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Abstract

Given a network of agents, we say that the agents achieve a k-agreement when their state variables converge to a point that
corresponds to the projection of the agents’ states onto a k-dimensional linear subspace. The k-agreement problem generalizes
the classical consensus problem; unlike in consensus, where the agents’ states must asymptotically coincide, in k-agreement
the agents reach an agreement in a generalized sense (within a linear subspace, where the states do not necessarily coincide).
In this paper, we investigate which interaction topologies enable a network of agents to reach an agreement on a prescribed
k-dimensional subspace through local coordination algorithms. We show that achieving k-agreement requires communication
over highly connected graphs; specifically, the number of edges in the interaction graph must grow linearly with the dimension
k of the agreement subspace. Our characterization reveals that the presence of cycles in the communication graph (particularly,
independent families of cycles) constitutes the fundamental structural feature enabling the agents to achieve k-agreement. We
also investigate the use of common graph topologies, such as path and circulant graphs, for k-agreement, deriving insights into
the relationship between the subspace dimension k and the required network connectivity. The effectiveness of the proposed
framework is demonstrated through simulations in robotic formation control problems.

Key words: Multi-agent systems, Decentralized and distributed control, Networked robotic systems, Cooperative systems

1 Introduction

Distributed coordination algorithms play a fundamental role
in several network synchronization problems, including ren-
dezvous, distributed optimization, distributed computation
and sensing, federated learning, and much more. A common
objective in network coordination problems is that of making
a group of agents agree on a common quantity. This problem
is often referred to as consensus [28] and a vast body of litera-
ture has been developed on it—see the (non-exhaustive list)
representative works [6, 28, 33]. In other cases, it is instead
of interest to make the agents agree in a generalized sense:
rather than on a common quantity, one may be interested in
ensuring that the agents’ states converge to a vector that be-
longs to a certain set (e.g., a vector space). When the agree-
ment set is a linear subspace and the coordination protocol
is linear, the problem is referred to as k-dimensional agree-
ment (or simply k-agreement) [5]. This problem was inves-
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tigated in our recent work [5], where we provided algebraic
characterizations of the corresponding algorithms and stud-
ied their design to optimize the rate of convergence. One key
finding of [5] is that, in general, k-agreement protocols re-
quire interaction graphs with higher connectivity than those
used for simpler coordination algorithms, such as average
consensus [28]. In this paper, we seek to provide answers
to the following question: what topological properties of the
interaction graph ensure that a set of agents can reach a k-
agreement? Our findings in this paper extend [5] in several
directions: (i) we derive necessary conditions on the topol-
ogy of the communication graph to enable a k-agreement;
(ii) we show that k- agreement is possible when the interac-
tion topology incorporates a sufficient number of indepen-
dent cycles; and (iii) we provide insights into the design of
graphs that support k-agreement protocols.
An important application of k-agreement problems is robotic
formation control [8, 26], where achieving a certain configu-
ration for the team amounts to ensuring that the vector of
agents’ positions belongs to a certain set. In this work, we
explore this application and we illustrate how k-agreement
provides a natural framework to specify constraints to be
satisfied by the team of robots at convergence.
Related work. The k-agreement problem is fundamen-
tally related to distributed consensus, a topic that has
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received extensive attention in the literature. Over the
years, numerous aspects of consensus algorithms have been
studied. Although the list is necessarily incomplete, key
areas of investigation include: necessary and sufficient con-
ditions for achieving consensus [9, 18, 19, 28, 32, 39]; the
impact of communication time delays [9]; consensus pro-
tocols incorporating linear objective maps [13]; distributed
optimization approaches based on the alternating direction
method of multipliers (ADMM) [7,16,36]; strategies for han-
dling quantized measurements [20]; analysis of convergence
rates [29, 41]; and robustness to disturbances and model
uncertainties [15, 21], among many others. These contribu-
tions form the foundation for a wide range of applications
in networked systems, multi-agent coordination, and dis-
tributed control. The k-agreement problem is closely related
to constrained consensus [24, 25] and distributed optimiza-
tion with global constraints [40]. However, unlike these
formulations, k-agreement imposes constraints that must be
satisfied not only during transients but also in the asymp-
totic regime. Moreover, k-agreement can be interpreted as a
constrained optimization problem with a non-separable cost
function (see Section 2.2). In Pareto optimal distributed
optimization [12], the group of agents cooperatively seeks
to determine the minimizer of a cost function that depends
on agent-dependent decision variables. Clustering-based
consensus [1, 4, 23] is a closely related problem where the
states of agents in the same cluster are related and states
of agents in different clusters are independent. Instead, in
k-agreement problems, the state of each agent is dependent
on every other agent in the network. Scaled consensus [34],
is a special case of k-agreement with k = 1. Interestingly,
strong connectivity of the interaction graph is necessary and
sufficient for scaled consensus; in contrast, in this paper, we
show that strong connectivity is no longer sufficient when
the dimension of the agreement space is k ≥ 2.

Contributions. The contribution of this work is fourfold.
(c1) We provide structural necessary conditions on the com-
munication graph to reach a k-agreement on an arbitrary
subspace; we apply this condition to study k-agreement pro-
tocols on basic graphs, such as path and circulant topologies.
By drawing insights from our theorems, we show how these
graphs can be modified to support k-agreement on high-
dimensional subspaces. (c2) We provide a graph-theoretic
sufficient condition to check if a group of agents can reach an
arbitrary k-agreement; our analysis shows that k-agreement
is made possible, graph-theoretically, by the presence of cy-
cle families in the graph. (c3) We show how k-agreement
algorithms can be adapted to account for cases where the lo-
cal estimates are time-varying; this allows us to characterize
the rate of convergence of k-agreement algorithms. (c4) We
study the applicability of k-agreement protocols in robotic
formation problems, and use these algorithms to constrain
the asymptotic configuration of a team of robots.
Organization. Section 2 introduces the problem of interest.
In Section 3, we present our main results: graph-theoretic
conditions for k-agreement. Section 4 extends the framework
to tracking problems, while Section 5 demonstrates the pro-
posed methods through numerical simulations. Conclusions
are provided in Section 6. For completeness, Appendices A–B
review fundamental concepts from algebraic graph theory
and linear subspaces that are used throughout the paper.
Notation. We let N>0 = {1, 2, . . . } denote the set of pos-

