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Abstract—This paper considers the problem of regulating
a discrete-time linear time-invariant (LTI) system to solution
trajectories of a convex optimization problem, with an unknown
cost. We propose a data-driven, gradient-based feedback con-
troller that uses estimates of the cost functions obtained by a
trained neural network to control the LTI system. We identify
sufficient conditions to guarantee exponential input-to-state
stability (ISS) of the closed loop system with respect to errors
due to disturbances, temporal variability of the cost functions,
and the need to use estimated costs from a neural network.
Finally, we provide an illustrative numerical example in the
context of online ride-share scheduling.

Index Terms—Feedback optimization, learning for control,
time-varying optimization.

I. Introduction
Incorporating information from rich, perceptual data

obtained by sensors or humans remains a challenge in
the control of complex autonomous systems. Information
may pertain to performance and safety metrics associated
with the system, or perception of satisfaction, comfort,
etc., of users interacting with (or affected by) the system.
Recently, a number of works have addressed the prob-
lem of developing data-driven optimization methods, to
concurrently learn the cost functions as the optimization
algorithm is executed [1]–[4]; however, it remains an open
problem how to apply similar concepts in the context of
feedback optimization, where feedback controllers inspired
by optimization algorithms are synthesized to regulate a
dynamical system to solutions of an optimization problem.

Literature on feedback optimization includes KKT-type
controllers [5]–[7] and, more recently, controllers based
in first-order optimization methods as in [8]–[16]. In all
of these works, the execution of feedback optimization
algorithms for control systems critically relies on knowl-
edge of the system’s inputs, outputs, and cost functions.
When we have incomplete knowledge of such information,
controllers may be learned from neural networks [17]–[19].
In this paper, we investigate how to integrate rich data
of the cost functions into controllers inspired by classical
optimization algorithms for the regulation of linear, time-
invariant (LTI) systems towards the solution of a convex
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optimization problem. Moreover, the (possibly) time-
varying optimization problem includes costs associated
with the system’s inputs and measured outputs.

We develop a data-driven, feedback controller inspired
by the projected gradient descent method. Since the time-
varying cost functions must be estimated, we leverage
a trained neural network (NN) that maps inputs and
outputs of the system into cost function estimates. Our
gradient-based controller uses these estimates of the cost
via a centered-difference approximation of the gradients
to generate inputs for the system. We derive sufficient
conditions on the controller gain (or, step size in the
gradient descent literature) to guarantee input-to-state
stability (ISS) of the control loop in the sense of [20].
Further, our results illustrate that the interconnected
system of the LTI system and controller tracks the optimal
solution trajectory of the convex optimization problem up
to an error accounting for the need to estimate the cost
functions and the temporal variability of the cost functions
and disturbances in the plant.

We note a similar perception-based regulation problem
was considered in our prior work [21]. However, [21]
developed controllers in continuous time, whereas here we
consider a discrete-time setting for both the dynamical
system and projected gradient-based controller. Addition-
ally, here we extend our previous work by considering
time-varying cost functions and time-varying constraints
on the admissible set for the control inputs. Relative
to [22], we consider the case where the cost of the problem
is now known and must be learned.

II. Problem Formulation
In the following, we formalize our research problem and

discuss relevant assumptions.

A. Model of the System
We consider linear time-invariant systems of the form,

xk+1 = Axk +Buk + Ewk, (1a)
yk = Cxk +Dwk, (1b)

where k ∈ N is the time index, x : N → Rnx is the
state, u : N → Rnu is the control input, y : N → Rny
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is the output, w : N → Rnw is an unknown disturbance,
and the real matrices A,B,C,D and E are of appropriate
dimensions. We impose the following assumption on (1).1

Assumption 1. The matrix A ∈ Rnx×nx is Schur stable.
Namely, for any Q ≻ 0, there exists P ≻ 0 such that
A⊤PA− P = −Q. □

Assumption 1 guarantees that for any fixed u ∈ Rnu

and w ∈ Rnw , (1) admits a unique equilibrium point of
the state and output, given by,

x∗ = (I −A)−1
Bu+ (I −A)−1

Ew, (2a)
y∗ = Gu+Hw, (2b)

where I is the identity matrix, G := C (I −A)−1
B is

the steady state transfer function from control inputs to
outputs, and H := D+C (I −A)−1

E is the steady state
gain from disturbances to system outputs. Finally, we
impose the following restrictions on the control inputs
and disturbances.

