University of Louvain

Belgium

ICTEAM Institute Department of Mathematical Engineering

A network of networks

Harmful consequences of transportation

Transportation is the largest source of emissions in the EU

The transport sector in Sweden emits as much greenhouse gas as 1% of the Amazon rainforest can absorb

2 1913 1872 1882 177 1714 15.85 15.52 14 0 2013 2014 2015 2016 2017 2018 2019 200 0.21 201 Source: Statista

Gianluca Bianchin 1

Emerging features

Sustainability and transition

- o Increasing complexity and heterogeneity
- o Faster dynamics
- o Complex models and problems
- Resilience and security

Multi-modal transit

EVs

Micro vehicles

Emerging features

- o Sustainability and transition
- Increasing complexity and heterogeneity
- o Faster dynamics
- Complex models and problems
- o Resilience and security

Users-in-the-loop

Connected vehicles

Gianluca Bianchin 4

Talk outline

New features = new challenges

All these new features make it difficult to operate the system optimally

Decision-making in dynamic environments

General optimization problem:

Temporal variability satisfies:

 $\dot{\theta}(t) = s(\theta(t))$

Objective: At each time t, determine an optimal decision $x^{\star}(t)$

Gianluca Bianchin 6

Time

Gradient-type methods

Gradient-type algorithms:

Algorithm has access to gradient oracles:

 $(t,x) \mapsto \nabla_x f(x,\theta(t))$

Minimal knowledge: considerations

3 - Conclusions

Static optimization algorithm:

 $x(t) = H_c(\theta(t))$

Gianluca Bianchin 12

The parameter feedback problem (continued)

Static optimization algorithm:

$$x(t) = H_c(\theta(t))$$

Result

The static optimization algorithm achieves exact asymptotic tracking if and only if $0=\nabla_x f(H_c(\theta_\omega),\theta_\omega)$

at all limit points $\theta_{\omega} \in \Omega(\Theta_{\circ})$

Answer to P0: when $\theta(t)$ is measurable, minimum knowledge required is $\nabla_x f(x, \theta)$

Instrumental notions

Definition

The algorithm **exactly asymptotically tracks an optimizer** if there exists Θ_s , neighborhood of the origin, such that for each $\theta(0) \in \Theta_s$, the solution of the interconnection satisfies $y(t) \to 0$

Definition

- θ_{ω} is a **limit point** of $\dot{\theta}(t) = s(\theta(t))$ wrt the initialization θ_{\circ} if $\theta(t_i) \rightarrow \theta_{\omega}$ for some sequence t_i when starting at θ_{\circ}
- $\circ~$ The set of all limit points $\Omega(\Theta_\circ)$ is called limit set

Gianluca Bianchin 13

Talk outline

- 1 Making dynamic decisions
 - but the variability is measurable
 - and the variability is unmeasurable
- 2 Making dynamic decisions in dynamic (!) environments

3 - Conclusions

Dynamic traffic assignment

Objective

Optimally split traffic demand λ among alternative paths to minimize travel time to destination

- $\circ~$ Network state $x \rightarrow$ amount of flow routed on each road
- Travel time on road *i*: $\ell_i(x_i)$
- o Travelers minimize their travel time to destination:

Gianluca Bianchin 20

Talk outline

1 – Making dynamic decisions

but the variability is measurable

and the variability is unmeasurable

2 - Making dynamic decisions in dynamic (!) environments

Strengths and caveats

o Convergence can be made arbitrarily fast

o But, in general, it is of local nature

Optimal regulation in dynamic environments

Transportation systems with non-negligible dynamics

 $\dot{x}(t) = Ax(t) + Bu(t) + Ew(t)$ y(t) = Cx(t) + Dw(t)(Stable, controllable, observable)
Optimal output regulation: $\min_{u,x,y} \psi_t(u,y)$ s.t. 0 = Ax + Bu + Hw(t) y = Cx + Dw(t)Dynamic disturbance

 $\phi \psi_t(x,y) \rightarrow \text{time-dependent, smooth, strongly convex}$

Objective: Design a controller so that $(u(t), x(t), y(t)) \rightarrow (u^{\star}(t), x^{\star}(t), y^{\star}(t))$

Optimal regulation: related works

$$\begin{split} \min_{\substack{u,x,y}} & \psi_t(u,y) \\ \text{s.t.} & 0 = Ax + Bu + Hw(t) \\ & y = Cx + Dw(t) \end{split}$$

- Output regulation: track a prescribed reference
 [Davidson 76], [Francis & Wonham 76], [Yoon and Lin 16], ..., [Huang 03,04], [Isidori & Byrnes 90], ...
- Extremum-seeking: estimate gradient online
 [Leblanc 22], ... [Wittenmark & Urquhart 95], ... [Krstić & Wang 00], ..., [Feiling et.al. 18]
- Optimal control (e.g., LQR): more general control objective, requires disturbance knowledge
 [Bertsekas 95], ...
- MPC (real-time/online): more general control objective, but harder to solve online Real-time MPC [Zeilinger et.al. 09], Optimizing control [Garcia & Morari 81], ...
- Feedback optimization: this presentation
 [Hauswirth-Bolognani-Hug-Dorfler 20], [Lawrence-Simpson Porco-Mallada 21], [Simpson Porco 22], [Belgioioso et.al. 24],
 [Carnevale-Mimmo-Notarstefano 24,]

Gianluca Bianchin 24

Challenge 1: optimization with feedback

Challenge 2: optimization and plant form a control loop

Classical optimization algorithm design fails!

Converge bounds

Ramp metering

Freeway ramp metering problem

2 - Making dynamic decisions in dynamic (!) environments

and the variability is unmeasurable

3 - Conclusions

Conclusions

o Increasingly fast dynamics in transportation

◦ Decision-making in dynamic environments ≠ classical optimization

Part 1:

 $\circ~$ Fundamental limitation 1: tracking only if one has an internal model

Part 2:

- $\circ~$ When transport system has non-negligible dynamics \rightarrow "control loop"
- o Fundamental limitation 2: optimization has to operate at a slower timescale than the plant

Gianluca Bianchin 32

Thank you!

Acknowledgements

Funding acknowledgements

UCLouvain

Special thanks to students & collaborators

UCSD

UCSD