itive natural numbers. For x ∈ C, ℜ(x) and ℑ(x) denote,
respectively, its real and imaginary parts. When x ∈ Rn

and u ∈ Rm, (x, u) ∈ Rn+m denotes their concatenation.
1n ∈ Rn is the vector of all ones; In ∈ Rn×n is the identity
matrix; 0n,m ∈ Rn×m is the matrix of all zeros; subscripts
may be dropped when dimensions are specified by the con-
text. Given A ∈ Rn×n, we use the notation A = [aij ] to
denote that aij is the element in row i and column j of A.
For A ∈ Rn×n, σ(A) = {λ ∈ C : det(λI −A) = 0} denotes
its spectrum, and λmax (A) = max{ℜ(λ) : λ ∈ σ(A)} its
spectral abscissa. When A ∈ Rn×m is seen as a linear map,
Im(A) denotes its image and ker(A) its null space. Given
p1, . . . , pn ∈ R, the polynomial p(λ) = λn+p1λ

n−1+· · ·+pn
is stable if all its roots have negative real part.

2 Problem setting

In this section, we formalize the problem of interest and mo-
tivate its applicability in multi-agent robotics. For complete-
ness, we present basic notions on algebraic graph theory and
linear projections used here in Appendices A-B.

2.1 Problem formulation

Consider a group of n cooperating agents that exchange
information according to a directed communication graph
G = (V, E). Each agent i ∈ {1, . . . , n} = |V| maintains a lo-
cal variable xi ∈ R and, at each time, updates it according
to the following rule:

ẋi = aiixi +
∑
j∈Ni

aijxj , (1)

where Ni = {j ∈ V : (i, j) ∈ E} denotes the set of agents
that share their state variable with i. In (1), aij ∈ R are pa-
rameters describing the magnitude of the couplings between
the agents. By setting A = [aij ], with aij = 0 if (i, j) ̸∈ E ,
and x = col(x1, . . . , xn), (1) in vector form reads as:

ẋ = Ax. (2)

Informally, we say that a network achieves a k-agreement if
the agents’ states converge to k independent weighted com-
binations of the initial conditions. This is made formal next.
Definition 2.1 (k-agreement) Let n, k ∈ N>0 with k ≤
n, and let W ∈ Rn×n satisfy rank(W ) = k. We say that the
system (2) globally asymptotically achieves a k-dimensional
agreement on W (or, for brevity, achieves a k-agreement on
W ) if, for any x(0) ∈ Rn,

lim
t→∞

x(t) = Wx(0). (3)

When (3) holds, A will be called a k-agreement algorithm
(or protocol). 2

Definition 2.1 formalizes a notion of agreement between the
agents whereby, at convergence, the network’s state is con-
strained to a k-dimensional linear subspace—precisely, the
space Im(W ).
Remark 2.2 (Link to Classical Consensus Frame-
works) In the special case k = 1, the matrix W can be ex-
pressed as a rank-one matrix W = vw⊤ for some v, w ∈ Rn.
This corresponds to the well-known scaled consensus prob-
lem [34]. If, in addition, v = 1 and w⊤1 = 1, we recover
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⇧M,N · ⇠

(b)

Fig. 1. (a) Geometric interpretation of orthogonal projections: a
vector ξ ∈ R3 is projected onto M ⊂ R3. (b) Geometric inter-
pretation of oblique projections: M and N ∈ R3 are complemen-
tary subspaces and ξ is projected on M along N . Notice that the
projection ray belongs to span(N ). Plot inspired by [24, Fig.1].

the standard consensus formulation—see [28]. In the par-
ticular case where v = 1 and w = 1

n1, the problem further
simplifies to average consensus [28, Sec. 2]. We note that
convergence of all state variables to a common value occurs
only when k = 1 and v = 1. 2

It was shown in [5, Prop. 4.2] that linear protocols of the
form (2) can achieve a k-agreement only on matrices W that
are oblique projections. See Fig. 1 for an illustration. Moti-
vated by this result, we introduce the following assumption.
Assumption 1 (Matrix of weights is a projection) The
matrix W in (3) satisfies W 2 = W and rank (W ) = k. 2

Under Assumption 1, there exists an invertible matrix T ∈
Rn×n such that (see Lemma B.1):

W = T

[
Ik 0

0 0

]
T−1. (4)

In what follows, we denote by t1, . . . , tn the columns of T
and by τT1 , . . . , τ

T
n the rows of T−1.Consequently to Assump-

tion 1, k-agreement protocols find applications in problems
where the goal is to compute an oblique projection of the
network’s initial conditions. See Section 2.2 and Remark 2.4
for a discussion of illustrative applications.
In this work, we aim to address the following question: given
an arbitrary matrix of weights W , which communication
topologies G allow the agents to achieve a k-agreement on
W? This question motivates the following definition.

Definition 2.3 (k-agreement reachability) Let k ∈ N>0

and consider a set of n agents with communication graph G.
The set of agents is said to be:
• k-agreement reachable on some weights if there exists a

matrix W ∈ Rn×n, with rank (W ) = k, such that there
exists a matrix A ∈ Rn×n, consistent with G, for which
the system (2) achieves a k-agreement on W.

• k-agreement reachable on arbitrary 1 weights if, for any
matrix W ∈ Rn×n with rank (W ) = k, there exists a ma-
trix A ∈ Rn×n, consistent with G, such that (2) achieves
a k-agreement on W . 2

With these definitions in place, the question posed above can
now be formalized as follows.

