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The Observability Radius of Networks
Gianluca Bianchin, Paolo Frasca, Andrea Gasparri, and Fabio Pasqualetti

Abstract—This paper studies the observability radius of network
systems, which measures the robustness of a network to perturba-
tions of the edges. We consider linear networks, where the dynam-
ics are described by a weighted adjacency matrix and dedicated
sensors are positioned at a subset of nodes. We allow for pertur-
bations of certain edge weights with the objective of preventing
observability of some modes of the network dynamics. To comply
with the network setting, our work considers perturbations with a
desired sparsity structure, thus extending the classic literature on
the observability radius of linear systems. The paper proposes two
sets of results. First, we propose an optimization framework to de-
termine a perturbation with smallest Frobenius norm that renders
a desired mode unobservable from the existing sensor nodes. Sec-
ond, we study the expected observability radius of networks with
given structure and random edge weights. We provide fundamen-
tal robustness bounds dependent on the connectivity properties of
the network and we analytically characterize optimal perturbations
of line and star networks, showing that line networks are inherently
more robust than star networks.

Index Terms—Control theory, Constrained optimization, Iterative
algorithms, Observability.

I. INTRODUCTION

Networks are broadly used to model engineering, social, and natural
systems. An important property of such systems is their robustness to
contingencies, including failure of components affecting the flow of
information, external disturbances altering individual node dynamics,
and variations in the network topology and weights. It remains an out-
standing problem to quantify how different topological features enable
robustness, and to engineer complex networks that remain operable in
the face of arbitrary, and perhaps malicious perturbations.

Observability of a network guarantees the ability to reconstruct the
state of each node from sparse measurements. While observability
is a binary notion [2], the degree of observability, akin to the de-
gree of controllability, can be quantified in different ways, including
the energy associated with the measurements [3], [4], the novelty of
the output signal [5], the number of necessary sensor nodes [6], [7], and
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the robustness to removal of interconnection edges [8]. A quantitative
notion of observability is preferable over a binary one, as it allows to
compare different observable networks, select optimal sensor nodes,
and identify topological features favoring observability.

In this work we measure robustness of a network based on the
size of the smallest perturbation needed to prevent observability. Our
notion of robustness is motivated by the fact that observability is a
generic property [9] and network weights are rarely known without
uncertainty. For these reasons numerical tests to assess observabil-
ity may be unreliable and in fact fail to recognize unobservable sys-
tems: instead, our measure of observability robustness can be more
reliably evaluated [10]. Among our contributions, we highlight con-
nections between the robustness of a network and its structure, and
we propose an algorithmic procedure to construct optimal pertur-
bations. Our work finds applicability in network control problems
where the network weights can be changed, in security applications
where an attacker gains control of some network edges, and in net-
work science for the classification of edges and the design of robust
topologies.

Related Work: Our study is inspired by classic works on the ob-
servability radius of dynamical systems [11]–[13], defined as the norm
of the smallest perturbation yielding unobservability or, equivalently,
the distance to the nearest unobservable realization. For a linear sys-
tem described by the pair (A,C), the radius of observability has been
classically defined as

μ(A,C) = min
ΔA ,ΔC

∥
∥
∥
∥
∥

[

ΔA

ΔC

]∥
∥
∥
∥
∥

2

,

s.t. (A + ΔA , C + ΔC ) is unobservable.

As a known result [12], the observability radius satisfies

μ(A,C) = min
s
σn

([

sI −A

C

])

,

where σn denotes the smallest singular value and s ∈ C if complex
perturbations are allowed. The optimal perturbations ΔA and ΔC are
typically full matrices and, to the best of our knowledge, all existing
results and procedures are not applicable to the case where the per-
turbations must satisfy a desired sparsity constraint (e.g., see [14]).
This scenario is in fact the relevant one for network systems, where
the nonzero entries of the network matrices A and C correspond to
existing network edges, and it would be undesirable or unrealistic for
a perturbation to modify the interaction of disconnected nodes. An
exception is the recent paper [8], where structured perturbations are
considered in a controllability problem, yet the discussion is limited to
the removal of edges.

We depart from the literature by requiring the perturbation to be
real, with a desired sparsity pattern, and confined to the network matrix
(ΔC = 0). Our approach builds on the theory of total least squares
[15]. With respect to existing results on this topic, our work proposes
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procedures tailored to networks, fundamental bounds, and insights into
the robustness of different network topologies.

Contribution: The contribution of this paper is threefold. First, we
define a metric of network robustness that captures the resilience of
a network system to structural, possibly malicious, perturbations. Our
metric evaluates the distance of a network from the set of unobserv-
able networks with the same interconnection structure, and it extends
existing works on the observability radius of linear systems.

Second, we formulate a problem to determine optimal perturbations
(with smallest Frobenius norm) preventing observability. We show that
the problem is not convex, derive optimality conditions, and prove
that any optimal solution solves a nonlinear generalized eigenvalue
problem. Additionally, we propose a numerical procedure based on the
power iteration method to determine (sub)optimal solutions.

Third, we derive a fundamental bound on the expected observability
radius for networks with random weights. In particular, we present a
class of networks for which the expected observability radius decays to
zero as the network cardinality increases. Furthermore, we character-
ize the robustness of line and star networks. In accordance with recent
findings on the role of symmetries for the observability and control-
lability of networks [16], [17], we demonstrate that line networks are
inherently more robust than star networks to perturbations of the edge
weights. This analysis shows that our measure of robustness can in fact
be used to compare different network topologies and guide the design
of robust complex systems.

Because the networks we consider are in fact systems with lin-
ear dynamics, our results are generally applicable to linear dynamical
systems. Yet, our setup allows for perturbations with a fixed spar-
sity pattern, which may arise from the organization of a network
system.

Paper Organization: The rest of the paper is organized as follows.
Section II contains our network model, the definition of the network
observability radius, and some preliminary considerations. Section III
describes our method to compute network perturbations with smallest
Frobenius norm, our optimization algorithm, and an illustrative exam-
ple. Our bounds on the observability radius of random networks are in
Section IV. Finally, Section V concludes the paper.

