

Online Feedback Optimization with Applications to Transportation Networks

Gianluca Bianchin ICTEAM & Department of Mathematical Engineering University of Louvain, Belgium

UCLouvain

2023 American Control Conference San Diego, CA, USA

Problem setting

Online Feedback Optimization

Design a controller that optimizes the operation of the system in the face of unknown disturbances

Gianluca Bianchin

Physical system:

 $x_{k+1} = Ax_k + Bu_k + Ew_k$ $y_k = Cx_k + Dw_k$

Noise model:

 $w_k \sim \mathcal{W}_k$ (time-varying distribution)

Steady-state map:

UCLouvain

$y = \underbrace{C(I-A)^{-1}B}_{G}u + \underbrace{(D+C(I-A)^{-1}E)}_{H}w$

Objective: (equilibrium selection)

 $\min_{u^d} \quad \mathbb{E}_{w_k}[\phi(u^d, \underbrace{Gu^d + Hw_k}_{\text{steady-state output}})]$

- Implicitly defines optimal operating point for the system affected by current disturbance
- Challenge: noise is unmeasurable thus the optimization cannot be solved explicitly

Motivation: control and coordination of transportation

Control objective: related work

Control objective: $\min_{u^d} \mathbb{E}_{w_k}[\phi(u^d, Gu^d + Hw_k)]$

Conceptually-related problems:

- Output regulation: control system so that output tracks a prescribed reference [Davidson '76], [Francis '77], [Yoon and Lin 16], ..., [Huang '03,'04], [Isidori '89], ...
- Extremum-seeking: seek the extremum of a performance metric, adjusting control inputs online [Leblanc, '22], ... [Wittenmark & Urquhart, '95], ... [Krstić & Wang, '00], ..., [Feiling et.al., '18]
- MPC (real-time/online): more general control objective, but harder to solve Real-time MPC [Zeilinger et.al. '09], Optimizing control [Garcia & Morari '81], ...
- Optimal control (e.g., LQR): more general control objective, requires noise knowledge [Bertsekas '95], ...

UCLouvain

2

Motivation

 u_k

 $x_{k+1} = Ax_k + Bu_k + Ew_k$ $y_k = Cx_k + Dw_k$

Online Stochastic Optimization for Unknown Linear Systems: Data-Driven Controller Synthesis and Analysis

Gianluca Bianchin, Miguel Vaquero, Jorge Cortés, and Emiliano Dall'Anese

System to control:

 w_k

System

 $x_{k+1} = Ax_k + Bu_k + Ew_k$

 $y_k = Cx_k + Dw_k$

Theoretical guarantees

Theorem. Assume

- System is controllable
- (joint) Input is persistently exciting of order $n + \nu$, n = state size, $\nu =$ observability index
- If historical data is noiseless:

$$C(I-A)^{-1}B = [Y_{\nu,q}]_i \begin{bmatrix} Y_{\nu,q}^{\text{diff}} \\ U_{\nu,q} \end{bmatrix}^{\dagger} \begin{bmatrix} 0 \\ \mathbb{1}_{\nu} \otimes I_m \end{bmatrix} := \hat{G}$$

• If historical data is noisy:

$$G - \hat{G} = [Y_{\nu,q}]_i \begin{pmatrix} Y_{\nu,q}^{\text{diff}} \\ U_{\nu,q} \\ W_{\nu,q} \\ W_{\nu,q}^{\text{diff}} \\ W_{\mu,q} \end{pmatrix}^{\dagger} \begin{pmatrix} 0 \\ 1_{\nu} \otimes I_m \\ 0 \\ 0 \end{pmatrix} - \begin{bmatrix} Y_{\nu,q}^{\text{diff}} \\ U_{\nu,q} \end{bmatrix}^{\dagger} \begin{bmatrix} 0 \\ 1_{\nu} \otimes I_m \end{bmatrix})$$

Proof sketch. Assume C = I, so that $\nu = 1$

• By the fundamental lemma:
$$\operatorname{rank} \begin{bmatrix} U_{\nu,q} \\ X_{1,q} \end{bmatrix} = \nu m + n$$
 and $\begin{bmatrix} \tilde{u}_{[0,\nu-1]} \\ \tilde{y}_{[0,\nu-1]} \end{bmatrix} = \begin{bmatrix} U_{\nu,q} \\ Y_{\nu,q} \end{bmatrix} \alpha$

• At equilibrium:
$$0 = \begin{bmatrix} I - A & -B \end{bmatrix} \begin{bmatrix} y^{eq} \\ u^{eq} \end{bmatrix} = \begin{bmatrix} I - A & -B \end{bmatrix} \begin{bmatrix} Y_{\nu,q} \\ U_{\nu,q} \end{bmatrix} \alpha = Y^{\text{diff}}_{\nu,q} \alpha$$

Thus, an equilibrium trajectory is characterized by the manifold $0=Y_{
u,q}^{
m diff}lpha$

```
• Moreover, among all equilibrium trajectories, we want: U_{\nu,q}\alpha = I
```

Fundamental lemma: Willems, Rapisarda, Markovsky, De Moor, "A note on persistency of excitation," Systems & Control Letters, 2005 UCLouvoin Gianluca Bianchin