Problem 1 Given k ∈ N>0 and a group of agents communi-
cating over a graph G, develop a method to determine whether

1 We remark that, in this definition, the term “arbitrary” refers
to the matrix W, not to the matrix A.

the group is k-agreement reachable on arbitrary weights. 2

We note that for directed graphs and k = 1, Problem 1 has
been solved: a group of agents is 1-agreement reachable on
arbitrary weights if and only if the graph is strongly con-
nected [27,34]. In contrast, identifying which topologies en-
able the agents to reach a k-agreement on arbitrary weights
remains an open problem.
A necessary condition for k-agreement reachability on arbi-
trary weights is that the underlying communication graph G
is strongly connected (see [5, Lem.4.5]). Intuitively, since W
is arbitrary, each component of the limiting state vector x(t)
as t → ∞ generally depends on the entire initial state vector
x(0) (cf. (3)). Therefore, information from every agent must
be able to reach the entire network—thus requiring strong
connectivity. We thus make the following assumption.

Assumption 2 (Strong connectivity) The communica-
tion digraph G is strongly connected. Moreover, each node in
G has a self cycle 2 . 2

It is important to note that strong connectivity of the com-
munication graph alone does not guarantee k-agreement
reachability on arbitrary weights. In fact, it was shown
in [5, Example 4.6] that for a network of three agents aiming
for a 2-agreement, agreement on arbitrary weights is only
possible if the graph is complete. It follows that, in sparse
graphs, structural limitations on the protocol A can prevent
the achievement of k-agreement.

2.2 Illustrative application: formation control

To illustrate the importance of designing k-agreement algo-
rithms, we next demonstrate how this problem provides a
natural solution to enforce a desired configuration in multi-
agent mobile robotics. Consider a group of n = 4 robots
modeled using single-integrator dynamics. Let x(0) ∈ R4

denote the x-coordinates of the robots’ positions at time 0
(we refer to Section 5 for a generalization accounting also for
the y-coordinates), and assume that the group is interested
in achieving a final formation x∗ = col(x∗

1, x
∗
2, x

∗
3, x

∗
4) such

that x∗
1 = x∗

2, x
∗
3 = x∗

4, while minimizing the distance from
the initial state of the robots. Formally, the desired configu-
ration is the solution of the optimization problem:

x∗ = arg min
x∈R4

∥x(0)− x∥2R
subject to: x1 = x2, x3 = x4, (5)

where ∥ · ∥2R denotes the square weighted norm defined by
R4×4 ∋ R ≻ 0. Further, because each robot has no knowl-
edge of global coordinates, this must be achieved through a
distributed coordination algorithm. By letting

D =

[
1 −1 0 0

0 0 1 −1

]
,

the formation requirements can be encapsulated by the con-
straint Dx = 0, and the solution to (5) with R = I is
given by x∗ = Πker(D)x(0). It is now immediate to see that
x∗ can be computed using a k-agreement algorithm, with

2 We observe that incorporating self-cycles is a standard practice
in coordination protocols of the form (2), since leveraging a node’s
own state in its update incurs no additional communication cost.
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W = Πker(D).We note that although formation control prob-
lems have also been addressed using consensus algorithms
combined with relative positioning (e.g., [31]) or by incorpo-
rating additional inputs to track global variables (e.g., [10]),
the use of k-agreement protocols presents several advan-
tages. First, k-agreement protocols guarantee optimality as
specified by (5). Second, they significantly reduce commu-
nication complexity compared to approaches that require
estimation of multiple global quantities (see [5, Sec.III.B]
for a comparison of communication complexities). Third, k-
agreement protocols provide greater generality by implicitly
specifying the desired configuration through the mathemat-
ical optimization problem (5), thereby eliminating the need
for explicit relative positioning.
We conclude this section by discussing engineering applica-
tions of projections and extensions in the following remarks.

Remark 2.4 (Relevance of Projections in Engineer-
ing Applications) The computation of linear orthogonal
and oblique projections is a problem that arises naturally
in a range of engineering applications [2]. Orthogonal pro-
jections, for instance, are widely used in standard regres-
sion problems (cf. Section 6), whereas oblique projections
are essential in weighted or constrained least-squares formu-
lations [2, 11]. These projections also play a key role in ar-
eas such as signal processing [3], subspace system identifica-
tion [14], and other related domains [2]. 2

Remark 2.5 (Extensions to projections onto affine
subspaces) Assume that the agents aim to achieve
limt→∞ x(t) = Wx(0)+v, where v = col(v1, . . . , vn) ∈ Rn is
a given translation vector. Starting from an algorithm of the
form (1) that computes a k-agreement, one can construct a
modified algorithm that projects onto the desired affine sub-
space by introducing an additional local variable yi, defined
as yi = xi + vi. This coupling effectively shifts the original
agreement dynamics to target the translated subspace. 2

3 Structural conditions for k-agreement

In this section, we provide necessary and a sufficient condi-
tion for k-agreement reachability on arbitrary weights. We
begin with the following necessary condition.
Theorem 3.1 (Graph-theoretic necessary condi-
tions) Let W be a matrix satisfying Assumption 1, and G be
a graph satisfying Assumption 2. The set of agents is globally
k-agreement reachable on arbitrary weights only if

|E| ≥ kn. (6)

2

PROOF. Let t1, . . . , tn and τ1, . . . , τn be as in (4), and A
be a matrix consistent with G. By Theorem A.2, ẋ = Ax
reaches a k-agreement if and only if A satisfies:

0 = Ati, τTi A = 0, i ∈ {1, . . . , k}, (7a)

pℓ =
∑

ξ∈Cℓ(G)
(−1)d(ξ)

∏
(i,j)∈ξ

aij , ℓ ∈ {1, . . . , n− k}, (7b)

where d(ξ) denotes the number of cycles in the cycle family ξ,
and p1, . . . , pn−k are real numbers that can be freely chosen,
provided that the polynomial λn−k +p1λ

n−k−1+ · · ·+pn−k

is stable. The first set of equations (7a) consists of nk in-
dependent scalar linear equations and |E| unknowns. Equa-
tions (7a) are linearly independent and thus the generic
solvability of (7) requires the following necessary condition:
|E| ≥ nk, from which the claim follows.