Assumption 2. At time k ∈ N, the set of admissible control
inputs Uk ⊂ Rnu is compact and convex. The unknown
disturbances are assumed to be bounded; i.e., the set of
admissible disturbances W is compact. □

Notably, the admissible set Uk given in Assumption
2 is possibly time-varying at each time step k. The
restriction to such a set is often a common choice in several
applications due to physical or operational constraints
for actuators. In the following, we state our optimization
problem and formalize our controller design.

B. Target Optimization Problem
We focus on driving, at every time index k ∈ N, the

system (1) to the solution of the following time-varying
optimization problem:

u∗k ∈ arg min
ū∈Uk

ϕ(ū, θϕ,k) + ψ(Gū+Hwk, θψ,k) (3)

1Notation. We denote by N,N>0,R,R>0, and R≥0 the set of
natural numbers, the set of positive natural numbers, the set of
real numbers, the set of positive real numbers, and the set of non-
negative real numbers. For vectors x ∈ Rn and u ∈ Rm, ∥x∥
denotes the Euclidean norm of x, ∥x∥∞ denotes the supremum norm,
and (x, u) ∈ Rn+m denotes their vector concatenation; x⊤ denotes
transposition, and xi denotes the i-th element of x. For a matrix
A ∈ Rn×m, ∥A∥ is the induced 2-norm and ∥A∥∞ the supremum
norm. A ≻ 0 means that the matrix A is positive definite. ΠUk

(z)
denotes the Euclidean projection of z ∈ Rn onto Uk ⊂ Rn at time
k ∈ N>0; or, ΠUk

(z) := argminu∈Uk
∥u − z∥2. For continuously

differentiable ϕ : Rn → R, ∇ϕ(x) ∈ Rn denotes its gradient.
Partial ordering. The first orthant partial order on Rn is denoted

as ⪯ and it is defined as follows: for any x, z ∈ Rn, we say that x ⪯ z
if xi ≤ zi for i = 1, . . . , n. We say that a function ϕ : Rn → Rn

is monotone if for any x, z ∈ Rn such that x ⪯ z, we have that
ϕ(x) ≤ ϕ(z). Finally, the interval [x, z], for some x, z ∈ Rn, is defined
as [x, z] = {w ∈ Rn : x ⪯ w ⪯ z}.

Set covering. Let Q,Qs ⊂ Rn, with Q compact. We say that Qs

is an ϱ-cover of Q, for some ϱ > 0, if for any x ∈ Q there exists a
z ∈ Qs such that ∥x− z∥∞ ≤ ϱ. We say that Qs is an ϱ-cover of Q
“with respect to the partial order ⪯,” for some ϱ > 0, if for any x ∈ Q
there exists w, z ∈ Qs such that x ∈ [w, z] and ∥w − z∥∞ ≤ ϱ [23].

where ϕ : U × Ωϕ → R and ψ : Rny × Ωψ → R are cost
functions parametrized by θϕ,k ∈ Ωϕ and θψ,k ∈ Ωψ asso-
ciated with the systems inputs and outputs, respectively.
Further, we assume that Ωϕ and Ωψ are compact sets.
Our choice of such cost functions allows us to consider
functions whose parameters vary in time.

The problem (3) formalizes an equilibrium selection
problem for which we select an optimal input for the
plant - which is at equilibrium - that minimizes the
combined cost ϕk + ψk. Addiotionally, the problem (3)
is parameterized by the unknown disturbance wk. This
means that the solutions of (3) are also parameterized by
wk. Accordingly, solutions of (3) are actually characterized
by the pair (u∗k, wk). We impose the following assumptions
on the costs in (3).