II. THE NETWORK OBSERVABILITY RADIUS

Consider a directed graph G := (V, E), where V := {1, . . . , n} and
E ⊆ V × V are the vertex and edge sets, respectively. LetA = [aij ] be
the weighted adjacency matrix of G, where aij ∈ R denotes the weight
associated with the edge (i, j) ∈ E (representing flow of information
from node j to node i), and aij = 0 whenever (i, j) �∈ E . Let ei denote
the i-th canonical vector of dimension n. Let O = {o1 , . . . , op} ⊆ V
be the set of sensor nodes, and define the network output matrix as

CO =
[
eo 1 · · · eop

]T
. Let xi (t) ∈ R denote the state of node i at

time t, and let x : N≥0 → Rn be the map describing the evolution over
time of the network state. The network dynamics are described by the
linear discrete-time system

x(t+ 1) = Ax(t), and y(t) = CO x(t) (1)

where y : N≥0 → Rp is the output of the sensor nodes O.
In this work, we characterize structured network perturbations

that prevent observability from the sensor nodes. To this aim, let
H = (VH, EH) be the constraint graph, and define the set of matri-
ces compatible with H as

AH = {M : M ∈ R|V|×|V|,Mij = 0 if (i, j) �∈ EH}.
Recall from the eigenvector observability test that the network (1) is
observable if and only if there is no right eigenvector ofA that lies in the

kernel of CO, that is, COx �= 0 whenever x �= 0, Ax = λx, and λ ∈ C
[18]. In this work, we consider and study the following optimization
problem:

min ‖Δ‖2
F ,

s.t. (A + Δ)x = λx, (eigenvalue constraint),

‖x‖2 = 1, (eigenvector constraint),

COx = 0, (unobservability),

Δ ∈ AH, (structural constraint)

(2)

where the minimization is carried out over the eigenvector x ∈ Cn ,
the unobservable eigenvalue λ ∈ C, and the network perturbation
Δ ∈ Rn×n . The function ‖ · ‖F : Rn×n → R≥0 is the Frobenius norm,
and AH expresses the desired sparsity pattern of the perturbation. It
should be observed that (i) the minimization problem (2) is not con-
vex because the variables Δ and x are multiplied each other in the
eigenvector constraint (A + Δ)x = λx, (ii) if A ∈ AH, then the min-
imization problem is feasible if and only if there exists a network
matrix A + Δ = Ã ∈ AH satisfying the eigenvalue and eigenvector
constraint, and (iii) ifH = G, then the perturbation modifies the weights
of the existing edges only. We make the following assumption:
(A1) The pair (A,CO) is observable.

Assumption (A1) implies that the perturbation Δ must be nonzero
to satisfy the constraints in (2).

For the pair (A,CO), the network observability radius is the solu-
tion to the optimization problem (2), which quantifies the total edge
perturbation to achieve unobservability. Different cost functions may
be of interest and are left as the subject of future research.

The minimization problem (2) can be solved by two subsequent
steps. First, we fix the eigenvalue λ, and compute an optimal perturba-
tion that solves the minimization problem for that λ. This computation
is the topic of the next section. Second, we search the complex plane
for the optimal λ yielding the perturbation with minimum cost. We
observe that (i) the exhaustive search of the optimal λ is an inherent
feature of this class of problems, as also highlighted in prior work [13];
(ii) in some cases and for certain network topologies the optimal λ can
be found analytically, as we do in Section IV for line and star networks;
and (iii) in certain applications the choice of λ is guided by the objec-
tive of the network perturbation, such as inducing unobservability of
unstable modes.

III. OPTIMALITY CONDITIONS AND ALGORITHMS FOR THE NETWORK

OBSERVABILITY RADIUS

In this section, we consider problem (2) with fixed λ. Specifically, we
address the following minimization problem: given a constraint graph
H, the network matrix A ∈ AG , an output matrix CO, and a desired
unobservable eigenvalue λ ∈ C, determine a perturbation Δ∗ ∈ Rn×n

satisfying

‖Δ∗‖2
F = min

x∈Cn ,Δ∈Rn ×n
‖Δ‖2

F ,

s.t. (A + Δ)x = λx,

‖x‖2 = 1,

COx = 0,

Δ ∈ AH.

(3)

From (3), the value ‖Δ∗‖2
F equals the observability radius of the net-

work A with sensor nodes O, constraint graph H, and fixed unobserv-
able eigenvalue λ.
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A. Optimal Network Perturbation

We now shape minimization problem (3) to facilitate its solution.
Without affecting generality, relabel the network nodes such that the
sensor nodes set satisfy

O = {1, . . . , p}, so that CO =
[
Ip 0

]

. (4)

Accordingly,

A =

[

A11 A12

A21 A22

]

, and Δ =

[

Δ11 Δ12

Δ21 Δ22

]

, (5)

where A11 ∈ Rp×p , A12 ∈ Rp×n−p , A21 ∈ Rn−p×p , and
A22 ∈ Rn−p×n−p . Let V = [vij ] be the unweighted adjacency
matrix of H, where vij = 1 if (i, j) ∈ EH, and vij = 0 otherwise.
Following the partitioning of A in (5), let

V =

[

V11 V12

V21 V22

]

.

We perform the following three simplifying steps.
(1-Rewriting the Structural Constraints): Let B = A + Δ, and

notice that ‖Δ‖2
F =

∑n
i=1

∑n
j=1 (bij − aij )2 . Then, the minimiza-

tion problem (3) can equivalently be rewritten restating the constraint
Δ ∈ AH, as in the following:

‖Δ‖2
F = ‖B −A‖2

F =
n∑

i=1

n∑

j=1

(bij − aij )2v−1
ij .

