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a b s t r a c t

This paper studies, for the first time, the trajectory planning problem in adversarial environments,
where the objective is to design the trajectory of a robot to reach a desired final state despite the
unknown and arbitrary action of an attacker. In particular, we consider a robot moving in a two-
dimensional space and equipped with two sensors, namely, a Global Navigation Satellite System (GNSS)
sensor and a Radio Signal Strength Indicator (RSSI) sensor. The attacker can arbitrarily spoof the
readings of the GNSS sensor and the robot control input so as to maximally deviate its trajectory
from the nominal precomputed path. We derive explicit and constructive conditions for the existence
of undetectable attacks, through which the attacker deviates the robot trajectory in a stealthy way.
Conversely, we characterize the existence of secure trajectories, which guarantee that the robot either
moves along the nominal trajectory or that attacks remain detectable. We show that secure trajectories
can only exist between a subset of states, and provide a numerical technique to compute them. We
illustrate our findings through several numerical studies, and show that our methods are applicable to
different models of robot dynamics, including unicycles. More generally, our results show how control
design affects security in systems with nonlinear dynamics.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Autonomous robots have rapidly been adopted in a broad
range of applications, including delivery, exploration, surveil-
lance, and search and rescue. Autonomous robots rely on sensory
data to make decisions, plan their trajectories, and apply controls.
Yet, as demonstrated by recent studies and real world incidents,
sensory data can be accidentally and maliciously compromised,
thus undermining the effectiveness of autonomous operations in
critical and adversarial applications.

Despite recent advances in understanding and enhancing the
security of cyber–physical systems, security tools for autonomous
systems are still of limited applicability and effectiveness. In
this paper we formulate and solve a secure trajectory planning
problem, where the objective is to design the trajectory of a
robot to reach a desired final state despite unknown and arbitrary
attacks. We consider a robot equipped with a Global Naviga-
tion Satellite System (GNSS) sensor and a Radio Signal Strength
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Indicator (RSSI) sensor, and focus on attackers capable of simulta-
neously spoofing the GNSS readings and sending falsified control
inputs to the robot. We show how the attacker can generate
undetectable attacks that maximally deviate the robot from the
nominal and precomputed path, and study how the trajectory
planner can exploit the RSSI readings to reveal certain attacks.
Moreover, we demonstrate the existence of secure trajectories
between certain initial and final configurations, and propose a
technique to determine the corresponding control inputs. We
remark that, because of the nonlinearity of RSSI sensor readings,
existing security methods based on linear models are inapplicable
in our setting. In fact, our results show for the first time that the
security of a system with nonlinear dynamics can be improved
by appropriately designing its control inputs.

Related work Security of cyber–physical systems is, by now,
a widely studied topic across the controls and computer sci-
ence communities, among others. Yet, most methods are appli-
cable to static systems or systems with linear dynamics (Bai,
Pasqualetti, & Gupta, 2017; Hamza, Tabuada, & Diggavi, 2011;
Lun, D’Innocenzo, Smarra, Malavolta, & Benedetto, 2019; Mo &
Sinopoli, 2010; Pasqualetti, Dörfler, & Bullo, 2013), and theoreti-
cal results and tools for the security of systems with nonlinear
dynamics are still critically lacking. Few exceptions are Hes-
panha and Bopardikar (2019), which considers the problem of
controlling a system under attack in a game-theoretic frame-
work, Shoukry et al. (2015), which focuses on nonlinear systems
satisfying differential flatness properties, and the recent articles
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(Hu, Fooladivanda, Chang, & Tomlin, 2018; Kim, Lee, Shim, Eun, &
Seo, 2019), which are however restricted to state the estimation
problem in the presence of attacks modifying the system mea-
surements only. Instead, in this work we focus on characterizing
detectability of attacks modifying both the measurements and the
input of the system, on quantifying their effects on the trajecto-
ries, and on the problem of designing nominal control inputs to
restrict or prevent undetectable attacks.

The literature on GNSS spoofing attack mechanisms and their
detection is also related to this paper. Existing approaches to
identify and prevent spoofing attacks can be divided into two
categories: filtering-based and redundancy-based techniques.
Filtering-based detection techniques rely on signal processing
methods to reveal compromised streams of sensory data (e.g., see
Broumandan, Jafarnia-Jahromi, Dehghanian, Nielsen, & Lachapelle,
2012; Jiang, Zhang, Harding, Makela, & Domínguez-García, 2013).
Redundancy-based techniques, instead, rely on the availability
of measurement from multiple types of sensors to reveal in-
consistency in the data (e.g., see Montgomery, Humphreys, &
Ledvina, 2009; Psiaki, O’Hanlon, Bhatti, Shepard, & Humphreys,
2013; Psiaki et al., 2014; Radin, Swaszek, & Seals, 2015; Swaszek,
Pratz, Arocho, Seals, & Hartnett, 2014; Zou, Huang, Lin, & Cong,
2016). The methods developed in this work combine these two
principles. In fact, detection is achieved by processing the sen-
sory data over time, thus ensuring compatibility between the
measurements and the robot dynamical model, and by process-
ing the measurements of two or more sensors, thus exploiting
redundancy across the two channels.

Paper contribution This paper features four main contributions.
First, we demonstrate the existence and characterize the form
of undetectable attacks, that is, coordinated attack inputs that
deviate the robot trajectory from the nominal path and can-
not be detected using the GNSS and RSSI readings. Second, we
demonstrate how an attacker can design optimal undetectable
attacks that maximally deviate the robot from its nominal path
while maintaining undetectability. Third, we show the existence
of secure trajectories where, independently of the intensity of
the attack, the robot either follows the nominal precomputed
path or readily detects the attack. Fourth, we formulate and
solve the secure trajectory planning problem, which asks for
the design of open-loop control inputs that allow the robot to
securely navigate from a given initial configuration to a certain
final position. As a minor contribution, we study and character-
ize undetectable attacks and secure trajectories for robots with
unicycle dynamics, thus showing that our techniques are in fact
applicable to different nonlinear dynamical robot models and
sensors. More generally, our results show that secure trajectories
can be substantially different from minimum-time trajectories,
and demonstrate that the security of systems with nonlinear
dynamics depends upon the inputs adopted for control.

