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Harmful consequences of transportation
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Transportation is the largest source 
of emissions in the EU

Greenhouse emissions (MtCO2e)          Source: UNFCCC

The transport sector in Sweden emits as 
much greenhouse gas as 1% of the Amazon 

rainforest can absorb

Source: Statista

Carbon Dioxide Levels Now 
Higher Than Ever in Human 

History
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A network of networks
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Fleet companies/
private owners

Freight logistics

Railway

Users

Other transport systems

Transportation system
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Emerging features
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o Sustainability and transition

o Increasing complexity and heterogeneity

o Faster dynamics

o Complex models and problems

o Resilience and security

Multi-modal transit

Micro vehicles

EVs

Ridesharing
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Emerging features
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o Sustainability and transition

o Increasing complexity and heterogeneity

o Faster dynamics

o Complex models and problems

o Resilience and security

Users-in-the-loop

EV vs combustion

Connected vehicles
Gianluca Bianchin

New features = new challenges
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All these new features make it difficult to operate the system optimally

Dynamic factors:
• Multi-modal routes
• User adaptation
• Transport demands
• …

Dynamic factors:
• Response to congestion
• Transport demands
• Vehicle type
• Tolls
• …

Dynamic factors:
• Cargo loads
• Vehicle type
• Cargo modes
• Seasonal demand
• …
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Talk outline
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1 – Making dynamic decisions

2 - Making dynamic decisions in dynamic (!) environments

3 - Conclusions
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Decision-making in dynamic environments
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General optimization problem:

o                    → time-varying parameter vector

o 𝑓(𝑥, 𝜃) → smooth convex function to be minimized

Temporal variability satisfies:

Objective: At each time 𝑡, determine an optimal decision 𝑥⋆(𝑡)

min
x∈Rn

f(x, θ(t))

θ̇(t) = s(θ(t))

θ(t) ∈ Θ ⊆ R
p

Time t
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Gradient-type methods

Gradient-type algorithms:

Algorithm has access to gradient oracles:
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(t, x) →→ ∇xf(x, θ(t))

Basic gradient-flow

ẋ(t) = −η∇xf(x(t), θ(t))

Prediction-correction

ẋ(t) = −H−1[η∇xf(x(t), θ(t))

+∇xθf(x(t), θ(t)) · s(θ(t))]

Correction

Prediction

[Hazan 2016, Absil 2006, Hall 2015, …] [Zhao 1998, Fazylab 2017, Raveendran 2022, …]
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Computes an approximate optimizer Computes an exact optimizer
…but very strong assumptions:
(strongly cvx, hessian, sensitivity, 𝑠(𝜃), ….)
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Optimization algorithms as feedback controllers
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y(t) = →xf(x(t), ω(t))

ż(t) = Fc(z(t), y(t))

x(t) = Gc(z(t))

ω̇(t) = s(ω(t))
ω(t)

x(t) y(t)

Problem 1 (Algorithm design):

Design 𝐹𝑐(𝑧, 𝑦) and 𝐺𝑐(𝑧) such that 𝑦(𝑡) → 0 as 𝑡 → ∞

“Plant” to be regulated

“Controller” to be designed

Problem 0 (Minimal knowledge):

What is the “minimal knowledge” required to design an algorithm from the class achieving 

exact asymptotic tracking?

General class of optimization algorithms:

ż(t) = Fc(z(t), y(t))

x(t) = Gc(z(t))
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Minimal knowledge: considerations
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y(t) = →xf(x(t), ω(t))

ż(t) = Fc(z(t), y(t))

x(t) = Gc(z(t))

ω̇(t) = s(ω(t))
ω(t)

x(t) y(t)

Temporal-variability properties:
(E1) 𝜃(𝑡) is measurable

(E2) 𝑠(𝜃)
(E3) 𝜃(𝑡) and 𝑠(𝜃) are known

....