Notice that ‖Δ‖2
F = ∞ whenever Δ does not satisfy the structural

constraint, that is, when vij = 0 and bij �= aij .
(2-Minimization With Real Variables): Let λ = λ
 + iλ�, where i

denotes the imaginary unit. Let

x
 =

[

x1



x2



]

, and x� =

[

x1
�

x2
�

]

,

denote the real and imaginary parts of the eigenvector x, with x1

 ∈ Rp ,

x1
� ∈ Rp , x2


 ∈ Rn−p , and x2
� ∈ Rn−p .

Lemma 3.1: (Minimization With Real Eigenvector Constraint)
The constraint (A + Δ)x = λx can equivalently be written as

(A + Δ − λ
I)x
 = −λ�x�,

(A + Δ − λ
I)x� = λ�x
. (6)

Proof: By considering separately the real and imaginary part
of the eigenvalue constraint, we have (A + Δ)x = λ
x+ iλ�x and
(A + Δ)x̄ = λ
x̄− iλ�x̄, where x̄ denotes the complex conjugate of
x. Notice that

(A + Δ)(x + x̄)
︸ ︷︷ ︸

(A+Δ )2x


= (λ
 + iλ�)x+ (λ
 − iλ�)x̄
︸ ︷︷ ︸

2λ
x
−2λ�x�

and, analogously

(A + Δ)(x− x̄)
︸ ︷︷ ︸

(A+Δ )2ix�

= (λ
 + iλ�)x− (λ
 − iλ�)x̄
︸ ︷︷ ︸

2iλ
x�+2iλ�x


which concludes the proof. �
Thus, the problem (3) can be solved over real variables only.
(3-Reduction of Dimensionality): The constraint COx = 0 and

equation (4) imply that x1

 = x1

� = 0. Thus, in the minimization prob-
lem (5) we set Δ11 = 0, Δ21 = 0, and consider the minimization
variables x2


, x
2
�, Δ12 , and Δ22 .

These simplifications lead to the following result.

Lemma 3.2: (Equivalent Minimization Problem) Let

Ā =

[

A12

A22

]

, Δ̄ =

[

Δ12

Δ22

]

, M̄ =

[

0p×n−p

λ�In−p

]

,

N̄ =

[

0p×n−p

λ
In−p

]

, V̄ =

[

V12

V22

]

, and B̄ = Ā + Δ̄. (7)

The following minimization problem is equivalent to (3):

‖Δ̄∗‖2
F = min

B̄ ,x 2

,x

2
�

n∑

i=1

n−p
∑

j=1

(b̄ij − āij )2v−1
ij ,

s.t.

[

B̄ − N̄ M̄

−M̄ B̄ − N̄

][

x2



x2
�

]

= 0,

∥
∥
∥
∥
∥

[

x2



x2
�

]∥
∥
∥
∥
∥

2

= 1.

(8)

The minimization problem (8) belongs to the class of (structured)
total least squares problems, which arise in several estimation and
identification problems in control theory and signal processing. Our
approach is inspired by [15], with the difference that we focus on real
perturbations Δ and complex eigenvalue λ: this constraint leads to dif-
ferent optimality conditions and algorithms. LetA ⊗B denote the Kro-
necker product between the matrices A and B, and diag(d1 , . . . , dn )
the diagonal matrix with scalar entries d1 , . . . , dn . We now derive the
optimality conditions for the problem (8).

Theorem 3.3: (Optimality Conditions) Let x∗

, and x∗

� be a solution
to the minimization problem (8). Then,

[

Ā − N̄ M̄

−M̄ Ā − N̄

]

︸ ︷︷ ︸

Ã

[

x∗



x∗
�

]

︸ ︷︷ ︸

x ∗

= σ

[

Sx Tx

Tx Qx

]

︸ ︷︷ ︸

Dx

[

y1

y2

]

︸ ︷︷ ︸

y ∗

,

[

Ā − N̄ M̄

−M̄ Ā − N̄

]T

︸ ︷︷ ︸

Ã T

[

y1

y2

]

︸ ︷︷ ︸

y ∗

= σ

[

Sy Ty

Ty Qy

]

︸ ︷︷ ︸

Dy

[

x∗



x∗
�

]

︸ ︷︷ ︸

x ∗

(9)

for some σ > 0 and y∗ ∈ R2n with ‖y∗‖ = 1, and where

D1 = diag(v11 , . . . , v1n , v21 , . . . , v2n , . . . , vn 1 , . . . , vnn ),

D2 = diag(v11 , . . . , vn 1 , v12 , . . . , vn 2 , . . . , v1n , . . . , vnn ),

Sx = (I ⊗ x∗

)TD1 (I ⊗ x∗


), Tx = (I ⊗ x∗

)TD1 (I ⊗ x∗

�),

Qx = (I ⊗ x∗
�)TD1 (I ⊗ x∗

�), Sy = (I ⊗ y1 )TD2 (I ⊗ y1 ),

Ty = (I ⊗ y1 )TD2 (I ⊗ y2 ), Qy = (I ⊗ y2 )TD2 (I ⊗ y2 ). (10)

Proof: We adopt the method of Lagrange multipliers to derive op-
timality conditions for the problem (8). The Lagrangian is

L(B̄, x2

, x

2
�, �1 , �2 , ρ) =

∑

i

∑

j

(b̄ij − āij )2v−1
ij

+ �T
1 ((B̄ − N̄ )x2


 + M̄x2
�) + �T

2 ((B̄ − N̄ )x2
� − M̄x2


)

+ ρ(1 − x2T

 x

2

 − x2T

� x
2
�) (11)
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where �1 ∈ Rn , �2 ∈ Rn , and ρ ∈ R are Lagrange multipliers. By
equating the partial derivatives of L to zero we obtain

∂L
∂bij

= 0 ⇒ −2(āij − b̄ij )v−1
ij + �1 i x

2

j + �2 i x

2
�j = 0, (12)

∂L
∂x2



= 0 ⇒ �T

1 (B̄ − N̄ ) − �T
2M̄ − 2ρx2T


 = 0, (13)