Paper organization The remainder of the paper is organized as
follows. Section 2 presents our problem setup and attack model.
Section 3 contains our notion of undetectability and our charac-
terization of undetectable attacks. Section 4 and Section 5 contain,
respectively, the design of optimal undetectable attacks and of
secure trajectories. Finally, Section 6 contains an extension of our
results to the case of robots with unicycle dynamics, and Section 7
concludes the paper.

2. Problem setup and preliminary notions

We consider a robot with double-integrator dynamics,[
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ẋn

=

[
02 I2
02 02

]
  

A

[
pn
vn

]


xn

+

[
02
I2

]


B

un, (1)

where pn : R≥0 → R2 denotes the robot position, vn : R≥0 → R2

the robot velocity, and un : R≥0 → R2 the nominal control input
that actuates the acceleration of the robot. The control input un
is the design parameter that is used to plan the nominal robot
trajectory between two desired configurations. We assume that
un is piecewise continuous, and that

∥un∥ ≤ umax,

where umax ∈ R>0. We let the robot be equipped with two noise-
less sensors: a GNSS receiver that provides an absolute measure
of the position, and a RSSI sensor that provides a measure of the
relative distance between the robot and a base station located at
the origin of the reference frame. Specifically, the sensor readings
are

yGNSSn = pn, and yRSSIn = pT
npn. (2)

Although our results can be extended to include different sensors,
we focus on GNSS and RSSI sensors because they are available in
many practical applications (Jun & D’Andrea, 2003).

We consider scenarios where the robot operates in an adver-
sarial environment, where adversaries can simultaneously
(i) spoof the GNSS signal yGNSSn , and (ii) compromise the control
input un. The robot dynamics in the presence of attacks are[
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where u ∈ R2 denotes the attacked control input that obeys the
bound on the maximum acceleration ∥u∥ ≤ umax, and

yGNSS = p + uGNSS, and yRSSI = pTp, (4)

where uGNSS
: R≥0 → R2 denotes the GNSS spoofing signal.

Finally, we make the practical assumption that, at time t = 0,
the nominal and attacked configurations satisfy xn(0) = x(0).

In the remainder of this paper, we will denote the state by x =

[pT, vT
]
T or p and v interchangeably, depending on the context.

In particular, we let x = [x1, x2, x3, x4]T, and p = [px, py]T =

[x1, x2]T, v = [vx, vy
]
T

= [x3, x4]T.

Remark 1 (Spoofing Attack Mechanism). Well-known vulnera-
bilities of GNSS are conventionally associated with the lack of
appropriate encryption in the signals that are broadcast by the
satellite system. A typical framework to cast spoofing attacks
consists in a receiver-spoofer antenna (Shepard, Humphreys, &
Fansler, 2012) that is capable of sensing the authentic GNSS
signals and of rebroadcasting falsified streams of information at
a higher signal intensity. The retransmitted signals are typically
designed in a way to induce the GNSS receiver to resynchronize
with the spoofed information, for instance by gradually increasing
the intensity of the retransmission. Once the onboard receiver
has resynchronized with the falsified signals, an attacker can
arbitrarily decide the GNSS data received by the robot, resulting
in (4). A more in-depth discussion of common spoofing schemes
and the required hardware can be found in e.g. Kerns, Shepard,
Bhatti, and Humphreys (2014) and Shepard et al. (2012).

In common mobile robotic applications, robots communicate
wirelessly with a ground control station, that is responsible to
compute the actions and control inputs to be executed by the
robot. The use of wireless communication constitutes a possible
vulnerability that can be modeled as in (3). See Hartmann and
Steup (2013) for a discussion of common vulnerabilities of wire-
less communication in commercial Unmanned Aerial Vehicles
(UAV). □
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In this work we consider two problems that formalize the
contrasting objectives of an attacker, that is, to deviate the robot
trajectory while remaining undetected, and the trajectory plan-
ner, that is, to design a trajectory between two configurations
that is robust to attacks. We refer to the latter problem to as the
secure trajectory planning problem. In particular, the attacker aims
to design the attack inputs (u, uGNSS) so that

(i) the deviation between the robot nominal trajectory and the
actual (attacked) trajectory is maximized; and

(ii) the attack remains undetected (as defined below).

Instead, the secure trajectory planning problem asks for a nomi-
nal control input un to guarantee that

(iii) in the absence of attacks, un allows the robot to reach a
desired final state; and

(iv) in the presence of attacks, attacks are detectable (see be-
low) by processing the signals un, yGNSS, and yRSSI.

Two observations are in order. First, although the problem of
trajectory planning has a long history in robotics (e.g., see LaValle,
2006), the problem of designing trajectories in adversarial envi-
ronments has not been studied before. Second, the large body
of literature on detection and mitigation of attacks in cyber–
physical systems with linear dynamics (e.g., see Bai et al., 2017;
Pasqualetti et al., 2013) is not applicable to the considered secure
trajectory planning problem, since the system model is nonlinear
due to (4). As we show later in this paper, and differently from
the case of systems with linear dynamics, attack detectability for
nonlinear systems depends also on the control input adopted by
the trajectory planner.

We next formalize the notion of attack undetectability.

Definition 2 (Undetectable Attack). The attack (u, uGNSS) is unde-
tectable if the measurements satisfy, at all times,

yGNSS = yGNSSn , and yRSSI = yRSSIn ,

and it is detectable otherwise. □

Loosely speaking, an attack is undetectable if the measure-
ments generated by the attacker are compatible with their nomi-
nal counterparts and with the robot dynamics at all times. On the
other hand, if the conditions in Definition 2 are not satisfied, then
the attack is readily detected by simple comparison between the
nominal and actual measurements.