Optimization properties:

(O1) Oracle gradient evaluations:

(O2) Gradient

(O3) Sensitivity

(O4) Hessian

(O5) Loss is quadratic

…

(t, x) →→ ∇xf(x, θ(t))

∇xf(x, θ)

∇xθf(x, θ)

∇
2

xx
f(x, θ)[Zhao 1998, Fazylab 2017, Raveendran 2022, …]

[Bastianello 2024]

[Hazan 2016, Hall 2015, …]

[Hazan 2016, Hall 2015, …]

[Zhao 1998, Fazylab 2017, Raveendran 2022, …]

[Bastianello 2024, …]
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1 – Making dynamic decisions

 but the variability is measurable

 and the variability is unmeasurable

2 - Making dynamic decisions in dynamic (!) environments

3 - Conclusions
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The parameter feedback problem
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y(t) = →xf(x(t), ω(t))

ż(t) = Fc(z(t), y(t))

x(t) = Gc(z(t))

ω̇(t) = s(ω(t))
ω(t)

x(t) y(t)

Static optimization algorithm:

x(t) = Hc(θ(t))
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Instrumental notions
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Definition

The algorithm exactly asymptotically tracks an optimizer if there exists Θ𝑠, neighborhood of 
the origin, such that for each 𝜃(0) ∈ Θ𝑠, the solution of the interconnection satisfies 𝑦(t) → 0

Definition

o !! is a limit point of                    wrt the initialization 𝜃∘ if 𝜃(t𝑖) → 𝜃𝜔 for some sequence 

𝑡𝑖 when starting at 𝜃∘

o The set of all limit points Ω(Θ∘) is called limit set

θ̇(t) = s(θ(t))
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The parameter feedback problem (continued)

14

y(t) = →xf(x(t), ω(t))

ż(t) = Fc(z(t), y(t))

x(t) = Gc(z(t))

ω̇(t) = s(ω(t))
ω(t)

x(t) y(t)

Static optimization algorithm:

Answer to P0: when 𝜃(𝑡) is measurable, minimum knowledge required is 

x(t) = Hc(θ(t))

Result

The static optimization algorithm achieves exact asymptotic tracking if and only if

at all limit points θω ∈ Ω(Θ◦)

0 = ∇xf(Hc(θω), θω)

x(t) = Hc(θ(t))

∇xf(x, θ)
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The gradient feedback problem
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y(t) = →xf(x(t), ω(t))

ż(t) = Fc(z(t), y(t))

x(t) = Gc(z(t))

ω̇(t) = s(ω(t))
ω(t)

x(t) y(t)

Dynamic optimization algorithm:

ż(t) = Fc(z(t), y(t))

x(t) = Gc(z(t))

Assumption:
𝜃(𝑡) is exponentially detectable from 𝑦(𝑡):

∥

∥

∥

θ̂(t)− θ(t)
∥

∥

∥

≤ Me
−ct

∥

∥

∥

θ̂(0)− θ(0)
∥

∥

∥

Result

An algorithm that achieves exact asymptotic tracking exists if and only if

for some 𝐻𝑐(𝜃) at all limit points 

0 = ∇xf(Hc(θω), θω)

θω ∈ Ω(Θ◦)

Static and dynamic algorithms exist 
under the same conditions!
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The internal model principle of optimization
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Theorem

The optimization algorithm:

achieves exact asymptotic tracking if and only if there exists 𝜎(𝜃):

at all limit points

Implications:
𝜃(𝑡) and 𝑧(𝑡) must be related, at optimality, by a change of variables:

Answer to P0: when 𝜃(𝑡) is not measurable, minimum knowledge required is               and 𝑠(𝜃) 

ż(t) = Fc(z(t), y(t))

x(t) = Gc(z(t))

∂σ(θ)

∂θ

∣

∣

∣

∣

θ=θω

s(θω) = Fc(σ(θω), 0),

0 = ∇xf(Gc(σ(θω)), θω)

θω ∈ Ω(Θ◦)

The “internal model principle”
an algorithm can track time-varying 

optimizers if and only if it incorporates a 
model of the temporal variability

z(t) = σ(θ(t))

∇xf(x, θ)
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Implications
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Basic gradient-flow

ẋ(t) = −η∇xf(x(t), θ(t))

satisfies internal model conditions with:

Prediction-correction

ẋ(t) = −H−1[η∇xf(x(t), θ(t))

+∇xθf(x(t), θ(t)) · s(θ(t))]

Prediction-correction asymptotically 
computes a mapping that zeros the gradient

Basic gradient flow incorporates an internal 
model of a constant parameter

What if we do not know internal model?