∂L
∂x2

�
= 0 ⇒ �T

1M̄ + �T
2 (B̄ − N̄ ) − 2ρx2T

� = 0, (14)

∂L
∂�1

= 0 ⇒ (B̄ − N̄ )x2

 + M̄x2

� = 0, (15)

∂L
∂�2

= 0 ⇒ (B̄ − N̄ )x2
� − M̄x2


 = 0, (16)

∂L
∂ρ

= 0 ⇒ x2T

 x

2

 + x2T

� x
2
� = 1. (17)

Let L1 = diag(�1 ), L2 = diag(�2 ), X
 = diag(x2

),

X� = diag(x2
�). After including the factor 2 into the multipli-

ers, (12) can be written in matrix form as

Ā − B̄ = L1 V̄ X
 + L2 V̄ X�. (18)

Analogously, (13) and (14) can be written as

[
�T
1 �T

2

]

[

B̄ − N̄ M̄

−M̄ B̄ − N̄

]

− 2ρ
[
x2T

 x2T

�
]

= 0 (19)

From (19) we have

[
�T
1 �T

2

]

[

B̄ − N̄ M̄

−M̄ B̄ − N̄

][

x2



x2
�

]

︸ ︷︷ ︸

=0 due to (15) and (16)

−2ρ = 0

from which we conclude ρ = 0. By combining (15) and (18) (respec-
tively, (16) and (18)) we obtain

(Ā − N̄ )x2

 + M̄x2

� =
(

L1 V̄ X
 + L2 V̄ X�
)

x2

,

(Ā − N̄ )x2
� − M̄x2


 =
(

L1 V̄ X
 + L2 V̄ X�
)

x2
�.

Analogously, by combining (13) and (18), (14) and (18), we obtain

�T
1 (Ā − N̄ ) − �T

2M̄ = �T
1

(

L1 V̄ X
 + L2 V̄ X�
)

,

�T
2 (Ā − N̄ ) + �T

1M̄ = �T
2

(

L1 V̄ X
 + L2 V̄ X�
)

.

Let σ =
√

�T
1 �1 + �T

2 �2 and observe that σ cannot be zero. Indeed, due
to Assumption (A1), the optimal perturbation can not be zero; thus, the
first constraint in (8) must be active and the corresponding multiplier
must be nonzero. Then, we can define y1 = �1/σ and y2 = �2/σ and
we can verify that

(

L1 V̄ X
 + L2 V̄ X�
)

x2

 = σ (Sxy1 + Txy2 ) ,

(

L1 V̄ X
 + L2 V̄ X�
)

x2
� = σ (Txy1 + Qxy2 )

and

σ
(

yT
1 (Ā − N̄ ) − yT

2 M̄
)

= �T
1

(

L1 V̄ X
 + L2 V̄ X�
)

= σ2 (Sy x
2

 + Ty x

2
�
)T
,

σ
(

yT
2 (Ā − N̄ ) + yT

1 M̄
)

= �T
2

(

L1 V̄ X
 + L2 V̄ X�
)

= σ2 (Ty x
2

 + Qy x

2
�
)T

which conclude the proof. �

Note that (9) may admit multiple solutions, and that every solution
to (9) yields a network perturbation that satisfies the constraints in
the minimization problem (8). We now present the following result to
compute perturbations.

Corollary 3.4: (Minimum Norm Perturbation) Let Δ∗ be a solution
to (3). Then, Δ∗ = [0n×p Δ̄∗], where

Δ̄∗ = −σ (diag(y1 )V̄ diag(x∗

) − diag(y2 )V̄ diag(x∗

�)
)

,

and x∗

, x

∗
�, y1 , y2 , σ satisfy (9). Moreover

‖Δ‖2
F = σ2x∗TDy x

∗ = σx∗TÃTy∗ ≤ σ‖Ã‖F.

Proof: The expression for the perturbation Δ∗ comes from
Lemma 3.2 and (18), and the fact that L1 = σ diag(y1 ),
L2 = σ diag(y2 ). To show the second part notice that

‖Δ‖2
F = ‖A −B‖2

F = ‖L1 V̄ X
 + L2 V̄ X�‖2
F

= σ2
∑

i

∑

j

(

y2
1 i x

2

j + y2

2 i x
2
�j
)

vij

= σ2x∗TDy x
∗ = σx∗TÃTy∗,

where the last equalities follow from (9). Finally, the inequality follows
from ‖x∗‖2 = ‖x∗‖F = ‖y∗‖2 = ‖y∗‖F = 1. �

To compute a triple (σ, x∗, y∗) satisfying the condition in Theo-
rem 3.3, observe that (9) can be written in matrix form as

[
0 ÃT

Ã 0

]

︸ ︷︷ ︸

H

[
x
y

]

︸︷︷︸

z

= σ̄

[
Dy 0
0 Dx

]

︸ ︷︷ ︸

D

[
x
y

]

︸︷︷︸

z

. (20)

Lemma 3.5: (Equivalence Between Theorem 3.3 and (20)) Let
(σ, x, y), with x �= 0, solve (20). Then, σ �= 0 and y �= 0, and the
triple ((αβ)−1σ, αx, βy), with α = sgn(σ)‖x‖−1 and β = ‖y‖−1 ,
satisfies the conditions in Theorem 3.3.

Proof: Because x �= 0 and Ã has full column rank due to Assump-
tion (A1), it follows σ �= 0 and y �= 0. LetDx andDy be as in (9). No-
tice that Dαx = α2Dx and Dβy = β2Dy . Notice that (αβ)−1σ > 0.
We have

Ãαx =
σ

αβ
α2Dxβy = ασDxy,

ÃTβy =
σ

αβ
β2Dyαx = βσDy x

which concludes the proof. �
Lemma 3.5 shows that a (sub)optimal network perturbation can in

fact be constructed by solving (20). It should be observed that, if the
matrices Sx , Tx , Qx , Sy , Ty , and Qy were constant, then (20) would
describe a generalized eigenvalue problem, thus a solution (σ̄, z) would
be a pair of generalized eigenvalue and eigenvector. These facts will
be exploited in the next section to develop a heuristic algorithm to
compute a (sub)optimal network perturbation.