Remark 3 (Attack Detectability in the Presence of Noise). In this
work we characterize undetectable attacks and secure trajectories
for deterministic systems. When the dynamics or the sensors are
driven by noise, different and more relaxed notions of attack
detectability should be adopted, as done for instance in Bai et al.
(2017) for the case of linear dynamics. Loosely speaking, unde-
tectable attacks are easier to cast in stochastic systems, because
an attacker has the additional possibility of hiding its action
within the noise limits. Thus, the conditions derived in this paper
for deterministic systems serve as fundamental limitations also
for stochastic systems. □

Finally, we combine the objectives of the attacker and of the
trajectory planner into an optimization problem of the general
form:

max
u,uGNSS

min
un,T

∫ T

0
L(xn, x, t) dt + V (xn(T ), x(T )),

subject to Dynamics (1) and (3),

(u, uGNSS) is undetectable, (5)

where T ∈ R>0 represents the planning horizon, L : R4
× R4

×

R≥0 → R≥0 is an integral cost, and V : R4
× R4

→ R≥0 is a
terminal cost that is chosen to penalize deviations between the
nominal and attacked trajectories at the final time. The optimiza-
tion problem (5) captures the general class of problems that can
be solved with the framework proposed in this paper, and will be
further specified and discussed in the following sections.

We observe that (5) is composed of two sequential phases.
In the first phase, the trajectory planner designs the nominal
control input un and the control horizon T (inner minimization
problem) to satisfy the objectives (iii) and (iv). In the second
phase, the attacker designs the attack inputs (u, uGNSS) given
the nominal input un (outer maximization problem) to satisfy
objectives (i) and (ii). Further, we note that (5) can be interpreted
as a Stackelberg game (Başar & Olsder, 1999), where undetectable
attacks represent the best response among all strategies that can
be adopted by the attacker, and secure trajectories represent
the strategy that maximizes the payoff of the trajectory planner,
anticipating the fact that the attacker will adopt its best response.

Remark 4 (Control Mechanism and Attacker Information). Our for-
mulation (5) reflects a control framework where the trajectory of
the robot is planned in an open-loop fashion at the beginning of
the control horizon by a remote control station, and the resulting
control parameters are then transmitted in batch to the robot (Jun
& D’Andrea, 2003). Our assumptions are motivated by the vulner-
abilities of wireless communication, through which an attacker
can intercept the information transmitted to the robot. Thus, to
successfully cast undetectable attacks, the attacker is required to
know the robot dynamics and the nominal trajectory ahead of
time. These requirements can be relaxed in the case of single
integrator dynamics (Bianchin, Liu, & Pasqualetti, 2019). □

Remark 5 (Undetectability with GNSS Sensor). In scenarios where
GNSS is the only sensor for detection, an adversary can deliber-
ately alter the control input while remaining undetected. To see
this, notice that the effect of any attack u can be canceled from the
GNSS reading by selecting uGNSS

= pn−p. Thus, secure trajectories
for the considered attack model do not exist if the robot has no
redundancy to combine with the GNSS readings. □

3. Characterization of undetectable attacks

In this section we characterize the class of undetectable at-
tacks and the resulting attacked trajectories. First, we establish
a relationship between the nominal and attacked instantaneous
position and velocity. Then, we derive an explicit expression
of undetectable attacks, and demonstrate how an attacker can
readily design attacks that escape detection. The following result
relates attack trajectories with their nominal counterparts.

Lemma 6 (Undetectable Trajectories). Let (u, uGNSS) be an unde-
tectable attack. Then,

pTp = pT
npn, and vTp = vT

npn.

Proof. The first equality in the statement follows by substitution
of (2) and (4) into Definition 2. Further, by taking the time-
derivative on both sides of the equality pTp = pT

npn, and by using
the assumption xn(0) = x(0), we obtain 2ṗTp = 2ṗT

npn at all times,
from which the statement follows. ■

From Lemma 6, trajectories generated by undetectable attacks
are characterized by two features: at all times, (i) the distance
pTp between the attacked position and the RSSI-base station must
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Fig. 1. Nominal (blue) and undetectable attack (red) trajectories. At all times, the
two trajectories have identical relative distance from the base station, and equal
velocity components along the direction of the instantaneous position (green
segments). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

equal the distance pT
npn in the nominal trajectory, and (ii) the

component of the velocity v along the position p must equal
the component of the nominal velocity vn along pn. These two
geometric properties are illustrated in Fig. 1. Next, we give an
implicit characterization of undetectable attacks.

Theorem 7 (Implicit Characterization of Undetectable Attacks). The
attack (u, uGNSS) is undetectable if and only if

uTp = uT
npn + ∥vn∥

2
− ∥v∥

2, and uGNSS
= pn − p. (6)

Proof. (Only if ) By substitution of (2) and (4) into Definition 2
we readily obtain p+uGNSS

= pn, from which the second identity
in the statement follows. To show the first identity, we note that
for every undetectable attack u the identity yRSSI−yRSSIn = 0 holds.
We then make explicit the dependence on the control input in the
above identity by taking the second-order derivative with respect
to time. This yields ÿRSSI − ÿRSSIn = 0. Then,

0 = ÿRSSI − ÿRSSIn = 2uTp + 2vTv − 2uT
nun − 2vT

nvn,

from which (6) follows. We emphasize that the functions ẏRSSI,
ÿRSSI, ẏRSSIn , ÿRSSIn are piecewise continuous functions, since the
signals yRSSI and yRSSIn are continuous and twice differentiable
at all times. To see this, we combine the piecewise continuity
assumption on un and u with the dynamical equations (1) and (3),
and note that the velocities vn and v and the positions pn and p
are continuous and differentiable functions of time.