Assumption 3. The following hold:
1) The map u → ∇ϕ(u; θϕ) is ℓu-Lipschitz continuous

with ℓu ≥ 0 for all u ∈ U , for all θϕ ∈ Ωϕ.
2) The map y → ∇ψ(y; θψ) is ℓy-Lipschitz continuous

with ℓy ≥ 0 for all y ∈ Rny , for all θψ ∈ Ωψ.
3) The map u → ϕ(u; θϕ) + ψ(Gu + Hwk; θψ) is µ-

strongly convex with µ > 0 for all wk ∈ Rnw , θϕ ∈
Ωϕ, θψ ∈ Ωψ. □

Assumption 3 guarantees that the gradient of the
composite cost at equilibrium ϕ(u; θϕ)+ψ(Gu+Hwk; θψ)
is ℓ-smooth with ℓ := ℓu + ∥G∥2ℓy > 0. Recall that θϕ,k
and θψ,k are the parameters of the cost functions at time k
(and they may change over time); hereafter, for notational
simplicity, we will use the short-hand notation:

ϕk(uk) = ϕ(uk, θϕ,k), (4a)
ψk(uk) = ψ(Guk +Hwk, θψ,k). (4b)

In the following section, the design a data-assisted
gradient-based control method.

C. Implicit Solution Tracking
We consider controllers of the form,

uk+1 = ΠUk
{uk − ηΨk(uk, yk)} , (5)

where Ψk(uk, yk) := ∇ϕk(uk) + G⊤∇ψk(yk) and with
η > 0 a gain (also referred to as the step size in
gradient methods). The controller (5) includes system
outputs yk rather than the system equilibrium Guk+Hwk,
which circumvents the need to measure the disturbance
wk. Importantly, this controller critically requires exact
knowledge of the system output yk and the gradients ∇ϕk
and ∇ψk.

In this work, we consider the case of estimating the cost
functions ϕk and ψk using trained NNs; these estimated
functions are denoted by ϕ̂k and ψ̂k. To guarantee well-
posedness of training, we assume that the networks are
trained over the compact sets Utrain :=

⋃
k∈N>0

Uk × Ωϕ
and Ytrain × Ωψ, respectively. Note that in general we
may not have Utrain compact, but for the purposes of
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our setting (namely, within engineering applications), this
set may be assumed to be compact. The set Ytrain is
compact since Utrain×W is compact and the output map
is continuous [24]. The proposed algorithm is described
next.

Algorithm 1 Optimization with NN Cost Perception
# Training

Given: {(u(i)k , θ
(i)
ϕ,k), ϕk(u

(i)
k )}Ni=1, {(y

(i)
k , θ

(i)
ψ,k), ψk(y

(i)
k )}Mi=1

Obtain:
ϕ̂k ← NN-learning({(u(i)k , θ

(i)
ϕ,k, ϕk(u

(i)
k ))}Ni=1)

ψ̂k ← NN-learning({(y(i)k , θ
(i)
ψ,k, ψk(y

(i)
k ))}Mi=1)

# Gradient-based Feedback Control
Given: x0 ∈ X0, u0 ∈ U0, NN maps ϕ̂k, ψ̂k.
For k ≥ 0:

xk+1 = Axk +Buk + Ewk, yk = Cxk +Dwk (6a)

ϕ̂g,k(uk) =

nu∑
i=1

1

2ε

(
ϕ̂k(uk + εbi)− ϕ̂k(uk − εbi)

)
bi (6b)

ψ̂g,k(yk) =

nx∑
i=1

1

2ε

(
ψ̂k(yk + εdi)− ψ̂k(yk − εdi)

)
di (6c)

uk+1 = ΠUk

{
uk − η

(
ϕ̂k(uk) +G⊤ψ̂k(yk)

)}
(6d)

In Algorithm 1, ϵ > 0, bi is the ith canonical vector of
Rnu , and di is the ith canonical vector of Rny ; moreover,
the operator NN-learning(·) refers to a training procedure
for the NNs. The controller (6d) implements estimated
gradients obtained via a centered difference approximation
of the NN functions ϕ̂k and ψ̂k.

