@ Transportation: critical infrastructure
for development of smart cities

A Network Optimization Approach for the

Optimization of Intersection Signaling

o High complexity
Gianluca Bianchin, Fabio Pasqualetti
o Efficiency strongly depend on control
of traffic signaling

@ Current control techniques rely on
infrastructure sensing

Department of Mechanical Engineering ° Intelllgent vehicle technologles:

University of California, Riverside o New layer of communication Google live traffic, Downtown LA
e Enormous potential for control
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Goal Model of traffic network
minimize  (network congestion) e Traffic network described by N = (R, T)
(lights schedule)
, o R ={ry,...,m,, } set of one-way roads
subject to (traffic conditions) o Z={Ty,...,I,,} intersections

(network interconnection)

@ Exogenous inflows and outflows

o Enter at source roads S C R
o Exit at destination roads D C R

@ Current methods: distributed

o Local (infrastructure) sensing
o Scale well

j E
Intersections

Route Network
L .

o Centralized

o Use V2| and 12V communication  Google live traffic, Downtown LA
o Insights for new control variables
o Higher complexity

Trade-off between model complexity and performance )
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Modeling roads Modeling roads

Analogy between road and the associated network model J
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Intersections control road outflows _| | |_
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f(ri, ) = min{e(rg, )z 7k, f}
f(ri,mi)
[+ Green sp||t S : R X R X Rzo — {0, 1} ; IProportional Saturation
@ Transmission rate f : R X R = R>q

Tk

f(ri, i) = c(ry, ri)zt

@ Road Dynamics
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A linear switching system

Linear switching system, where the switching signals are the green split
functions s(r;, 7k, t)

L= AS(’I‘i,’I’k 7t)$

y=Cx
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Problem formulation

Design problem

@ Assume the network has a certain initial density zg

@ Find the green split functions that minimize the queue lengths

= AS(Ti>Tk7t):C

y=Cx
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Problem formulation

Design problem

@ Assume the network has a certain initial density zg

o Find the green split functions that minimize the queue lengths

. 2
min dt
min, i

s.t. T = As(m,rk,t)x
y=Cz
z(0) = zo

s(ri, T, t) is a feasible green split

Approximating traffic switching system

b = AS(Ti,Tk,t)x Tay = AavTay

: — i i 1
s(r, Tk, t) = piecewise constant A, = T(Aldl Yoot Amd)

Define {ds,...,d,,} durations
where s(r;, 7, t) = constant

“Average” network dynamics
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Mode durations {di,...,d,,} are the new design parameters J

Control of Intersections Signaling May 11, 2018 10 / 19

G. Bianchin (UC Riverside)

Control of Intersections Signaling May 11, 2018 9/19

G. Bianchin (UC Riverside)



A network optimization problem Cost function

o0 o0 o0
win [l win [ TlalBde = min [T aTeC] Coetiay

diye.,dm di,...,dm 15-sdm,

subject to  Zay = AavTay T .
e Finite if exist {d1,...,dp} that lead to A, Hurwitz

Yav = CavTay
A = % (d1A1+ -+ dmAm) (Theorem) Network stability = Graph-theoretic property
_ If there exists a path in A/ between any source s € S and some destination
Zav(0) = 7o d € D, then there exists {d Thin I3
T:d1+.,,+dm 1 1)"" mJ -
di>0 ie{l,...,m} a(Aa) <0
Spectral abscissa of A,,
@ Measurements will enter the optimization, updating g
e We optimize over [0, 00| and follow a “receding horizon” approach } (Aay) == sup{R(s) : s € C,det(s] — Aay) = 0}
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Controllability metrics of traffic networks Optimizing network controllability

@ Define the Gramian matrix

_ > Aavt T ALt
W(Aay, ) = /0 € 7 Torpe dt . mir;l Trace <C’av W(Aay, 7o) C;':,)
1ye-0m
(Lemma) Network performance and controllability
Difficulties:
dlrﬂ“i’]i Trace <Cav W(Aav, 7o) C;';) e A,, and W(A,y, o) are related by the (nonlinear) relation

. 1
subject to A, = T (d1A1+ -+ dnAp) A WH+W AaTV = —(momg)(moxg)
T=di+ - +dn
d; >0, 1€{1,...,m} e Similar problems: consider stability a/(Aay)
o Captures steady state rates (not transient overshoots)
o Nonconvex in A,, and “very hard to optimize”

The Optlmal Spllt duratlons lkllanliA= @ J. Vanbiervliet, B. Vandereycken, W. Michiels, S. Vandewalle, and M. Diehl, “The smoothed spectral
a Contr0||abl||ty metric abscissa for robust stability optimization,” in SIAM Journal on Optimization, vol. 20, no. 1, 2009.
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Optimizing network controllability Optimizing network controllability

@ For a certain A,, the associated network performance is N .
ag = min lae(Aay)|
Trace (C’av W(Aav, 7o) C’;,) =1/e et 1
subject to A, = T (diA1+ -+ dmnAm)
@ Now assume we desire a better performance € > € T=di+ - -+dn
@ We can make the system "faster” A,, — Aay — sI, s € R variable d; >0, ie{l,...,m}
Trace (Ca\, W(Aqy — sI, ) CJ ) =1/¢
Gradient descent can numerically solve this problem J
@ Solution s := a(A,y): “smoothed spectral abscissa”
o Unique
o Differentiable in A,, (and {d1,...dn}) OJae(Aay) . QP Oaay
od Trace (QP) ) 0d
Can we design A,, so that s = az(A,) =07 (Aay — ae(Aa) )P + P(Aay — ac(Aa) )T + zozd =0
e If yes, A,, will have performance 1/¢ (Aay — ac(Aa) DT 4+ Q(Asy — ac(As)I) + CoCF, =0
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Optimizing network controllability: gradient-descent Preliminary simulation experiments

algorithm

Additional algorithm complexity is justified by increased performance )

Input: Matrix C,y, vector g, scalars i, Umin, €

Output: {d},...d},} L .
Initialize d©, k = 1 Distributed VS Centralized
repeat 200
) loe(Ane)| Compute the current value of ae(Ag’f,));
min az
A1y ey Compute %fdlﬁ’i)) : 2 150 F
1 : k) #. =
s.t. Ay = 7 (d1 A1+ -+ dmAm) Compute %; @ < 100F
(k) =
T=di+ - +dn Update: 60 ¢ dth=D) 4y, 22clidn )7, T{ sl
di >0, ie{l,...,m} Projection: d(*) «+ ar(;gEnAnnH(S( ) —d|); //,,4., w“-www S ’N\‘-\'WW
k <—¥ 0
Update A% ; D 9 @ 0 500 1000 1500 2000 2500 3000 3500
k+—k+1; @ ‘\69 Simulation time step
. k k-1 “ "
until ‘ae((]:)lgv))z — ac(AETN2] < v Dark colors: “slower” network
return d'; Light colors: “faster” network
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Summary and ongoing effort

Motivation: incorporate new traffic data and model interconnection

Approximate model: tradeoff between complexity and accuracy
@ Benefits: centralized techniques give better insight
o Allow network design
o Allow design of new control parameters

o Better performance

Ongoing effort:

@ Validation of the technique over existing traffic networks
o Computational:
e Distributed implementation of gradient descent

@ Security analysis
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