(If) Let uGNSS
= pn − p. Substituting into (4) yields

yGNSS − yGNSSn = p + uGNSS
− pn = 0,

from which the first condition in Definition 2 follows. To prove
RSSI undetectability, let u satisfy (6). Then,

ÿRSSI − ÿRSSIn = 2uTp + 2vTv − 2uT
npn − 2vT

nvn = 0,

from which we readily obtain the identity ÿRSSI − ÿRSSIn = 0. Since
the functions yRSSI and yRSSIn are continuous and twice differen-
tiable, and the initial conditions satisfy p(0) = pn(0) and v(0) =

vn(0) we conclude that ẏRSSI − ẏRSSIn = 0 and yRSSI − yRSSIn = 0.
Thus, yRSSI = yRSSIn at all times, which implies undetectability of
the attack u and concludes the proof. ■

Finally, we exploit Theorem 7 to give an explicit and compre-
hensive characterization of undetectable attacks.

Corollary 8 (Explicit Characterization of Undetectable Attacks). The
attack (u, uGNSS) is undetectable if and only if it satisfies

u = arp + w and uGNSS
= pn − p, (7)

whenever ∥p∥ ̸= 0, where wTp = 0 and

ar =
uT
npn + ∥vn∥

2
− ∥v∥

2

∥p∥2 .

Corollary 8 provides a systematic way to design undetectable
attacks by designing the attack inputs (u, uGNSS). We also note
that the input w can be arbitrarily selected by the attacker and
it does not affect detectability of the attack. Finally, it should be
noticed that ar corresponds to the radial acceleration of the robot,
that is, the projection of u along p, and that the attack input u is
unconstrained when ∥p∥ = 0 (see also Theorem 7).

4. Design of optimal undetectable attacks

In this section we design undetectable attacks that introduce
maximal deviations between the nominal and attacked trajecto-
ries. Assuming that the attacker knows the nominal control input,
we address the optimal control problem

max
w

∥p(T ) − pn(T )∥,

subject to ẋ = Ax + Bu, (8a)

u = arp + w, (8b)

ar = (uT
npn + ∥vn∥

2
− ∥v∥

2)∥p∥−2, (8c)

∥u∥ ≤ umax. (8d)

In the maximization problem (8), constraint (8a) corresponds
to the attacked dynamics (3), while (8b)–(8c) enforce attack-
undetectability from Corollary 8. We next characterize the op-
timality conditions of the problem (8). Let ei denote the ith
canonical vector of appropriate dimension, and let sgn( ) denote
the sign function.

Theorem 9 (Attack Optimality Conditions). Let ar be as in (8c), and
let w∗ be an optimal solution to (8). Then,

w∗
= atWx,

where

at = − sgn(λTBWx)
√
u2
max/∥p∥2 − a2r ,

W =
[
−e2 e1 02 02

]
,

and λ and x satisfy

ẋ = Ax + arBp + Bw∗,

−λ̇ = (ATλ + arP̃ + atW̃ )λ + (xTP̃λ + 2arν∥pn∥2)∇xar,

with boundary conditions

x(0) = xn(0), and λ(T ) = −2[(p(T ) − pn(T ))T 0T
2]

T,

where P̃ = PTBT, W̃ = W TBT, ∇xar = 2∥p∥−2
[0T

2 vT
]
T, and

ν = −
λTBWx
2at∥p∥2

.

Proof. To formalize the result, we make use of the fact that any
undetectable attack (7) can be written in the form

u = arPx + atWx, (9)

where P = [e1 e2 0 0] ∈ R2×4, W = [−e2 e1 0 0] ∈ R2×4, and at :

R≥0 → R. Following expression (9), the function at represents the
new design parameter in the optimization problem. To derive the
optimality conditions for (8), we use the Pontryagin’s Maximum
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Principle (Gelfand, Silverman, et al., 2000), combined with the
direct adjoining method for mixed state-input constraints (Hartl,
Sethi, & Vickson, 1995). We incorporate (8b) and (9) into (8a) and
define the Hamiltonian

H(x, at, λ, t) = λT(Ax + B(arPx + atWx)),

where λ : [0, T ] → R4 is a vector function of system costates,
with the additional constraints

x(0) = xn(0), ar =
uT
npn + ∥vn∥

2
− ∥v∥

2

∥p∥2 , ∥u∥ ≤ umax.

We then use (9) to rewrite the bound ∥u∥ ≤ umax as

a2r ∥pn∥
2
+ a2t ∥pn∥

2
≤ u2

max,

and form the Lagrangian by adjoining the Hamiltonian with the
considered state constraint:

L(x, at, λ, t, ν) = H(x, at,λ, t) + ν(a2r ∥pn∥
2
+ a2t ∥pn∥

2
− u2

max),

where ν : [0, T ] → R is the Lagrange multiplier associated with
the state constraint.

By application of the Maximum Principle (Hartl et al., 1995),
the optimal control input a∗

t minimizes the Hamiltonian over
the set U(x) = {at : a2r ∥p∥

2
+ a2t ∥p∥

2
≤ u2

max}, that is, a∗
t =

argminat∈U(x) H(x, at, λ, t). This fact yields the optimal control law

a∗

t = − sgn(λTBWx)
√
u2
max/∥p∥2 − a2r .

Moreover, it follows from the Maximum Principle that there
exists a vector function of system costates λ that satisfies the
following system of equations

ẋ =
∂L
∂λ

⇒ ẋ = Ax + B(arPx + atWx),

−λ̇ =
∂L
∂x

⇒
−λ̇ = ATλ + arPTBTλ + xTPTBTλ∇xar+

atW TBTλ + 2arν∥pn∥2
∇xar

0 =
∂L
∂at

⇒ 0 = λTBWx + 2νat∥p∥2,

where ∇xar denotes the gradient of ar with respect to x, and with
boundary conditions

x(0) = xn(0), and λ(T ) =
∂

∂x
∥p(T ) − pn(T )∥.