III. Main Results
For our analysis, we rewrite (6) as

xk+1 = Axk +Buk + Ewk, (7a)
yk = Cxk +Dwk, (7b)

uk+1 = ΠUk
{uk − ηΨk(uk, yk) + ek} (7c)

where (7a) is the plant and (7c) is the controller with ek
the gradient error defined as:

ek := η
(
Ψk(uk, yk)− ϕ̂g,k(uk)− ψ̂g,k(yk)

)
. (8)

Our main result is stated in terms of the following errors
in the states of (6):

ωk :=

[
∥xk − x∗k∥
∥uk − u∗k∥

]
. (9)

The main result is stated next.

Theorem 1. Let Assumptions 1-3 be satisfied. Let the
controller gain be such that:

η ∈
(
0,min

{
2µ

ℓ2
,
λ̄(A)cP + 1

ℓxuℓy∥G∥∥C∥

})
, (10)

where µ, ℓ, ℓxu
, ℓy > 0 are described in Assumptions 3.

Then, there exists constants rM0
> 0, cM0

∈ [0, 1), M̄ > 0,
and N̄ > 0 such that the following holds:
∥ωk+1∥ ≤ rM0

(cM0
)k+1∥ω0∥

+ rM0

cM0

1 + cM0

(
M̄∥ν̄∥+ N̄ sup

0≤s≤k
∥ek∥

)
,

(11)

where ν̄ := [sup0≤s≤k ∥ws+1−ws∥, sup0≤s≤k ∥u∗s+1−u∗s∥]⊤.
The proof for Theorem 1 is given in the extended version

on ArXiv. Theorem 1 guarantees that if Assumptions
1-3 are satisfied and a suitably sized controller gain η
is chosen, then the interconnected system exponentially
converges to the solution trajectory of the associated op-
timization problem up to a neighborhood characterized by
error terms. The first error term, given by ∥ν̄∥, corresponds
to the temporal variability of the unknown disturbance w
and the optimizer, u∗. Importantly, the time-variability
of the optimizer u∗ is influenced by both the time-
varying cost functions and the unknown disturbance w;
hence, both error terms within ∥ν̄∥ are necessary. The
second error term, given by sup0≤s≤k ∥ek∥, corresponds
to the difference between the nominal gradients and
the estimated gradients that the controller (7c) obtained
via a trained neural network. Moreover, the subsequent
corollaries specifically tailor the bond of sup0≤s≤k ∥ek∥ to
different types of neural networks.
Corollary 1 (Feedforward NN). Consider the system (7).
Let Assumptions 1-3 be satisfied and let η > 0 be chosen
so that (10) is satisfied. Suppose that the feedforward
networks ϕ̂F,k and ψ̂F,k approximate the costs ϕk and
ψk over the sets Utrain :=

⋃
k∈N>0

Uk and Ytrain ⊂ Rny ,
respectively. Then the error (9) satisfies (11) with ek as,
∥ek∥ ≤ δF,u + nuε

−1 sup
uk∈Utrain

|ϕk(uk)− ϕ̂k(uk)|

+ ∥G∥δF,y + nyε
−1∥G∥ sup

yk∈Ytrain

|ψk(yk)− ϕ̂k(yk)|,

(12)
where δF,u := supuk∈Utrain ∥∇ϕk(uk) −

∑nu

i=1
1
2ε (ϕk(uk +

εbi)−ϕk(uk−εbi))bi∥ and δF,y := supyk∈Ytrain ∥∇ψk(yk)−∑ny

i=1
1
2ε (ψk(yk + εdi)− ψk(yk − εdi))di∥.