Remark 1: (Smallest Network Perturbation With Respect to the Un-
observable Eigenvalue) In the minimization problem (3), the size of
the perturbation Δ∗ depends on the desired eigenvalue λ, and it may be
of interest to characterize the unobservable eigenvalue λ∗ = λ∗


 + iλ∗
�

yielding the smallest network perturbation that prevents observability.
To this aim, we equate to zero the derivatives of the Lagrangian (11)
with respect to λ
 and λ� to obtain

∂L
∂λ


= 0 ⇒ �T
1

[
0p
x2



]

+ �T
2

[
0p
x2
�

]

= 0,

∂L
∂λ�

= 0 ⇒ �T
1

[
0p
x2
�

]

− �T
2

[
0p
x2



]

= 0.
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The above conditions clarify that, for the perturbation Δ to be of the
smallest size with respect to λ, the Lagrange multipliers �1 and �2 , and
the vectors x2


 and x2
� must verify an orthogonality condition. �

Remark 2: (Real Unobservable Eigenvalue) When the unobserv-
able eigenvalue λ in (3) is real, the optimality conditions in Theorem 3.3
can be simplified to

(Ā − N̄ )x
 = σSxy1 , and (Ā − N̄ )y1 = σSy x
.

The generalized eigenvalue equation (20) becomes
[

0 ĀT − N̄ T

Ā − N̄ 0

][

y1

x


]

= σ

[

Sx 0

0 Sy

][

y1

x


]

,

and the optimality conditions with respect to the unobservable eigen-

value λ (see Remark 1) simplify to �T
1

[

0p
x2



]

= 0. �

B. A Heuristic Procedure to Compute Structural Perturbations

In this section, we propose an algorithm to find a solution to the set
of nonlinear equations (20), and thus to find a (sub)optimal solution
to the minimization problem (3). Our procedure is motivated by (20)
and Corollary 3.4, and it consists of fixing a vector z, computing
the matrix D, and approximating an eigenvector associated with the
smallest generalized eigenvalue of the pair (H,D). Because the size
of the perturbation is bounded by the generalized eigenvalue σ as in
Corollary 3.4, we adopt an iterative procedure based on the inverse
iteration method for the computation of the smallest eigenvalue of a
matrix [19]. We remark that our procedure is heuristic, because (20) is in
fact a nonlinear generalized eigenvalue problem due to the dependency
of the matrix D on the eigenvector z. To the best of our knowledge,
no complete algorithm is known for the solution of (20). We start by
characterizing certain properties of the matrices H and D, which will
be used to derive our algorithm. Let

spec(H,D) = {λ ∈ C : det(H − λD) = 0}
and recall that the pencil (H,D) is regular if the determinant det(H −
λD) does not vanish for some value of λ, see [20]. Notice that, if
(H,D) is not regular, then spec(H,D) = C.

Lemma 3.6: (Generalized Eigenvalues of (H,D)) Given a vector
z ∈ R4n−2p , define the matrices H and D as in (20). Then,

i) 0 ∈ spec(H,D);
ii) if λ ∈ spec(H,D), then −λ ∈ spec(H,D); and

iii) if (H,D) is regular, then spec(H,D) ⊂ R.
Proof: Statement (i) is equivalent to Ãx = 0 and ÃTy = 0, for

some vectors x and y. Because ÃT ∈ R(2n−2p )×2n with p ≥ 1, the
matrix ÃT features a nontrivial null space. Thus, the two equations are
satisfied with x = 0 and y ∈ Ker(ÃT), and the statement follows.

To prove statement (ii) notice that, due to the block structure of
H and D, if the triple (λ, x̄, ȳ) satisfies the generalized eigenvalue
equations ÃTȳ = λDy x̄ and Ãx̄ = λDx ȳ, so does (−λ, x̄,−ȳ).

To show statement (iii), let Rank(D) = k ≤ n, and notice that the
regularity of the pencil (H,D) implies Hz̄ �= 0 whenever Dz̄ = 0
and z̄ �= 0. Notice that (H,D) has n − k infinite eigenvalues [20]
becauseHz̄ = λDz̄ = λ · 0 for every nontrivial z̄ ∈ Ker(D). Because
D is symmetric, it admits an orthonormal basis of eigenvectors. Let
V1 ∈ Rn×k contain the orthonormal eigenvectors ofD associated with
its nonzero eigenvalues, let ΛD be the corresponding diagonal matrix
of the eigenvalues, and let T1 = V1Λ

−1/2
D . Then, T T

1 DT1 = I . Let
H̃ = T T

1 HT1 , and notice that H̃ is symmetric. Let T2 ∈ Rk×k be an
orthonormal matrix of the eigenvectors of H̃ . Let T = T1T2 and note
that T THT = Λ and T TDT = I , where Λ is a diagonal matrix. To
conclude, consider the generalized eigenvalue problem Hz̄ = λDz̄.