The statement of the theorem follows by substituting the expres-
sion of the gradient ∇xar = 2∥p∥−2

[0 0 vT
]
T. ■

From Theorem 9, optimal undetectable attacks can be com-
puted by solving a two-point boundary value problem (Keller,
2018). This class of problems is typically solved numerically, and
it may lead to numerical difficulties for general cases (Keller,
2018). To conclude this section and provide some intuition in
the design of optimal undetectable attacks, we next present an
example where optimal attacks can be characterized explicitly.

Example 10 (Undetectable Trajectories for Idle Robots). Let pn(0) =

[1 0]T, vn(0) = 0, and un = 0, so that the robot remains at
position pn(0) at all times. Let umax = 1 and T = 5. Under these
assumptions, the following control inputs satisfy the optimality
conditions in Theorem 9:

a∗

t =

{
ζ
√
u2
max − a2r , t ∈ [0, τ ],

−ζ
√
u2
max − a2r , t ∈ [τ , T ],

and ar = −∥v∥
2, (10)

where τ = 3.475, and ζ ∈ {−1, 1}. It is worth noting that,
because at every time the radial acceleration is proportional to

Fig. 2. For an idle robot at position (1, 0) (blue dot), (a) shows an optimal
undetectable attack trajectory, which maintains a distance equal to 1 from the
base station and maximizes the distance from the nominal position. Fig. (b)
shows the radial and tangential components of the acceleration. Fig. (c) shows
the velocity of the attacked robot, which becomes zero when the robot reaches
the final point (−1, 0). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. For a nominal straight line trajectory (blue), the figure shows the
undetectable attack trajectories obtained from Theorem 9 for different values
of the nominal acceleration ∥un∥/umax . As the nominal acceleration decreases,
the deviation induced by an optimal attack increases. Simulation parameters:
T = 1.5, v(0) = 0, and un = [1, −1]T at all times. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

the square of the magnitude of the velocity, the control input (10)
leads the attacked robot to perform a circular motion around the
origin (see Fig. 2). Notice that ζ = −1 and ζ = 1 achieve coun-
terclockwise and clockwise motion, respectively. Finally, (10) is
an optimal solution to the optimization problem (8) since the
deviation ∥p(T ) − pn(T )∥ is maximized, as illustrated in Fig. 2.

To derive the value of the final time τ ,we can explicitly derive
an expression for the magnitude of the velocity vector n := ∥v∥,
that reads ṅ =

√
u2
max − n2, where we have substituted the

expression for ar into a∗
t , and used the fact that n is independent

of ar. To obtain the value of τ , we seek for the time needed to
steer n(t) from umax to a full stop, by letting n(0) = umax and
n(τ ) = 0. □

We show in Fig. 3 a set of simulations that illustrate the
effects of optimal attacks (red) when the nominal trajectory is the
shortest path between the initial and the final position (blue). In
particular, the figure demonstrates that increasing levels of de-
viation are achieved by the attacker when the trajectory planner
employs control inputs with decreasing magnitude (i.e., different
and decreasing fractions of umax).
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5. Design of secure trajectories

In this section we address the secure trajectory planning prob-
lem. First, we characterize the existence of secure trajectories
as a function of the initial and final configurations of the robot.
Then, we formulate and solve an optimization problem to design
control inputs that generate secure trajectories to reach a desired
final configuration. We start with some necessary definitions. We
say that a trajectory xn is secure if, independently of the attack u,
one of the following mutually exclusive conditions is satisfied:

(C1) p = pn at all times; or
(C2) if p ̸= pn at some time, the attack u is detectable.

Similarly, a control input is secure if it generates a secure trajec-
tory. We next characterize secure control inputs explicitly.

Theorem 11 (Secure Control Inputs). Let xn be the trajectory gener-
ated by un. Then, un is secure if and only if the following conditions
hold simultaneously:

(1) there exists a function κ : R≥0 → {−1, 1} satisfying

un = κ
pn

∥pn∥
umax, (11)

(2) the trajectory xn satisfies pn ̸= 0 at all times.

Proof. If We assume (1)–(2) and show that either (C1) or (C2) is
satisfied. We distinguish among two cases.
(Case 1) The attack (u, uGNSS) does not satisfy the undetectability
condition (6). Then, (C2) follows.
(Case 2) The attack (u, uGNSS) satisfies the undetectability con-
dition (6). Under this assumption we now show that (1)–(2)
imply (C1). We first consider the time instant τ = 0. By using
the assumption xn(τ ) = x(τ ), which yields pn(τ ) = p(τ ) and
∥vn(τ )∥ = ∥v(τ )∥, and by substituting into (6) we obtain the
following undetectability condition valid at time τ :

uT
n(τ )pn(τ ) = uT(τ )p(τ ). (12)

By taking the 2-norm on both sides of the above equality, and by
substituting the expression (11) we obtain

umax∥pn(τ )∥ = |un(τ )Tpn(τ )|= |uT(τ )p(τ )| ≤ umax∥p(τ )∥,

where we used the Cauchy–Schwarz inequality. Since exact equal-
ity must hold, the vectors u(τ ) and p(τ ) are linearly dependent
and ∥u(τ )∥ = umax, that is,

u(τ ) = γ (τ )
p(τ )

∥p(τ )∥
umax,

where γ (τ ) ∈ {−1, 1}. Finally, we note that γ (τ ) ̸= κ(τ ) results
in a violation of (12), and therefore u(τ ) = un(τ ). As a result,
pn(τ+) = p(τ+). To conclude the proof, we iterate the above
reasoning for all τ ∈ [0, T ), from which (C1) follows.

(Only if ) We show that (C1)–(C2) imply (1)–(2) or, equivalently,
if (1)–(2) do not simultaneously hold, then (C1)–(C2) are not
satisfied. We distinguish two cases.
(Case 1) Let ūn be any control input that does not satisfy (11). That
is, there exists t̄ ∈ [0, T ], such that

ūn(t) = un(t) for all t ∈ [0, t̄), and ūn(t̄) ̸= un(t̄).