In Corollary 1, δF,u and δF,y are bounds on the centered
difference approximations for ϕk and ψk. Further, the
bound (12) explicitly characterizes the neighborhood of
convergence of the optimizer in terms of the uniform
approximation ability of the feedforward net and the
accuracy of the centered difference method. The proof of
Corollary 1 is given in [21, Prop. 3]. In the following, we
identify an alternative bound for the error ek if residual
networks are used instead. To do so, we must consider the
lifted counterparts ϕ̃k and ψ̃k for the functions ϕk and ψk
given by,
ϕ̃k = ιϕ(z) ◦ ϕk, ιϕ(z) = (z, 0, . . . , 0), z ∈ R, (13a)
ψ̃k = ιψ(z) ◦ ψk, ιψ(z′) = (z′, 0, . . . , 0), z′ ∈ R, (13b)
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where ιϕ : R → Rnu and ιψ : R → Rny are injections.
Now, we characterize results for ek if we leverage residual
networks ϕ̂R,k and ψ̂R,k to estimate ϕ̃k and ψ̃k.

Corollary 2 (Residual NN). Consider the system (7). Let
Assumptions 1-3 be satisfied and let η > 0 be chosen so
that (10) is satisfied. Suppose that the residual networks
ϕ̂R,k and ψ̂R,k approximate the costs ϕ̃k and ψ̃k over the
sets Utrain :=

⋃
k∈N>0

Uk and Ytrain ⊂ Rny , respectively.
Let the set of training points Utrain,s (resp., Ytrain,s) be a
ρu-cover (ρy-cover) of Utrain (Ytrain) with respect to the
partial order ⪯ for some ρu > 0 (ρy > 0). Suppose that
the NNs can be decomposed as ϕ̂R,k = mu + Au (resp.,
ψ̂R,k = my+Ay) where mu : Rnu → Rnu and my : Rny →
Rny are monotone, and Au, Ay are linear functions. Then,
the error (9) satisfies (11) with ek as,
∥ek∥ ≤ δF,u + ∥G∥δF,y+

+ n3/2u ε−1(3δu,tr + 2ωϕ(ρu) + 2∥Au∥∞)

+ n3/2y ε−1∥G∥(3δy,tr + 2ωψ(ρx) + 2∥Ax∥∞),

(14)

where δF,u and δF,y are given in Corollary 1, ωϕ and ωψ
are moduli of continuity for ϕ̃k and ψ̃k, and

δu,tr := sup
uk∈Utrain,s

∥ϕ̃k(uk)− ϕ̂kR,k(uk)∥∞,

δy,tr := sup
yk∈Ytrain,s

∥ψ̃k(yk)− ψ̂kR,k(yk)∥∞.

Corollary 2 clearly identifies the error ek if a residual
NN is used. In contrast to Corollary 1, the use of a residual
NN characterizes the error in terms of the set of samples
Utrain,s and Ytrain,s. The proof of Corollary 2 is given in
[21, Prop. 3-4].

IV. Numerical Simulations
We illustrate the performance of the proposed controller

in the context of a ride-service scheduling application. By
borrowing the setup in [22], we consider a ride service
provider (RSP) that seeks to maximize its fleet utilization
profit by dispatching electric vehicles to serve ride requests
from customers. The area of interest is modeled as a graph
G = (V, E), where V represent a region, and the edge
(i, j) ∈ E indicates that a ride from node i ∈ V to node
j ∈ V is allowed. As a simple example, we consider n = 4
regions, and the time is discretized as ∆ = 5min. The
elasticity of the price uijk from region i to j at time k is
modeled as follows:

uijk =
pijmax

θij

(
1−

dijk
δij

)
, (15)

where δijk ∈ R≥0 is the demand of rides from region i to
region j at time k ∈ Z>0, dijk ∈ R≥0 denotes the demand
from region i to j at time k, θij ∈ [0, 1] represents the
steepness of elasticity, and pijmax ∈ R>0 is an upper limit
on prices from i to j. The states xik ∈ R≥0 denote the idle-
vehicle occupancy of the fleet in region i at time k. We
denote by aij ∈ R≥0 the fraction of unoccupied vehicles

that travel from i to j at every time step. The travel
times can vary over time and we model them by a Boolean
variable as: σij,τk = 1 if travel time form i to j at time k
is τ slots and, 0 otherwise, for all i, j ∈ V and k, τ ∈ Z≥0.