o Fundamental limitation: no exact tracking is possible! (for any algorithm in the class!)

o Robustness-type guarantees can be given (when 𝜃(𝑡) is bounded):

‖y∞‖ ≤ c‖θ(0)‖‖S − Ŝ‖

s(θ) = 0, σ(θ) = arbitrarily chosen
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Optimization design
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When 𝜎(𝜃)  = 𝐼𝑑 (identity operator):

s(θ) = Fc(θ, 0)

Example

Optimization: 

Temporal variability:

Mapping zeroing the gradient: 

Internal model conditions:

Optimization algorithm: 

min
x∈Rn

f(x(t), θ(t)) = 1

2
x(t)TRx(t) + x(t)TQθ(t)

Hc(θ) = −R†Q · θ

θ̇(t) = Sθ(t) y(t) = →xf(x(t), ω(t))

ż(t) = Fc(z(t), y(t))

x(t) = Gc(z(t))

ω̇(t) = s(ω(t))
ω(t)

x(t) y(t)

θ̇(t) = Sθ(t)

ż = Acz +Bcy

x = Gcz,

y = Rx+Qθ

ΣS = AcΣ, 0 = RGcΣ+Q

Fc(z, y) = Sz + Ly, Gc(θ) = −R†Q · θ

Algorithm 1: Optimization algorithm design

Data: s(θ), ∇xf(x, θ), map zeroing gradient Gc(θ)
exponential observer Q,S

1 nc ← p;
2 L← any matrix such that S − LQ is Hurwitz;
3 Gc(z)← Hc(z);
4 Fc(z, y)← s(z) + L(y −∇xf(Hc(z), z));
Result: Fc(z, y), Gc(z), and nc

z(t) = θ(t)

Optimization algorithm is a copy of the 
temporal variability
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Dynamic traffic assignment
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o Network state 𝑥 → amount of flow routed on each road

o Travel time on road 𝑖: ℓ𝑖(𝑥𝑖)
o Travelers minimize their travel time to destination:

Objective

Optimally split traffic demand 𝜆 
among alternative paths to minimize 
travel time to destination

min
x∈R|E|

∑
i∈E

∫ xi

0

!i(s)ds

subject to:
∑

j∈E:j−=v

xj −
∑

j∈E:j+=v

xj = δv(λ(t)), ∀v ∈ V ,

xi ≥ 0, ∀i ∈ E
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Strengths and caveats
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o Convergence can be made arbitrarily fast

o But, in general, it is of local nature
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Optimal regulation in dynamic environments
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Transportation systems with non-negligible dynamics

(Stable, controllable, observable)

Optimal output regulation:

o 𝜓𝑡(𝑥, 𝑦) → time-dependent, smooth, strongly convex

 Objective: Design a controller so that     

ẋ(t) = Ax(t) +Bu(t) + Ew(t)

y(t) = Cx(t) +Dw(t)

min
u,x,y

ψt(u, y)

s.t. 0 = Ax+Bu+Hw(t)

y = Cx+Dw(t)

(u(t), x(t), y(t)) → (u!(t), x!(t), y!(t))

Dynamic objectives

Dynamic disturbance
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Optimal regulation: related works

24

• Output regulation: track a prescribed reference 

     [Davidson 76], [Francis & Wonham 76], [Yoon and Lin 16], ..., [Huang 03,04], [Isidori & Byrnes 90], ...

• Extremum-seeking: estimate gradient online

    [Leblanc 22], ... [Wittenmark & Urquhart 95], ... [Krstić & Wang 00], ... , [Feiling et.al.  18]

• Optimal control (e.g., LQR): more general control objective, requires disturbance knowledge

     [Bertsekas 95], …

• MPC (real-time/online): more general control objective, but harder to solve online

     Real-time MPC [Zeilinger et.al. 09], Optimizing control [Garcia & Morari 81], …

• Feedback optimization: this presentation

 [Hauswirth-Bolognani-Hug-Dorfler 20], [Lawrence-Simpson Porco-Mallada 21], [Simpson Porco 22], [Belgioioso et.al. 24], 
[Carnevale-Mimmo-Notarstefano 24, ….]

min
u,x,y

ψt(u, y)

s.t. 0 = Ax+Bu+Hw(t)

y = Cx+Dw(t)

Gianluca Bianchin

Eliminate dependent variables
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min
u,x,y

ψt(u, y)

s.t. 0 = Ax+Bu+Hw(t)

y = Cx+Dw(t)

min
u

ψt(u,Gu+Hw(t))

Similar form as the first part of this talk!