Let z̄ = T z̃. Because T has full column rank k, we have T THT z̃ =
Λz̃ = λT TDT z̃ = λz̃, from which we conclude that (H,D) has k real
eigenvalues. �

Lemma 3.6 implies that the inverse iteration method is not directly
applicable to (20). In fact, the zero eigenvalue of (H,D) leads the
inverse iteration to instability, while the presence of eigenvalues of
(H,D) with equal magnitude may induce non-decaying oscillations
in the solution vector. To overcome these issues, we employ a shift-
ing mechanism as detailed in Algorithm 1, where the eigenvector z
is iteratively updated by solving the equation (H − μD)zk+1 = Dzk
until a convergence criteria is met. Notice that (i) the eigenvalues of
(H − μD,D) are shifted with respect to the eigenvalues of (H,D),
that is, if σ ∈ spec(H,D), then σ − μ ∈ spec(H − μD,D),1 (ii) the
pairs (H − μD,D) and (H,D) share the same eigenvectors, and
(iii) by selecting μ = ψ · min{σ ∈ spec(H,D) : σ > 0}, the pair
(H − μD,D) has nonzero eigenvalues with distinct magnitude. Thus,
Algorithm 1 estimates the eigenvector z associated with the smallest
nonzero eigenvalue σ of (H,D), and converges when z and σ also
satisfy equations (20). The parameter ψ determines a compromise be-
tween numerical stability and convergence speed; larger values of ψ
improve the convergence speed.2

When convergent, Algorithm 1 finds a solution to (20) and, con-
sequently, the algorithm could stop at a local minimum and return a
(sub)optimal network perturbation preventing observability of a de-
sired eigenvalue. All information about the network matrix, the sensor
nodes, the constraint graph, and the unobservable eigenvalue is en-
coded in the matrix H as in (7), (9) and (20). Although convergence of
Algorithm 1 is not guaranteed, numerical studies show that it performs
well in practice; see Sections III-C and IV.

C. Optimal Perturbations and Algorithm Validation

In this section, we validate Algorithm 1 on a small network. We start
with the following result.

Theorem 3.7: (Optimal Perturbations of 3-Dimensional Line Net-
works With Fixed λ ∈ C) Consider a network with graph G = (V, E),
where |V| = 3, weighted adjacency matrix

A =

⎡

⎢
⎣

a11 a12 0

a21 a22 a23

0 a32 a33

⎤

⎥
⎦

and sensor node O = {1}. Let B = [bij ] = A + Δ∗, where Δ∗ solves
the minimization problem (3) with constraint graph H = G and unob-

1 To see this, let σ be an eigenvalue of (H,D), that is, Hx = σDx.
Then, (H − μD)x = Hx − μDx = σDx − μDx = (σ − μ)Dx. That is
(H − μD)x = (σ − μ)Dx thus σ − μ is an eigenvalue of (H − μD,D).

2 In Algorithm 1, the range for ψ has been empirically determined during our
numerical studies.
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servable eigenvalue λ = λ
 + iλ� ∈ C, λ� �= 0. Then

b11 = a11 , b21 = a21 , b12 = 0

and b22 , b23 , b32 , and b33 satisfy:

(b22 − a22 ) − (b33 − a33 ) +
b33 − b22

b32
(b23 − a23 ) = 0,

(b32 − a32 ) − b23

b32
(b23 − a23 ) = 0,

b22 + b33 − 2λ
 = 0,

b22 b33 − b23 b32 − λ2

 − λ2

� = 0. (21)

Proof: Let Bx = λx and notice that, because λ is unobservable,
COx = [1 0 0]x = 0. Then, x = [x1 x2 x3 ]T, x1 = 0, b11 = a11 , and
b21 = a21 . By contradiction, let x2 = 0. Notice that Bx = λx implies
b33 = λ, which contradicts the assumption that λ� �= 0 and b33 ∈ R.
Thus, x2 �= 0. Because x2 �= 0, the relation Bx = λx and x1 = 0
imply b12 = 0. Additionally, λ is an eigenvalue of

B2 =

[

b22 b23

b32 b33

]

.

The characteristic polynomial of B2 is

PB 2 (s) = s2 − (b22 + b33 )s+ b22 b33 − b23 b32 .

For λ ∈ spec(B2 ), we must have PB 2 (s) = (s− λ)(s− λ̄), where λ̄

is the complex conjugate of λ. Thus

PB 2 (s) = (s− λ
 − iλ�)(s− λ
 + iλ�) = s2 − 2λ
s+ λ2

 + λ2

�,

which leads to

b22 + b33 − 2λ
 = 0, and b22 b33 − b23 b32 − λ2

 − λ2

� = 0. (22)

The Lagrange function of the minimization problem with cost function
‖Δ∗‖2

F =
∑3

i=2

∑3
j=2 (bij − aij )2 and constraints (22) is

L(b22 , b23 , b32 , b33 , p1 , p2 ) = d2
22 + d2

23 + d2
32 + d2

33

+ p1 (2λ
 + b22 + b33 ) + p2 (b22 b33 − b23 b32 − (λ2

 + λ2

�))

where p1 , p2 ∈ R are Lagrange multipliers, and dij = bij − aij . By
equating the partial derivatives of L to zero, we obtain

∂L
∂b22

= 0 ⇒ 2d22 + p1 + p2 b33 = 0, (23)

∂L
∂b33

= 0 ⇒ 2d33 + p1 + p2 b22 = 0, (24)

∂L
∂b23

= 0 ⇒ 2d23 − p2 b32 = 0, (25)

∂L
∂b32

= 0 ⇒ 2d32 − p2 b23 = 0 (26)

together with (22). The statement follows by substituting the Lagrange
multipliers p1 and p2 into (23) and (26). �

To validate Algorithm 1, in Fig. 1 we compute optimal perturbations
for 3-dimensional line networks based on Theorem 3.7, and compare
them with the perturbation obtained at with Algorithm 1.

IV. OBSERVABILITY RADIUS OF RANDOM NETWORKS: THE CASE

OF LINE AND STAR NETWORKS

In this section we study the observability radius of networks with
fixed structure and random weights, when the desired unobservable
eigenvalue is an optimization parameter as in (2). First, we give a
general upper bound on the size of an optimal perturbation. Next, we

Fig. 1. This figure validates the effectiveness of Algorithm 1 to com-
pute optimal perturbations for the line network in Section III-C. The plot
shows the mean and standard deviation over 100 networks of the dif-
ference between Δ∗, obtained via the optimality conditions (21), and
Δ(i) , computed at the i-th iteration of Algorithm 1. The unobservable
eigenvalue is λ = i and the values aij are chosen independently and
uniformly distributed in [0, 1].

explicitly compute optimal perturbations for line and star networks,
showing that their robustness is essentially different.