Therefore, the discrete dynamic associated with the
occupancy of idle vehicles in each region i is:

xik+1 = xik −
∑
j∈V

aijx
i
k +

∑
j∈V

ajix
j
k

−
∑
j∈V

dijk +
∑
j∈V

k−1∑
τ=k−T

σij,k−ττ djiτ + gik︸ ︷︷ ︸
:=wi

k

(16)

where dijk = δijk

(
1− θij uij

k

pijmax

)
.

Then, the RSP’s maximization problem at every k can
be expressed as:

max
u, x

∑
i∈V

∑
j∈V

uijδij
(
1 +

θijcij

pijmax

)
− uij2 θ

ijδij

pijmax︸ ︷︷ ︸
:=ϕij(uij)

−cijδij − ρ∥x∥2

s. to: 0 = −
∑
j∈V

aijx
i +
∑
j∈V

ajix
j −

∑
j∈V

dij + wi,

xi ≥ 0, ∀i, j,∈ V , (17)

where u = [uij ], x = [xi] for all i, j ∈ V , cij ∈ R>0

is the cost of routing vehicles from i to j, ρ∥x∥2 with
ρ ∈ R>0 describes the RSP’s objective of maximizing
fleet utilization, and ϕij(uij) is an unknown function that
depends of the price elasticity, uij .

We solve the optimization problem (17) via Algorithm 1.
Figure 1 presents the percentage of idle vehicle occupancy
xi per region i when (a) the true function ϕij(uij) is used,
(b) ϕ̂ij(uij) is learned via NN. We find that the percentage
of idle vehicle occupancy stabilizes asymptotically around
10% for all regions, where errors persist due to the learning
error and the need for a finite difference approximation.
Similarly, Figure 2 shows the behavior of the control
variables uij for both cases. Finally, in Figure 3 we
quantify the relative error of the control inputs with
respect to the case where the true cost function versus the
estimated cost functions are used, and we find a satisfying
convergence to a neighborhood within 0.5% relative error.

V. Conclusion

We have designed a projected gradient based feedback
controller that regulates a physical system’s outputs to the
solution of a constrained, convex optimization problem.
We have also augmented our controller with a regression-
based NN to learn the cost functions using a sufficient
amount of historical data. We established guarantees
for the asymptotic convergence of the system up to a
neighborhood based on the learning error and external
disturbances using suitable bounds for the controller gain.
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Fig. 1. States per region (a) True gradient (b) Estimated gradient
using feedforward neural networks.
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Fig. 2. Control inputs (a) True gradient (b) Estimated gradient
using feedforward neural networks.
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Fig. 3. Control input relative error.

References
[1] A. Simonetto, E. Dall’Anese, J. Monteil, and A. Bernstein,

“Personalized optimization with user’s feedback,” Automatica,
vol. 131, p. 109767, 2021.

[2] F. Fabiani, A. Simonetto, and P. J. Goulart, “Learning equilibria
with personalized incentives in a class of nonmonotone games,”
arXiv preprint arXiv:2111.03854, 2021.

[3] I. Notarnicola, A. Simonetto, F. Farina, and G. Notarstefano,
“Distributed personalized gradient tracking with convex para-
metric models,” 2021.

[4] A. M. Ospina, A. Simonetto, and E. Dall’Anese, “Time-varying
optimization of networked systems with human preferences,”
IEEE Transactions on Control of Network Systems, pp. 1–12,
2022.

[5] A. Jokic, M. Lazar, and P. P.-J. Van Den Bosch, “On con-
strained steady-state regulation: Dynamic KKT controllers,”
IEEE Trans. on Automatic control, vol. 54, no. 9, pp. 2250–
2254, 2009.

[6] K. Hirata, J. P. Hespanha, and K. Uchida, “Real-time pricing
leading to optimal operation under distributed decision mak-
ings,” in American Control Conf., 2014.