The inequality (6) provides two important types of insights.
First, given n and k, (6) gives a lower bound on the minimal
graph connectivity (i.e., |E|) required for k-agreement. As k
increases, (6) states that the number of edges in G must grow
at least linearly with k. Second, given a network topology
G (i.e., given n and E), (6) gives an upper bound on the di-
mension of the allowable agreement space: k ≤ |E|/n. These
bounds provide valuable insights into the interplay between
agreement spaces and graph topologies, as demonstrated in
the following examples.

Example 3.2 (k-agreement reachability in circulant
networks) Consider the one-directional circulant topology
of Fig. 2(a) (note that self-loops are omitted in the plots of
Fig. 2, for illustration purposes). In this case, |E| = 2n and
thus (6) gives k ≤ 2. Next, consider the bi-directional cir-
culant topology of Fig. 2(b). Here, |E| = 3n, and (6) gives
k ≤ 3. In other words, these bounds state that: agents in-
teracting through a one-directional circulant digraph can
compute projections on arbitrary linear subspaces of dimen-
sion at most 2; similarly, agents interacting through a bi-
directional circulant digraph can compute projections on ar-
bitrary linear subspaces of dimension at most 3.
Generalizing this idea, consider a bi-directional circulant di-
graph where each agent communicates with α ∈ N>0 near-
est neighbors (see Fig. 2(c)). Using (6) with |E| = n(α+ 1),
gives α ≥ k− 1. In other words, in circulant-type communi-
cation topologies, to compute projections on arbitrary linear
subspaces of dimension k, each agent needs to communicate
with at least k − 1 independent neighbors. 2

Example 3.3 (k-agreement reachability in path net-
works) Consider the bi-directional path topology of
Fig. 2(d). In this case, |E| = n + 2(n − 1) and (6) yields
k ≤

⌊
3n−2

n

⌋
≤ 3. In analogy with the bi-directional circu-

lant topology, agents interacting through a bi-directional
path topology can compute projections on arbitrary linear
subspaces of dimension at most 3. Generalizing, consider bi-
directional path digraphs where each agent communicates
with α ∈ N>0 nearest neighbors (see Fig. 2(e)). Using (6)
with |E| = n+ αn− α

2 (
α
2 + 1), gives α ≥ 2k − 1.

By comparison with Example 3.2, k-agreement protocols on
path topologies require higher connectivity than those on
circulant digraphs. Specifically, the former necessitate α ≥
2k − 1, whereas the latter require only α ≥ k − 1. 2

We discuss the relationship between (6) and established con-
ditions for consensus protocols in the following remark.

Remark 3.4 (Strong connectivity implies (6) when
k = 1) Recall that a group of agents is 1-agreement reach-
able on arbitrary weights if and only if the communication
digraph is strongly connected (see the discussion follow-
ing Problem 1). We now show that strong connectivity
implies condition (6) in this case. Note that the strongly
connected digraph with the minimal number of edges (in-
cluding self-loops) is the one-directional circulant graph
shown in Fig.2(a), which has |E| = 2n. Applying (6) yields
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(e)

Fig. 2. (a) One-directional circulant topology; (b)–(c) bi-directional circulant topology; (d)-(e) bi-directional path topology. The
graph in (a) is the least-connected graph topology that can reach a 1-agreement on arbitrary weights (see Remark 3.4). (b) and (d)
also admit k-agreement protocols on arbitrary weights within subspaces of dimension at most k = 1 (see Examples 3.2, 3.3). For (c)
and (d), the connectivity of each node α must scale proportionally with k. (see examples 3.2 and 3.3). In all plots, all nodes have
self-cycles, which are omitted here for illustration purposes. Dashed lines illustrate the trend of edge increase as a function of α.

2n ≥ 1 · n, which holds for any n. Thus, the strong connec-
tivity condition—necessary and sufficient for 1-agreement
reachability on arbitrary weights—automatically ensures
that the necessary condition (6) is met. 2

The following result provides structural sufficient-conditions
for k-agreement reachability on arbitrary weights. To state
the result, we recall that the notation Cℓ(G) denotes the set
of all cycle families of length ℓ in G (see Appendix A).

Theorem 3.5 (Graph-theoretic sufficient conditions)
Let W be a matrix satisfying Assumption 1, and G = (V, E)
be a graph satisfying Assumption 2. Suppose |E| ≥ nk+n−k.
Suppose that there exists a partitioning of the edge set E =
Ev ∪Ec, Ev ∩Ec = ∅, with |Ev| = n− k and |Ec| = |E|−n+ k,
such that, for all ℓ ∈ {1, . . . , |Ec|}, there exists C∗

ℓ ∈ Cℓ(G)
that satisfies:
(i) |C∗

ℓ ∩ Ev| = 1;
(ii) C∗

ℓ \ (Ev ∩ C∗
ℓ ) ⊆ Ec;

(iii) C∗
ℓ ∩ Ev ∩ C∗

j = ∅, j > ℓ.
Then, the set of agents is globally k-agreement reachable on
arbitrary weights. 2

PROOF. Given an arbitrary matrix W , and under as-
sumptions (i)–(iii), we present a construction of a matrix A
such that the system (2) achieves a k-agreement on W . Let
t1, . . . , tn and τ1, . . . , τn be the vectors defined in (4), and
A be a matrix consistent with G. By Theorem A.2, ẋ = Ax
reaches k-agreement if and only if A satisfies:

0 = Ati, τTi A = 0, i ∈ {1, . . . , k}, (8a)

pℓ =
∑

ξ∈Cℓ(G)
(−1)d(ξ)

∏
(i,j)∈ξ

aij , ℓ ∈ {1, . . . , n− k}, (8b)

where d(ξ) denotes the number of cycles in the cycle family ξ,
and p1, . . . , pn−k are real numbers that can be freely chosen,
provided that the polynomial λn−k +p1λ

n−k−1+ · · ·+pn−k

is stable. By the Routh–Hurwitz stability criterion, all the

coefficients {p1, . . . , pn−k} are required to be strictly posi-
tive; hence, in what follows, we interpret {p1, . . . , pn−k} as
free variables and harness the Inverse Function Theorem [35,
Thm. 9.24] to show that there always exist a choice of A that
satisfies the set of equations (8) everywhere in a neighbor-
hood of p1 = p2 = · · · = pn−k = 0.