Let ū be an attack input, with ū = ārp + w̄ as in Corollary 8. We
take the absolute value of (7) and use the relationship ∥vn(t̄)∥ =

∥v(t̄)∥ to obtain the inequality

|ār(t̄)| =
|ūT

n(t̄)pn(t̄)|
∥p(t̄)∥

< umax,

where strict inequality follows from the assumption ūn(t̄) ̸=

un(t̄). As a result, any vector w̄ that satisfies ∥ār(τ )p(τ )+w̄(τ )∥ =

umax, is a nonzero undetectable attack that violates (C1) and (C2).
(Case 2) There exists t̄ ∈ [0, T ], such that ∥pn(t̄)∥ = 0. It
follows from (6) that whenever pn(t̄) = 0 any attack input is
unconstrained at time instant t̄ . As a result, any u with u(t) =

un(t) for all t ∈ [0, t̄) and u(t̄) ̸= un(t̄) is undetectable and violates
(C1) and (C2). ■

Theorem 11 provides an explicit characterization of secure
control inputs, and it shows that any secure control input has
maximum magnitude umax at all times, and its direction is aligned
with the direction of the positioning vector. We next show that
any secure trajectory evolves on an invariant manifold of the state
space that is uniquely defined by the initial state of the robot.

Lemma 12 (Invariant Manifold of Secure Trajectories). Let xn be the
trajectory generated by the secure control input un. Then, xn ∈ S at
all times, where

S = {x : x1x4 − x2x3 = x1(0)x4(0) − x2(0)x3(0)}.

Proof. Let xn = [x1 x2 x3 x4]T denote the solution to (1) with
initial condition xn(0), subject to control inputs that satisfy (1)–(2)
in Theorem 11. To prove that xn ∈ S , we equivalently show that
the quantity x1x4−x2x3 is time-invariant, that is, d

dt (x1x4−x2x3) =

0. In fact,

ẋ1x4 + x1ẋ4 − ẋ2x3 − x2ẋ3 = 0,

where the last equality follows by substitution of (1). ■

Lemma 12 shows that secure trajectories are constrained to
evolve on a manifold that is defined by the initial state of the
robot, and it implies that only a subset of the state space can be
reached via secure trajectories. These observations are illustrated
in the next example.

Example 13 (Reachable Configurations). Let xn(0) = [x̄1 0 x̄3 0]T,
where x̄1 ∈ R>0 and x̄3 ∈ R, that is, let the robot at time
t = 0 be located on the horizontal axis, with initial velocity in
the horizontal direction. From Lemma 12, every secure trajectory
satisfied xn ∈ S at all times, with

S = {x : x1x4 − x2x3 = 0}.

It should be observed, however, that secure trajectories may in
fact be constrained on a strict subset of S. In fact, by combining
the system dynamics (1) with the secure control input (11), we
obtain

x1 > 0, x2 = 0, x4 = 0,

which is a strict subset of S . Notice that the above equations
imply that the motion of the robot under secure control inputs
is constrained on the positive x-axis. □

To determine a secure trajectory from the initial position pI
with given velocity vI towards the final position pF, we consider
the optimization problem1

min
κ,T

T + ∥pn(T ) − pF∥,

subject to ẋn = Axn + Bun,

pn(0) = pI, vn(0) = vI,

un = κ
pn

∥pn∥
umax, (13)

1 In the optimization problem, we allow a free final velocity to ensure
that the final configuration achieved belongs to the invariant manifold that
constraints the secure trajectory.
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which aims to find a secure control input that minimizes a
weighted combination of the distance to the desired final position
and the time needed to reach such position. The following result
characterizes the solutions to the optimization problem (13).

Theorem 14 (Optimality Conditions for Secure Control Inputs). Let
κ∗ and T ∗ be an optimal solution to (13). Then,

κ∗
= − sgn(λTBpn), and T ∗

= ξ,

where ξ ∈ R>0, xn, and λ satisfy

ẋn = ξ (Axn +
κ∗ umax

∥pn∥
Bpn),

−λ̇ = ξ (ATλ +
κ∗ umax

∥pn∥3 Φ(pn)BTλ),

ξ̇ = 0, (14)

for all t ∈ [0, 1], with boundary conditions

xn(0) = x0,
λ(1) = 2[(p(T ) − pn(T ))T0T

2]
T,

λ(0)(Ax0 + Bκ∗(0)
pn(0)

∥pn(0)∥
umax) = −1,

and

Φ(pn) =
(
∥pn∥2I2 − 2pnpT

n

) [
I2 02
02 02

]
.

Proof. To determine the unknown final time T we employ a
technique similar to Aly and Chan (1974) and let t = ξτ , where
ξ ∈ R>0 is a constant unknown parameter, and τ is the new
temporal variable, with 0 ≤ τ ≤ 1. We then use The Pontryagin’s
Maximum Principle (Gelfand et al., 2000) to derive the optimality
conditions for the optimization problem (13), and consider the
Hamiltonian

H(xn, κ, λ) = 1 + λTξ (Axn + Bun),

where λ is the vector function of system costates. By application
of the Maximum Principle (Gelfand et al., 2000), the optimal
control input and corresponding trajectory satisfy the following
optimality conditions

ẋn =
∂H
∂λ

⇒ ẋn = ξ (Axn + Bun),

−λ̇ =
∂H
∂xn

⇒ −λ̇ = ξ (ATλ +
∂un

∂xn
BTλ),

with boundary conditions xn(0) = x0 and λ(1) =
∂V
∂x (x(1)), where

we used the fact 0 ≤ τ ≤ 1. To derive an expression for the partial
derivative of un with respect to xn we let P = [e1 e2 0 0] ∈ R2×4

and rewrite (11) as

un = κ
Pxn

∥Pxn∥
umax,

which yields
∂un

∂xn
=

κumax

∥pn∥
P − 2

κumax

∥pn∥3 Pxnx
T
nP

TP.