We start with some necessary definitions. Given a directed graph
G = (V, E), a cut is a subset of edges Ē ⊆ E . Given two disjoint sets
of vertices S1 ,S2 ⊂ V , we say that a cut Ē disconnects S2 from S1 if
there exists no path from any vertex in S2 to any vertex in S1 in the
subgraph (V, E \ Ē). Two cuts E1 and E2 are disjoint if they have no
edge in common, that is, if E1 ∩ E2 = ∅. Finally, the Gamma function
is defined as Γ(z) =

∫ ∞
0 xz−1e−x dx. With this notation in place, we

are in the position to prove a general upper bound on the (expected)
norm of the smallest perturbation that prevents observability. The proof
is based on the following intuition: a perturbation that disconnects the
graph prevents observability.

Theorem 4.1: (Bound on Expected Network Observability Radius)
Consider a network with graph G = (V, E), weighted adjacency ma-
trix A = [aij ], and sensor nodes O ⊆ V . Let the weights aij be
independent random variables uniformly distributed in the interval
[0, 1]. Define the minimal observability-preventing perturbation as

δ = min
λ∈C,x∈Cn ,Δ∈Rn ×n

‖Δ‖F,

s.t. (A + Δ)x = λx,

‖x‖2 = 1,

COx = 0,

Δ ∈ AG . (27)

Let Ωk (O) be a collection of disjoint cuts of cardinality k, where each
cut disconnects a non-empty subset of nodes fromO. Letω = |Ωk (O)|
be the cardinality of Ωk (O). Then,

E[δ] ≤ Γ(1/k) Γ(ω + 1)√
k Γ(ω + 1 + 1/k)

.

Proof: Let Ē ∈ Ωk (O). Notice that, after removing the edges Ē , the
nodes are partitioned as V = V1 ∪ V2 , where V1 ∩ V2 = ∅, O ⊆ V1 ,
and V2 is disconnected from V1 . Reorder the network nodes so that
V1 = {1, . . . , |V1 |} and V2 = {|V1 | + 1, . . . , |V|}. Accordingly, the
modified network matrix is reducible and reads as

Ā =

[

A11 0

A21 A22

]

.

Let x2 be an eigenvector of A22 with corresponding eigenvalue λ.
Notice that λ is an eigenvalue of Ā with eigenvector x = [0 xT

2 ]
T.

Since O ⊆ V1 , COx = 0, so that the eigenvalue λ is unobservable.
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From the above discussion we conclude that, for each Ē ∈ Ωk (O),
there exists a perturbation Δ = [δij ] that is compatible with G and
ensures that one eigenvalue is unobservable. Moreover, the perturbation
Δ is defined as δij = −aij if (i, j) ∈ Ē , and δij = 0 otherwise. We
thus have

E[δ] ≤ E

⎡

⎣ min
Ē∈Ω k (O)

√
∑

(i ,j )∈Ē
a2
ij

⎤

⎦ .

Because any two elements of Ωk (O) have empty intersection and all
edge weights are independent, we have

Pr

⎛

⎝ min
Ē∈Ω k (O)

√
∑

(i ,j )∈Ē
a2
ij ≥ x

⎞

⎠ = Pr

⎛

⎝

√
∑

(i ,j )∈Ē
a2
ij ≥ x

⎞

⎠

ω

= Pr

⎛

⎝
∑

(i ,j )∈Ē
a2
ij ≥ x2

⎞

⎠

ω

=

⎛

⎝1 − Pr

⎛

⎝
∑

(i ,j )∈Ē
a2
ij ≤ x2

⎞

⎠

⎞

⎠

ω

.

In order to obtain a more explicit expression for this probability, we
resort to using a lower bound. Let a denote the vector of aij with
(i, j) ∈ Ē . The condition

∑

(i ,j )∈Ē a
2
ij ≤ x2 implies that a belongs to

the k-dimensional sphere of radius x (centered at the origin). In fact,
since a is sampled in [0, 1]k , it belongs to the intersection between
the sphere and the first orthant. By computing the volume of the k-
dimensional cube inscribed in the sphere, we obtain

Pr

⎛

⎝
∑

(i ,j )∈Ē
a2
ij ≤ x2

⎞

⎠ ≥
⎧

⎨

⎩

(2x/
√
k)k

2k =
(

x√
k

)k

, x ≤ √
k,

1, otherwise.

Since δ takes on nonnegative values only, its expectation can be com-
puted by integrating the survival function

E[δ] =
∫ ∞

0
Pr (δ ≥ t) dt,

which leads us to obtain, by suitable changes of variables

E[δ] ≤
∫

√
k

0

(

1 −
(
x√
k

)k
)ω

dx =
√
k

∫ 1

0

(

1 − tk
)ω

dt

=
1√
k

∫ 1

0
(1 − z)ω z

1
k
−1dz =

1√
k

Γ(1/k)Γ(ω + 1)
Γ(ω + 1/k + 1)

where the last equality follows from the definition of the Beta function,
B(x, y) =

∫ 1
0 t

x−1 (1 − t)y−1dt for Real(x) > 0,Real(y) > 0, and its

relation with the Gamma function, B(x, y) = Γ(x ) Γ(y )
Γ(x+ y ) . �

We now use Theorem 4.1 to investigate the asymptotic behavior of
the expected observability radius on sequences of networks of increas-
ing cardinality n. In order to emphasize the dependence on n, we shall
write E[δ(n)] from now on. As a first step, we can apply Wendel’s
inequalities [21] to find

1
(ω + 1)1/k ≤ Γ(ω + 1)

Γ(ω + 1 + 1/k)
≤ (ω + 1 + 1/k)1−1/k

(ω + 1)
.