…now with many additional challenges!

Constrained: Unconstrained:

min
x∈Rn

f(x, θ(t))

Time t

Optimization Plant
u y

wt

Gianluca Bianchin

Challenge 1: optimization with feedback
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Classical optimization

• Basic gradient-flow:

Optimization with plant-in-the-loop: 

• Gradient-flow with feedback:

u̇ = −ηΠT
∇ψt(u,Gu+Hwt)

Gradient flow
wt u

∗

t

u̇ = −ηΠT
∇ψt(u, y)

ẋ = Ax+Bu+ Ewt

y = Cx+Dwt

Gradient flow
with feedback Plant

u y

wt

ΠT = [I, GT]

min
u

ψt(u,Gu+Hw(t)) min
u

ψt(u,Gu+Hw(t))

Inapplicable!

Classical optimization methods are inapplicable!
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Challenge 2: optimization and plant form a control loop
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“Static” plant: “Dynamic” plant:

Gradient flow
u y

wt

y = Gu+Hwt

Gradient flow 
with feedback

u y

wt

ẋ= Ax+Bu+ Ewt

y= Cx+Dwt
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Classical optimization algorithm design fails!
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Converge bounds
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[Bianchin et.al. Automatica, 2022]

Theorem: Suppose

• 𝜓𝑡(⋅) strongly convex

• ∇𝜓𝑡(⋅) Lipschitz

•            locally absolutely continuous

Then, provided that the plant is ‘much’ faster than the controller (         ) :

‖(ut, xt)− (u∗

t , x
∗

t )‖ ≤ ae−bt‖(u0, x0)− (u∗

0, x
∗

0)‖+ d ess sup
τ

‖ẇτ‖+ c ess sup
τ

‖(u̇∗

τ , ẋ
∗

τ )‖

η ≤ η̄

t →→ wt

Gradient-flow with feedback:

u̇ = −ηΠT
∇ψt(u, y)

ẋ = Ax+Bu+ Ewt

y = Cx+Dwt

Gradient flow
with feedback Plant

u y

wt
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Ramp metering
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Freeway ramp metering problem

How it is currently done:

• PI-type controller, local at ramps/corridors

• Simulation-based controller tuning, seasonal parameters update

Difficulties:

• Complex (nonlinear) model

• Rapid changes in traffic demand at peak hours

Objective

Control traffic inflows at on-
ramps to maximize network 
throughput 
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Feedback optimization for ramp metering
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Cell Transmission Model:

ẋi = −fout
i (x) + f in

i (x)

fout
i (x) = min{di(xi), {sj(xj)/rij}j∈i+}

di(xi) = min{ϕixi, d
max
i }

si(xi) = min{βi(x
jam
i − xi), s

max
i }

f in
i (x) =

∑

j∈i−

fout
j (x)

ẋ = Ax+Bu+ Ewt

y = Cx+Dwt

if traffic is controlled 
in free-flow

min
u,y

(u− uref)TQu(u− uref)− Φ(y)

s.t. y = −((RT − I)F )−1Bu+ w

ui ≥ 0, yi ≤ min{xcrt,d
i , xcrt,s

i }

(reference tracking)

(steady-state map)

(free-flow traffic)
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without disturbances with disturbances
ALINEA:
Papageorgiou, Kotsialos, “Freeway ramp metering: An overview,” IEEE T-ITS, 2002

Steady-state control, constrained to free-flow:

Application to Los Angeles, CA, USA
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Conclusions
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o Increasingly fast dynamics in transportation

o Decision-making in dynamic environments ≠ classical optimization

Part 1:

o Fundamental limitation 1: tracking only if one has an internal model

Part 2:

o When transport system has non-negligible dynamics → “control loop”

o Fundamental limitation 2: optimization has to operate at a slower timescale than the plant
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