Hence, the expression for Φ(pn) follows by substitution.
To determine the unknown final time, we consider the ad-

ditional differential equation ξ̇ = 0, and let ξ be an unknown
parameter. In particular, to determine the additional boundary
condition we use the fact that the Hamiltonian is independent
of time and the final time is free. Thus, the Hamiltonian is a
first integral along optimal trajectories (Gelfand et al., 2000),
i.e., H(xn, κ, λ) = const., with H(xn, κ, λ)|t=0= 0, which yield the
claimed boundary conditions and the statement follows. ■

Table 1
Details for minimum-time and secure trajectories in Fig. 4.

(Time) (Attack deviation)
T max

w
∥p(T ) − pn(T )∥

Min. time trajectory 1.5 8.49
Secure trajectory 3.84 0

Fig. 4. (a) Secure (blue) and minimum time (red) trajectories between pI =

(1, 1) and pF = (−3, −3), with v(0) = [−1, 1]T and umax = 1. (b) and (c)
Corresponding control inputs. Note that for minimum time trajectories, vectors
un and pn are not aligned at all times. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

Theorem 14 allows us to compute secure control inputs by
solving a two-point boundary value problem (Keller, 2018). We
propose in Fig. 4 (see also corresponding data in Table 1) a
comparison between a secure trajectory and a minimum time
trajectory (non secure). In particular, a minimum-time trajectory
is obtained by numerically solving the following optimization
problem

min
un,T

T + ∥pn(T ) − pF∥,

subject to ẋn = Axn + Bun,

pn(0) = pI, vn(0) = vI,

Expectedly, the simulation shows that secure trajectories re-
quire longer control horizons as compared to commonly-adopted
minimum-time trajectories, but have the benefit of preventing
the existence of attacks.

6. Undetectable attacks and secure trajectories for robots with
unicycle dynamics

The goal of this section is to characterize undetectable attacks
and secure trajectories for robots with unicycle dynamics, so
as to illustrate that the methods developed in this paper are
applicable to a broad and general class of robot models. A robot
with unicycle dynamics has one steerable drive wheel (Fantoni,
Lozano, & Spong, 2000), and is modeled through the dynamical
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Fig. 5. Nominal (blue) and undetectable attack (red) trajectories. As discussed
in Theorem 15, the illustrated vectors satisfy ν cos(φ) = νn cos(φn) to guarantee
undetectability. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

equations

ṗxn = νn cos(θn), ṗyn = νn sin(θn), θ̇n = ωn,

where pn = [pxn pyn] : R≥0 → R2 denotes the robot position,
θn : R≥0 → [0, 2π ) denotes the steering angle, νn : R≥0 → R≥0
and ωn : R≥0 → R denote the wheel velocity and steering
control, respectively. We assume that νn is differentiable, ωn is
piecewise continuous, and that νn ≤ νmax and |ωn| ≤ ωmax, where
νmax ∈ R>0 and ωmax ∈ R>0. Similarly to (3), we model the
unicycle dynamics in the presence of attacks as

ṗx = ν cos(θ ), ṗy = ν sin(θ ), θ̇ = ω,

where p = [px py] : R≥0 → R2 and θ : R≥0 → [0, 2π )
denote, respectively, the position and steering angle of the robot
under attack, while ν : R≥0 → R≥0 and ω : R≥0 → R denote
the attacked wheel velocity and steering control. As described in
Section 2, we assume that the robot is equipped with a GNSS and
an RSSI sensor, whose measurements are as in (2) in the absence
of attacks, and as in (4) in the presence of attacks.

Using the notions in Definition 2, we next characterize un-
detectable attacks against robots with unicycle dynamics. In the
remainder of this section, we let angle(v, w) denote the angle
between the vectors v and w, that is

angle(v, w) = arccos
(

vTw

∥v∥∥w∥

)
,

with angle(0, w) = angle(v, 0) = 0.

Theorem 15 (Undetectable Attacks for Unicycle Dynamics). Let
φn = angle(pn, ṗn) and φ = angle(p, ṗ). The attack (ν, ω, uGNSS)
is undetectable if and only if

ν cos(φ) = νn cos(φn), and uGNSS
= pn − p. (15)

Proof. The proof follows by extending the proof of Theorem 7 to
the considered unicycle dynamics. ■

An example where the condition in Theorem 15 holds is il-
lustrated in Fig. 5. Next, we provide a characterization of secure
control inputs for unicycle dynamics.

Theorem 16 (Secure Control Inputs for Unicycle Dynamics). Let
φn = angle(pn, ṗn). The control input (νn, ωn) is secure if and only
if the following conditions hold simultaneously:

(1) φn(0) ∈ {0, π}, and pn ̸= 0 at all times,
(2) νn = νmax and ωn = 0 at all times.

Proof. If We assume (1)–(2) and show that either (C1) or (C2) is
satisfied. We distinguish among two cases.
(Case 1) The attack (ν, ω, uGNSS) does not satisfy (15). Then, (C2)
immediately follows.
(Case 2) The attack (ν, ω, uGNSS) satisfies (15). We first focus on
the time instant τ = 0, and take the absolute value on both sides
of the undetectability condition (15) to obtain the identity

|νn(0) cos(φn(0))| = |ν(0) cos(φ(0))|. (16)

By substituting (1)–(2) into the left-hand side of (16) we obtain

|νn(0) cos(φn(0))| = νmax.

On the other hand, by applying the Cauchy–Schwarz inequality
to the right-hand side of (16) we have

|ν(0) cos(φ(0))| ≤ |ν(0)||cos(φ(0))| ≤ νmax.