With a slight abuse of notation, we let ec = (ec,1, ec,2, . . . )
[resp. ev = (ev,1, ev,2, . . . )] be a vector such that each com-
ponent ec,i [resp. ev,i] corresponds to a real-valued quan-
tity associated with the i-th element of Ec [resp. Ev]. Equa-
tion (8a) defines a set of nk linearly independent equations
in the variables (ec, ev), which we denote in compact form
by 0 = h(ec, ev), where h : R|Ec| × R|Ev| → Rnk. Let
p := (p1, . . . , pn−k). The set of equations (8b) relates the
vector p with the elements of Ec ∪ Ev by means of a nonlin-
ear mapping p = g(ec, ev), where g : R|Ec| ×R|Ev| → T is a
smooth mapping and T is smooth manifold in Rn−k. Since
g(·) is a multi-linear polynomial in the variables ec, ev, it is
immediate to verify that the following properties hold:

∂g(ec, ev)

∂ev
· ev = g(ec, ev). (9)

Denote the Jacobian matrices of h and g by:

H(ec, ev) :=
∂h(ec, ev)

∂ev
∈ Rnk×n−k,

G(ec, ev) :=
∂g(ec, ev)

∂ev
∈ Rn−k×n−k.

Then, using (9) and the linearity of (8a), the system of equa-
tions (8) can equivalently be rewritten as:

0 = H(ec, ev)ev, p = G(ec, ev)ev. (10)

According to the Inverse Function Theorem [35, Thm. 9.24],
the local solvability of (10) in a neighborhood of p = 0 is
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ensured provided there exist e∗c ∈ R|Ec| and e∗v ∈ R|Ev| such
that (a) 0 = H(e∗c , e

∗
v)e

∗
v, (b) 0 = G(e∗c , e

∗
v)e

∗
v, and (c) the

matrix G(e∗c , e
∗
v) is invertible. To establish these three prop-

erties, note that, by (9), for any ec ∈ R|E|−n+k, we have
0 = H(e∗c , e

∗
v)e

∗
v and 0 = G(e∗c , e

∗
v)e

∗
v; in other words, condi-

tions (a) and (b) hold with the choice e∗v = 0 and e∗c arbitrary
Next, we will establish (c) by constructing, via induction, a
vector e∗c for which the matrix G(e∗c , e

∗
v) is invertible; more

precisely, we will construct e∗c such that G(e∗c , e
∗
v) is a lower

triangular matrix with a nonzero diagonal.
(Base case.) Let the elements of Ev be Ev = {Ev,1, Ev,2, . . . },
and suppose that they are ordered such that Ev,ℓ ∈ C∗

ℓ . Con-
sider the matrix G(ec, e

∗
v), and partition it as follows:

G(ec, e
∗
v) =

[
G11(ec, e

∗
v) G12(ec, e

∗
v)

G21(ec, e
∗
v) G22(ec, e

∗
v)

]
,

withG11(ec, e
∗
v) ∈ R,G12(ec, e

∗
v) ∈ R1×(n−k−1),G21(ec, e

∗
v) ∈

R(n−k−1)×1, and G22(ec, e
∗
v) ∈ R(n−k−1)×(n−k−1). By (8b)

with ℓ = 1 and condition (ii) of the statement, it follows that
G11(ec, e

∗
v) = −1. Moreover, by condition (iii) of the state-

ment, we obtain G12(ec, e
∗
v) = 0. We have thus shown that,

if G22(ec, e
∗
v) is invertible, then G(ec, e

∗
v) is also invertible.

(Induction step.) Let i ∈ {1, . . . , n− k − 1} and G(i)(ec, e
∗
v)

denote the submatrix of dimensions i × i located in the
bottom-right corner of G(ec, e

∗
v). Partition this matrix as:

G(i)(ec, e
∗
v) =

[
G

(i)
11 (ec, e

∗
v) G

(i)
12 (ec, e

∗
v)

G
(i)
21 (ec, e

∗
v) G

(i)
22 (ec, e

∗
v)

]
,

where G
(i)
11 (ec) ∈ R, G

(i)
12 (ec) ∈ R1×(i−1), G

(i)
21 (ec) ∈

R(i−1)×1, and G
(i)
22 (ec) ∈ R(i−1)×(i−1). By (8b) and (i),

G
(i)
11 (ec) is given by a single term: the product of edge

weights along the cycle family C∗
ℓ , ℓ = n − k − i + 1 (ex-

cluding the edge weight of Ev,ℓ). By condition (ii) of the
statement, this product depends only on edge weights in
Ec; hence, by letting e∗c be any vector such that all its en-
tries are nonzero, we conclude that G

(i)
11 (e

∗
c , e

∗
v) ̸= 0. More-

over, by (iii), G(i)
12 (e

∗
c , e

∗
v) = 0. We have thus shown that,

if G
(i)
22 (e

∗
c , e

∗
v) is invertible, then G(i)(e∗c , e

∗
v) is also invert-

ible. The claim follows by iterating the reasoning for all
i ∈ {1, . . . , n− k − 1}, which completes the proof.

Theorem 3.5 establishes a set of conditions that ensure a
set of agents is k-agreement reachable. These conditions are
sufficient, but not necessary. In particular, the requirement
|E| ≥ nk + n − k is more conservative than the necessary
bound given in (6). In words, the conditions (i)-(iii) in the
theorem statement can be interpreted as follows:
• Condition (i) states that, for all ℓ ∈ {1, . . . , n − k}, there
exists a cycle family of length ℓ with exactly one edge in Ev;
• By condition (ii), every edge in C∗

ℓ that is not in the inter-
section Ev ∩ C∗

ℓ is necessarily contained in Ec; and
• Condition (iii) states that the edge in C∗

ℓ that is in Ev does
not appear in any other cycle family C∗

j with j > ℓ.