[7] F. D. Brunner, H.-B. Dürr, and C. Ebenbauer, “Feedback design
for multi-agent systems: A saddle point approach,” in IEEE
Conference on Decision and Control, 2012, pp. 3783–3789.

[8] M. Colombino, E. Dall’Anese, and A. Bernstein, “Online opti-
mization as a feedback controller: Stability and tracking,” IEEE
Trans. On Control of Networked Systems, vol. 7, no. 1, pp. 422–
432, 2020.

[9] T. Zheng, J. Simpson-Porco, and E. Mallada, “Implicit trajec-
tory planning for feedback linearizable systems: A time-varying
optimization approach,” in American Control Conference, 2020,
pp. 4677–4682.

[10] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Timescale
separation in autonomous optimization,” IEEE Trans. on Au-
tomatic Control, vol. 66, no. 2, pp. 611–624, 2021.

[11] L. S. Lawrence, J. W. Simpson-Porco, and E. Mallada, “Linear-
convex optimal steady-state control,” IEEE Transactions on
Automatic Control, vol. 66, no. 11, pp. 5377–5384, 2020.

[12] G. Belgioioso, D. Liao-McPherson, M. H. de Badyn, S. Bolog-
nani, J. Lygeros, and F. Dorfler, “Sampled-data online feedback
equilibrium seeking: Stability and tracking,” in IEEE Confer-
ence on Decision and Control, dec 2021.

[13] A. Agarwal, J. W. Simpson-Porco, and L. Pavel, “Game-
theoretic feedback-based optimization,” IFAC-PapersOnLine,
vol. 55, no. 13, pp. 174–179, 2022.

[14] M. Nonhoff and M. A. Müller, “An online convex optimization
algorithm for controlling linear systems with state and input
constraints,” in 2021 American Control Conference (ACC).
IEEE, 2021, pp. 2523–2528.

[15] N. Agarwal, E. Hazan, and K. Singh, “Logarithmic regret for
online control,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[16] E. Minasyan, P. Gradu, M. Simchowitz, and E. Hazan, “Online
control of unknown time-varying dynamical systems,” Advances
in Neural Information Processing Systems, vol. 34, pp. 15 934–
15 945, 2021.

[17] B. Karg and S. Lucia, “Stability and feasibility of neural
network-based controllers via output range analysis,” in IEEE
Conference on Decision and Control, 2020, pp. 4947–4954.

[18] H. Yin, P. Seiler, and M. Arcak, “Stability analysis using
quadratic constraints for systems with neural network con-
trollers,” 2021, (Early Access).

[19] M. Marchi, J. Bunton, B. Gharesifard, and P. Tabuada, “Safety
and stability guarantees for control loops with deep learning
perception,” IEEE Control Systems Letters, vol. 6, pp. 1286–
1291, 2022.

[20] Z.-P. Jiang and Y. Wang, “Input-to-state stability for discrete-
time nonlinear systems,” Automatica, vol. 37, no. 6, pp. 857–
869, 2001.

[21] L. Cothren, G. Bianchin, and E. Dall’Anese, “Online optimiza-
tion of dynamical systems with deep learning perception,” IEEE
Open Journal of Control Systems, vol. 1, pp. 306–321, 2022.

[22] G. Bianchin, M. Vaquero, J. Cortes, and E. Dall’Anese,
“Online stochastic optimization for unknown linear systems:
Data-driven synthesis and controller analysis,” 2021. [Online].
Available: https://arxiv.org/abs/2108.13040

[23] M. Marchi, B. Gharesifard, and P. Tabuada, “Training deep
residual networks for uniform approximation guarantees,” in
Conference on Learning for Dynamics and Control, ser. Proceed-
ings of Machine Learning Research, vol. 144, 2021, pp. 677–688.

[24] W. Rudin, Principles of mathematical analysis. McGraw-hill
New York, 1976, vol. 3.

1361

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on September 16,2024 at 12:39:23 UTC from IEEE Xplore.  Restrictions apply. 