If in a sequence of networks ω grows to infinity and k remains constant,
then the ratio between the lower and the upper bounds goes to one,
yielding the asymptotic equivalence

E[δ(n)] ≤ Γ(1/k) Γ(ω + 1)√
k Γ(ω + 1 + 1/k)

∼ Γ(1/k)√
k

1
(ω + 1)1/k .

This relation implies that a network becomes less robust to perturba-
tions as the size of the network increases, with a rate determined by k.
In the rest of this section, we study two network topologies with dif-
ferent robustness properties. In particular, we show that line networks

Fig. 2. Line and star networks with self-loops. Sensor nodes are
marked in black. (a) Line network. (b) Star network. Self-loops are not
shown in the figure.

achieve the bound in Theorem 4.1, proving its tightness, whereas star
networks have on average a smaller observability radius.

(Line Network): Let G be a line network with n nodes and one
sensor node as in Fig. 2. The adjacency and output matrices read as

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 0 · · · 0

a21 a22 a23 · · · 0

...
. . .

. . .
. . .

...

0 · · · an−1 ,n−2 an−1 ,n−1 an−1 ,n

0 · · · 0 an ,n−1 ann

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

CO =
[
1 0 0 · · · 0

]

. (28)

We obtain the following result.
Theorem 4.2: (Structured Perturbation of Line Networks) Consider

a line network with matrices as in (28), where the weights aij are in-
dependent random variables uniformly distributed in the interval [0,1].
Let δ(n) be the minimal cost defined as in (27). Then

δ(n) = min{a12 , . . . , an−1 ,n }, and E[δ(n)] =
1
n
.

Proof: The proof can be found in [24]. �
Theorem 4.2 characterizes the resilience of line networks to struc-

tured perturbations. We remark that, because line networks are strongly
structurally observable, structured perturbations preventing observ-
ability necessarily disconnect the network by zeroing some network
weights. Consistently with this remark, line networks achieve the up-
per bound in Theorem 4.1, being therefore maximally robust to struc-
tured perturbations. In fact, for O = {1} and a cut size k = 1, we have
Ω1(O) = {a12 , . . . , an−1 ,n } and ω = n − 1. Thus

E[δ(n)] ≤ Γ(1)Γ(n)√
1Γ(n + 1)

=
(n − 1)!
n!

=
1
n

which equals the behavior identified in Theorem 4.2. Further, Theo-
rem 4.2 also identifies an unobservable eigenvalue yielding a perturba-
tion with minimum norm. In fact, if ai∗−1 , i∗ = min{a12 , . . . , an−1 ,n },
then all eigenvalues of the submatrix of A with rows/columns in the
set {i∗, . . . , n} are unobservable, and thus minimizers in (27).

Both Theorems 4.1 and 4.2 are based on constructing perturbations
by disconnecting the graph. This strategy, however, suffers from perfor-
mance limitations and may not be optimal in general. The next example
shows that different kinds of perturbations, when applicable, may yield
a lower cost.

(Star Network): Let G be a star network with n nodes and one
sensor node as in Fig. 2. The adjacency and output matrices read as
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Fig. 3. Expected values E[δ(n)] for the two network topologies in Fig. 2
as functions of the network cardinality n. Dotted lines represent upper
and lower bounds in Theorems 4.2 and 4.3. Solid lines show the mean
over 100 networks of the Frobenius norm of the perturbations obtained
by Algorithm 1.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 a13 · · · a1n

a21 a22 0 · · · 0

a31 0
. . .

. . .
...

...
... 0 an−1 ,n−1 0

an 1 0 0 0 ann

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

CO =
[
1 0 0 · · · 0

]

. (29)

Differently from the case of line networks, star networks are not
strongly structurally observable, so that different perturbations may
result in unobservability of some modes.

Theorem 4.3: (Structured Perturbation of Star Networks) Consider
a star network with matrices as in (29), where the weights aij are inde-
pendent random variables uniformly distributed in the interval [0, 1].
Let δ(n) be the minimal cost defined as in (27). Let

γ = min
i ,j∈{2 , . . . ,n }, i �= j

|aii − aj j |√
2

.

Then δ(n) = min{a12 , a13 , . . . , a1n , γ}, and

1√
2 n(n − 1)

≤ E[δ(n)] ≤ 1√
2 n(n − 2)

.

Proof: The proof can be found in [24].
Theorem 4.3 quantifies the resilience of star networks, and the unob-

servable eigenvalues requiring minimum norm perturbations; see the
proof for a characterization of this eigenvalues.

The bounds in Theorem 4.3 are asymptotically tight and imply

E[δ(n)] ∼ 1√
2 n2

, as n → ∞.

See Fig. 3 for a numerical validation of this result. This rate of decrease
implies that star networks are structurally less robust to perturbations
than line networks. Crucially, unobservability in star networks may be
caused by two different phenomena: the deletion of an edge discon-
necting a node from the sensor node (deletion of the smallest among the
edges {a12 , a13 , . . . , a1n }), and the creation of a dynamical symmetry
with respect to the sensor node by perturbing two diagonal elements
to make them equal in weight. It turns out that, on average, creat-
ing symmetries is “cheaper” than disconnecting the network. The role
of network symmetries in preventing observability and controllabil-
ity has been observed in several independent works; see for instance
[16], [17]. Finally, the comparison of line and star networks shows that
Algorithm 1 is a useful tool to systematically investigate the robustness
of different topologies.

V. CONCLUSION

In this work, we extend the notion of observability radius to network
systems, thus providing a measure of the ability to maintain observabil-
ity of the network modes against structured perturbations of the edge
weights. We characterize network perturbations preventing observabil-
ity, and describe a heuristic algorithm to compute perturbations with
smallest Frobenius norm. Additionally, we study the observability ra-
dius of networks with random weights, derive a fundamental bound
relating the observability radius to certain connectivity properties, and
explicitly characterize the observability radius of line and star networks.
Our results show that different network structures exhibit inherently dif-
ferent robustness properties, and thus provide guidelines for the design
of robust complex networks.
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