The applicability of Theorem 3.5 hinges on the ability to
partition the edge set E into two subsets, Ev and Ec. An
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(b)

Fig. 3. (a) Example of a graph that admits a 2-dimensional
agreement protocol on arbitrary weights. (b) Graph obtained by
adding green edges to (a); this graph admits a 3-agreement pro-
tocol on arbitrary weights. See Example 3.7.

algorithm to verify the existence of such a partition can be
developed by leveraging techniques similar to those in [37],
wherein Ev and Ec are derived from a directed spanning tree
of the graph G. Due to space constraints, we refer to [37] (and
pertinent references therein) for the detailed algorithm.
We conclude this section by discussing how Theorem 3.5
modifies under edge addition, and by demonstrating its ap-
plicability through an example.

Remark 3.6 (k-agreement reachability under edge
addition) It is important noting that cycle families do
not vanish under edge addition; thus, if (i)-(iii) hold for a
certain graph G, they continue to hold for any other graph
obtained by edge addition. To see this, denote by Cℓ(G) the
set of cycle families of length ℓ of G = (V, E). Suppose that
G′ = (V ′, E ′) is any graph such that V ′ = V and E ⊂ E ′.
Since no edge has been removed, the set of cycle families
of length ℓ of G′ satisfies Cℓ(G) ⊆ C′

ℓ(G). It follows that, if
the agents are k-agreement reachable on arbitrary weights
when interacting through G, then they are also k-agreement
reachable on arbitrary weights when the interaction graph
is any graph obtained by adding edges to G. 2

Example 3.7 (Illustration of the conditions in Theo-
rem 3.5) Consider the communication digraph of Fig. 3(a).
The set of all k-agreement protocols compatible with this
graph is given by the parametric matrix:

A =



a11 a12 a13 0 a15

a21 a22 0 0 0

0 a32 a33 a34 0

0 0 a43 a44 0

a51 0 0 a54 a55


.

By Theorem 3.1, a necessary condition for k-agreement is

k ≤
⌊ |E|
n

⌋
=

⌊
14

5

⌋
= 2.

Hence, we will select k = 2. To illustrate the conditions
of Theorem 3.5, for simplicity, we let a22 = a33 = a44 =
a55 = 0 (according to Remark 3.6, if the graph without
self-cycles has an independent set of cycle families, then the
graph obtained by adding these self-cycles will retain the
same set of decompositions). With this choice, the set of
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cycle families of length ℓ ∈ {1, . . . , 3}, ℓ ∈ {1, . . . , n− k}, is:

C1(G) = {{a11}},
C2(G) = {{a12, a21}, {a34, a43}, {a15, a51}},
C3(G) = {{a11, a34, a43}, {a13, a21, a32}}. (11)

By letting Ev and Ec:

Ev = {a11, a12, a13},
Ec = {a51, a54, a21, a32, a34, a43, a15},

it is immediate to verify that a set of cycle families C∗
1 , C∗

2 , C∗
3

that satisfies conditions (i)-(iii) of Theorem 3.5 is given by:

C∗
1 = {a11}, C∗

2 = {a12, a21}, C∗
3 = {a13, a21, a32}.

Indeed, with this choice, the set of equations (7b) reads as:
p1

p2

p3

 =


−1 0 0

0 −a21 0

a34a43 0 −a21a32



a11

a12

a13

−


0

γ

0

 ,

where γ = a34a43 + a15a51, which is generically solvable
for any (p1, p2, p3) ∈ R3. Any choice of weights such that
a21 ̸= 0 and a21a32 ̸= 0 guarantees that the above matrix is
invertible and thus that the set of equations is solvable.
To achieve k-agreements on subspaces of dimension k = 3,
consider the graph in Fig. 3(b), obtained by adding edges to
the graph of Fig. 3(a). The necessary condition (6) yields

k ≤
⌊ |E|
n

⌋
=

⌊
15

5

⌋
= 3,

which is satisfied. The set of cycle families (11) shall be mod-
ified to:

C1 = {{a11}},
C2 = {{a12, a21}, {a34, a43}, {a15, a51}, {a23, a32}}.

By selecting Ev and Ec as follows

Ev = {a11, a12},
Ec = {a13, a23, a45, a35, a51, a54, a21, a32, a34, a43, a15},

a set of cycle families that satisfies Theorem 3.5 is:

C∗
1 = {a11}, C∗

2 = {a12, a21},

thus showing that the sufficient conditions also hold. 2

4 Convergence rates and extensions to tracking dy-
namics for k-agreement

Analogous to dynamic consensus protocols [22], k-agreement
algorithms can be modified to track the oblique projection of
a time-varying forcing signal u(t) (in place of x(0) as in (3)).
By studying these extensions, we also obtain explicit con-
vergence rates for k-agreement algorithms. The study of k-
agreement tracking problems is motivated by practical ap-
plications such as robotic formation control (among others,

see [22]), where a team of agents seeks to follow a moving
target while preserving a specific formation represented as a
point constrained to lie within a k-dimensional subspace.
Given a digraph G, consider the network process:

ẋ = Ax+ u̇, x(0) = u(0), (12)

where A is chosen so that (3) holds and u : R≥0 → Rn

is a continuously-differentiable function. In this framework,
the i-th entry of u̇ is known only by the agent i, and the
goal is to design an algorithm with state x(t) that tracks
Wu(t), asymptotically. The protocol (12) can be interpreted
as a generalization of the dynamic average consensus algo-
rithm [22, eq. (11)], where the communication matrix is an
agreement matrix instead than a Laplacian. The following
result characterizes the transient behavior of (12).
Proposition 4.1 (Convergence of dynamic k-agreement
protocols) Consider equation (12) and let A be such that (3)
holds. Then, for all t ≥ 0:

∥x(t)−Wu(t)∥ ≤ e−λ̂t∥x(0)−Wu(0)∥+ 1

λ̂
sup

0≤τ≤t
∥u̇(τ)∥,

(13)

where λ̂ := λmax

(
A+AT

2

)
. 2

PROOF. The proof is inspired from [22, Thm. 2] and ex-
tends the result to non Laplacian-based protocols and non
weight-balanced digraphs. Let W be decomposed as in (4),
and consider the following decompositions for T and T−1:

T =
[
T1 T2

]
, (T−1)T =

[
U1 U2

]
, (14)

where T1, U1 ∈ Rn×k and T2, U2 ∈ Rn×n−k. Let e = x −
Wu denote the tracking error, and consider the change of
variables ē = T−1e. In the new variables:

˙̄e = T−1(ẋ−Wu̇)

= T−1AT ē+ T−1AWu+ T−1u̇− T−1Wu̇,

= T−1AT ē+ T−1u̇− T−1Wu̇,

where the last identity follows from (4), which implies AW =

0. By substituting (14) and by noting that T−1W = [U1 0]
T:

˙̄e =

[
UT
1 AT1 UT

1 AT2

UT
2 AT1 UT

2 AT2

]
ē+

[
0

UT
2

]
u̇

=

[
0

UT
2 AT2

]
ē+

[
0

UT
2

]
u̇, (15)

where the last inequality follows by noting that 0 =
UT
1 AT1 = UT

1 = AT1 according to [5, Thm. 5.3 - cond. (i)].
Next, decompose e = (e1, e2) and ē = (ē1, ē2), where e1, ē1 ∈
Rk and e2, ē2 ∈ Rn−k, and notice that the following identi-
ties hold:

ē2 = UT
2 e, e = T2ē2. (16)
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The first identity follows immediately from (14), while the
second follows from (14) and ē1(t) = 0 at all times. To see
that ē1(t) = 0 ∀t ≥ 0, notice that ē1(0) = UT

1 (x(0)−u(0)) =
0 thanks to the initialization (12), and ˙̄e1 = 0 according
to (15). By using (16), we conclude that ė = Ae + u̇, from
which (13) follows by noting that

e(t) = exp(At) · e(0) +
∫ t

0

exp(A(t− τ))Bu̇(τ)dτ,

and using ∥ exp(At)∥ ≤ exp
(
−λmax

(
A+AT

2

)
t
)
.

In other words, the error bound (13) states that the dynam-
ics (12) are input-to-state stable [38] with respect to u̇. It
follows that, for any u(t) with bounded time-derivative, the
tracking error ∥x(t)−Wu(t)∥ is bounded at all times. As a
special case, if limt→∞ u(t) = u∗ ∈ Rn, then limt→∞ x(t) =
Wu∗ (since limt→∞ u̇(t) = 0). The bound (13) also provides
an estimate of the convergence rate (in both the dynamic
and static setting, the latter as a special case of the former),
showing that it is, as measured by the 2-norm, governed by
the spectral properties of the matrix A+A⊤.

5 Applications to robotic formation control

We next illustrate the applicability of k-agreement pro-
tocols to solve formation problems [26] in multi-robot
systems inspired from [24]. Consider a team of n = 8
planar single-integrator robots initially arranged on a
unit circle (illustrated by the gray lines in Fig. 4(a)-(c)).
By using x- and y-coordinates to describe the robots’
positions, the network’s initial state is given by: x0 =
(cos(0), sin(0), cos(π4 ), sin(

π
4 ), . . . , cos(

7π
4 ), sin( 7π4 )) ∈ R16.

To account for planar coordinates, the state of (2) is parti-
tioned into x and y coordinates, and the algorithm (2) is:

ẋ = (A⊗ I2)x, x(0) = x0.

For our simulations, we utilized the circulant communication
topology in Fig. 2(c) with α = 4, and k-agreement protocols
A have been constructed by solving numerically the set of
equations (8b). Simulation results are shown in Fig. 4.
In Fig. 4(a) and (d), we report the state trajectories ob-
tained by choosing k = 1 and W = 1

n11
T. Notice that, in

this special case, the k-agreement algorithm simplifies to an
average consensus algorithm [28]; as expected for consensus,
the robots meet at (0, 0), which coincides with the average
of the initial conditions. This special case corresponds to the
robotic rendezvous problem [26]. In Fig.4(b) and (e), we il-
lustrate the state trajectories obtained by choosing k = 3
and W = ΠM, where ΠM is the orthogonal projection onto
M = ker(M1), with

M1 =
[
1 −1 −1 1

]
.

The matrix M1 encodes attraction and repulsion forces
between the robots at convergence. Indeed, from x(∞) ∈
ker(M1 ⊗ I2), it follows that:

x1(∞) + x4(∞) = x2(∞) + x3(∞),

y1(∞) + y4(∞) = y2(∞) + y3(∞). (17)

Simulation results are illustrated in Fig.s 4(b) and (e). Fi-
nally, we illustrate in Fig.s 4(d) and (f) the robots’ trajec-
tories obtained by choosing the oblique projection: W =
ΠM,N , M = ker(M1), N = Im(N1), where

NT
1 =

[
−1 5 5 −1

]
.

The use of an oblique projection can be interpreted as a non-
homogeneous weighting for the vector that defines the final
configuration. As depicted in the figure, the rendezvous is no
longer midway for all robots: robots 2 and 3 (respectively, 6
and 7) cover a larger distance than robots 1 and 4 (respec-
tively, 5 and 8)

6 Conclusions

We investigated the conditions under which a group of agents
can achieve a k-agreement with arbitrary weighting. We
showed that k-agreement protocols require a high level of
network connectivity, which must scale with the dimension k
of the agreement subspace. Furthermore, we identified fam-
ilies of cycles as a fundamental structural feature enabling
agreement and, leveraging this concept, characterized a class
of graphs that support such protocols. Although our main
conditions are structural and easy to check, they are only suf-
ficient, and we infer that the communication graphs that are
arbitrary k-agreement reachable is much larger in practice.
This work opens several avenues for future research, includ-
ing the use of nonlinear dynamics for achieving k-agreement,
the consideration of packet drops and communication delays,
the development of algorithms for distributed protocol syn-
thesis, and the exploration of applications in distributed op-
timization. Moreover, closing the gap between the necessary
and sufficient conditions remains an important direction for
future investigation.