By application of (16), exact equality must hold in the above
bound, and thus we necessarily have ν(0) = νmax and |cos(φ(0))|
= 1. Finally, we use the fact that φ is a differentiable function of
time to obtain φ(0) = φn(0). To conclude the proof, we use the
fact that ωn = 0 at all times, which implies φn(τ ) = φn(0) for
all τ (a formal proof of this fact can be done by leveraging the
change of variables (17)), and iterate the above reasoning for all
τ ∈ [0, T ) to obtain ν = νn and φ = φn at all times, from which
condition (C1) follows.

(Only if ) We now show that (C1)–(C2) imply (1)–(2) or, equiva-
lently, if (1)–(2) do not hold, then (C1)–(C2) are not verified. We
distinguish among four cases.
(Case 1) The robot initial conditions are such that θn(0) ̸= {0, π},
and the nominal control inputs satisfy νn = νmax and ωn(t) = 0
at all times. We consider the attack (ν, ω), with

ν̇ =
1

cosφ

(
νnφ̇n sinφn − νφ̇ sin φ̇

)
, and ω ̸= 0,

and show that such attack is undetectable and violates (C1)–(C2).
To prove undetectability, we use the fact that xn(0) = x(0), and
equivalently show the identity between the time derivatives of
(15), which yields

−νnφ̇n sinφn = ν̇ cosφ − νφ̇ sinφ,

where we used the relationship ν̇n = 0 at all times. As a result,
undetectability of (ν, ω) follows by substitution. To conclude, we
observe that (ν, ω) is undetectable and violates (C1) and (C2).
(Case 2) There exists t̄ ∈ [0, T ] such that ∥pn(t̄)∥ = 0. It follows
from (15) that, when pn(t̄) = 0, angle(0, ṗn(t̄)) = 0. As a result,
attack inputs are unconstrained at time t̄ , and any ω such that
ω(t) = ωn(t) for all t ∈ [0, t̄), and ω(t̄) ̸= ωn(t̄), is undetectable
and violates (C1)–(C2).
(Case 3) Nominal control inputs satisfy νn = νmax at all times,
ωn(t) = 0 for all t ∈ [0, t̄), and ωn(t̄) ̸= 0, t̄ ∈ [0, T ]. We perform
a change of variables (Siciliano, Sciavicco, Villani, & Oriolo, 2010)

ρ =

√
p2x + p2y,

φ = Atan2(py, px) − θ + π,

δ = φ + θ, (17)

which leads to the following dynamical equation φ̇ =
sinφ

∥p∥ − ω

that relates φ to the control inputs ν and ω (see Siciliano et al.,
2010). We then let ν = νn at all times, and

ω =

{
ωn, if t ∈ [0, t̄),
−ωn, if t ∈ [t̄, T ],

from which we obtain

φ̇ =
sinφ

∥p∥
− ω = −

sinφn

∥pn∥
+ ωn = −φ̇n,
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for all t ∈ [t̄, T ]. By combining the above relationship with
φn(t̄) = φ(t̄) we obtain φ(t) = −φn(t) for all t ∈ [t̄, T ]. To
conclude, we note that the given choice of (ν, ω) leads to an
undetectable attack that satisfies (15) and that violates (C1)–(C2).
(Case 4) Nominal control inputs satisfy ωn = 0 at all times,
νn(t) = νmax for all t ∈ [0, t̄), and νn(t̄) < νmax, t̄ ∈ [0, T ]. Under
these assumptions, we consider the attack (ν, ω) with ν(t) =

νn(t) and ω(t) = ωn(t) for all t ∈ [0, t̄), and

ν̇ =
1

cosφ

(
ν̇n + νφ̇ sinφ

)
, and ω ̸= 0,

for all t ∈ [t̄, T ]. To prove undetectability of the considered attack,
we observe that xn(t̄) = x(t̄), and equivalently show the identity
between the time derivatives of (15) for all t ∈ (t̄, T ], which reads

ν̇n = ν̇ cosφ − νφ̇ sinφ,

where we used the relationships cosφn = 1 and sinφn = 0 at all
times. As a result, undetectability of the given attack follows by
substitution, which shows that (ν, ω) is undetectable and violates
(C1) and (C2). ■

From Theorem 16, a secure trajectory exists only if initial
position, final position, and the origin are collinear. We con-
clude by observing that this aspect is consistent with the similar
conclusions previously drawn in Theorem 11 and Lemma 12.

Remark 17 (Generality of Our Methods). The approach presented
in this work for the characterization of undetectable attacks and
the resulting effects on the robot trajectories can be generalized
to a wider class of nonlinear systems and attacks. The approach
consists of three main steps, namely, the characterization of
undetectable trajectories by studying the Lie derivatives of the
measurement equations, the characterization of undetectable in-
puts and secure trajectories by solving a set of nonlinear algebraic
equations akin to (6) and (15), and the study of the submanifold
of the state space that can be reached by undetectable attacks.
While systematic tools may exist to solve the first two steps for
a broad class of dynamics, the problem of nonlinear constrained
controllability in the third step, which is solved in this paper
via numerical optimization, requires the development of novel
control theories and tools. □

7. Conclusions

In this paper we introduce and study the problem of se-
cure trajectory planning, that is, the design of trajectories to
guarantee the navigation between two desired configurations
despite the action of an attacker. We focus on the case where
the robot has a GNSS sensor and a RSSI sensor, and provide
an explicit characterization of secure trajectories, undetectable
attacks, and their effects on the nominal trajectory. Further, we
provide numerical algorithms to determine secure trajectories
and optimal attacks, and we illustrate our findings through a set
of examples. To the best of our knowledge, this work constitutes
a first step towards understanding the fundamental limitations of
attack-detection algorithms for systems with nonlinear dynamics.
Several aspects are left as the subject of future investigation,
including the extension of the methods to different classes of
sensors and attacks, the development of robust control mecha-
nisms to operate the system despite the presence of attacks, and
the study of secure trajectories in the presence of sensing and
actuation noise.
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