14

Direct vs indirect estimation of G

Lesson learned from the numerics:

Network size n

4 6 8 10

- · Subspace id needs several assumptions: known system order, minimal realization
- Subspace id suffers from: many choices state variables, noise "propagates" through sequential id steps

10⁻¹ 10⁻¹ 10⁻¹

Gianluca Bianchin

Projected gradient-flows

System to control:		Control	objective:		
$\begin{split} \dot{x} &= Ax + Bu + Ew_t \\ y &= Cx + Dw_t \end{split}$ Noise model: $w_t \text{deterministic \& time-varying}$ Steady-state map: $y &= \underbrace{-CA^{-1}B}_G u + \underbrace{(D - CA^{-1}E)}_H v$	v		$ \min_{u^d} \phi_t(u^d, Gu^d + Hw_t) $ s.t. $u^d \in \mathcal{U}$		
Define measurements-based gradient: $\Phi_t^s(u, y) = \nabla_1 \phi_t(u, y) + G^T \nabla_2 \phi_t(u, y)$ Projected gradient flow: $\dot{u} = P_{\mathcal{U}} \left(u - \eta \Phi_t^s(u, y) \right) - u$	$\dot{x} = Ax$ y = Cx	$+ Bu + Ew_t$ $+ Dw_t$	cf. Projection on tangent cone $ \int_{\Omega} \int$		
UCLouvain	Gianlud	ca Bianchin			
Closed-loop tracking bound Theorem: Assume • Regularity of φ _t : ℓ-Lipschitz gradient and μ-strongly convex • Temporal regularity: \nabla φ K k locally lipschitz in time w locally absolutely continuous					

Implications:

- If controller gain η is sufficiently small, input-to-state stability bound

• Error bound depends on temporal variability of noise w_k and on shift of optimizer

Projected primal-dual gradient flows

System to control:	Control objective:		
$\begin{split} \dot{x} &= Ax + Bu + Ew_t \\ y &= Cx + Dw_t \end{split}$ Noise model: $w_t \;\; \text{deterministic \& time-varying} \end{split}$	$\min_{u^d} \phi_t(u^d, Gu^d + Hw_t)$ s.t. $u^d \in \mathcal{U}$ $K_t (Gu^d + Hw(t)) \le k_t$		
Steady-state map: $y = \underbrace{-CA^{-1}B}_{G}u + \underbrace{(D - CA^{-1}E)}_{H}w$			
Define measurements-based gradients of Lagran $L_t^u(u, y, \lambda) := (\nabla \phi_t)(u, y) + G^T K_t^T \lambda$ L_t^T Online projected primal-dual gradient flow: $\dot{u} = P_{\mathcal{U}} (u - \eta L_t^u(u, y, \lambda)) - u$ $\dot{x} =$ $\dot{\lambda} = P_{\mathcal{C}} (\lambda + \eta L_t^\lambda(y, \lambda)) - \lambda$ $y =$	ngian: $\lambda_t^{\lambda}(y,\lambda) := K_t y - k_t - \nu \lambda$ $= Ax + Bu + Ew_t$ $= Cx + Dw_t$		
UCLouvain Gia	anluca Bianchin 21		
Ramp metering			
Cell Transmission Model: Stu	$ \begin{array}{ll} \mbox{weady-state control, constrained to free-flow:} \\ \mbox{min} & (u-u^{\rm ref})^{\sf T}Q_u(u-u^{\rm ref}) - \Phi(y) & \mbox{(reference tracking)} \\ \mbox{s.t.} & y = -((R^{\sf T}-I)F)^{-1}Bu+w & \mbox{(steady-state map)} \\ & u_i \geq 0, y_i \leq \min\{x_i^{{\rm crt},d}, x_i^{{\rm crt},s}\} & \mbox{(free-flow traffle)} \end{array} $		

$$\begin{split} \dot{x}_i &= -f_i^{\text{out}}(x) + f_i^{\text{in}}(x) \\ f_i^{\text{out}}(x) &= \min\{d_i(x_i), \{s_j(x_j)/r_{ij}\}_{j \in i^+}\} \\ d_i(x_i) &= \min\{\varphi_i x_i, d_i^{\max}\} \\ s_i(x_i) &= \min\{\beta_i(x_i^{\text{im}} - x_i), s_i^{\max}\} \\ f_i^{\text{in}}(x) &= \sum_{j \in i^-} f_j^{\text{out}}(x) \\ \end{split}$$

 $\dot{x} = Ax + Bu + Ew_t$

 $y = Cx + Dw_t$

UCLouvain

Test case from Los Angeles, USA

UCLouvain

Gianluca Bianchin

22

Conclusions

UCLouvain

• Increasing **need to combine control and optimization** (Benefits: robustness against variable disturbances, simple controller structure)

Gianluca Bianchin

- Nontrivial to "feed" state of optimization as input to physical system
- Analysis reveals controller design strategies
- Input-to-state stability type guarantees
- Several extensions (data-driven, continuous-time, constraints)

Thank you!

Special thanks to collaborators:

UCLouvain

24

25