A Algebraic graph-theory

We summarize here some basic notions on algebraic graph
theory from [8, 30] used throughout. A directed graph (or
digraph) is G = (V, E), where V is the set of nodes and
E ⊆ V ×V is the set of edges. An edge (i, j) ∈ E means that
node i can receive information 3 from j. Given A = [aij ] ∈
Rn×n, there is a one-to-one correspondence between A and
a weighted digraph that has n nodes V = {1, . . . , n} and a
directed edge from j to i with edge weight aij when aij is
nonzero and no edge otherwise. Conversely, given G, we say
that the matrix A ∈ Rn×n is consistent with G if (i, j) ̸∈ E
implies aij = 0.

A path in G is a sequence of edges (e1, e2, . . . ) such that
the origin node of each edge is the destination node of the
preceding edge. A graph is strongly connected if, for any
i, j ∈ V, there is a path from i to j. A graph is complete if
there exists an edge connecting every pair of nodes, and it is
sparse otherwise. A closed path is a path whose initial and
final vertices coincide. A closed path is a cycle if, going along
the path, one reaches no node, other than the initial-final
node, more than once. A cycle of length equal to one is a

3 Although the reverse convention (i.e., that (i, j) ∈ E means
that node i can send information to j) could also be considered,
this comes at the cost of replacing the adjacency matrix A by
AT. In order to avoid tedious transpose notation throughout, we
have selected the stated convention.
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Fig. 4. (a)-(c) Time evolution of the positions of the 8 robots and (d)-(f) trajectories of the x− and y−coordinates. (a) and (d)
Consensus protocol, which allows the robots to achieve rendezvous. (b) and (e) k-agreement protocol on an orthogonal projection
onto ker(M1). (c) and (f) k-agreement on an oblique projection onto ker(M1) along Im(N1). See Section 5.

self cycle. A set of cycles that have no nodes in common is a
cycle family. With a slight abuse of notation, we will denote
a cycle family by f = {e1, e2, . . . } ⊆ E , where e1, e2, · · · ∈ E
are the edges involved in f. The length of a cycle family is
the number of elements in the sequence {e1, e2, . . . }. We let
Cℓ(G) denote the set of all cycle families of length ℓ in G. See
Fig. A.1 for an illustration. The weight of a cycle family is
given by the product of the weights of all edges in the cycle
family (namely,

∏
(i,j)∈f aij).

We will use a graph-theoretic interpretation of characteristic
polynomials from [30].
Lemma A.1 ([30, Thm. 1]) Let G be a digraph, A a ma-
trix consistent with G, and det(λI − A) = λn + p1λ

n−1 +
· · ·+ pn−1λ+ pn its characteristic polynomial. Then, the co-
efficients pℓ, ℓ ∈ {1, . . . , n}, can be written as:

pℓ =
∑

ξ∈Cℓ(G)
(−1)n−d(ξ)

∏
(i,j)∈ξ

aij ,

where d(ξ) is the number of cycles in the cycle family ξ. 2

In other words, the ℓ-th coefficient of det(λI − A) is given
by a sum of terms, with each term given by the product of
edge weights along a cycle family length ℓ.
Theorem A.2 ([5, Thm. 5.3]) Let W be a matrix satis-
fying Assumption 1, let t1, . . . , tn and τ1, . . . , τn be the vec-
tors defined in (4). Additionally, let G be a graph satisfying
Assumption 2, and A ∈ Rn×n a matrix consistent with G.

The protocol ẋ = Ax globally asymptotically reaches a k-
agreement on W if and only if the following two conditions
are satisfied:
(i) Ati = 0, τTi A = 0, ∀i ∈ {1, . . . , k}.
(ii) The polynomial λn−k + p1λ

n−k−1 + · · · + pn−k, with
coefficients given by

pℓ =
∑

ξ∈Cℓ(G)
(−1)d(ξ)

∏
(i,j)∈ξ

aij , ℓ = 1, . . . , n− k,

is stable, where d(ξ) denotes the number of cycles in the
cycle family ξ. 2

B Projections and linear subspaces

We summarize here some basic notions from linear alge-
bra and geometry from [17] and [24, Sec.2]. Given a linear
subspace M ⊂ Rn, its orthogonal complement is M⊥ :=
{x ∈ Rn : xTy = 0, ∀ y ∈ M}. Given two subspaces
M,N ⊆ Rn,M∩N = {0}, their direct sum isW := {u+v :
u ∈ M, v ∈ N} and denoted by W = M⊕N ; M,N ⊂ Rn

are complementary if M⊕N = Rn. Given complementary
subspaces M,N ⊂ Rn, for any z ∈ Rn, there exists a unique
decomposition z = x + y, where x ∈ M and y ∈ N . The
transformation ΠM,N , defined by ΠM,N z := x, is called
projection onto M along N , and the transformation ΠN ,M
defined by ΠN ,Mz := y is called projection onto N along
M. Vector x is the projection of z onto M along N , and y
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Fig. A.1. (a) Illustration of a directed graph, and (b)–(c) corre-
sponding cycle families, grouped by cycle length. Note that this
graph contains one cycle family of length ℓ = 1, one of length
ℓ = 2, three of length ℓ = 3, and two of length ℓ = 4.

is the projection of z onto N along M. A matrix Π ∈ Rn×n

is a projection onto some subspace if and only if Π2 = Π.
The projection ΠM,M⊥ onto M along M⊥ is called orthog-
onal projection onto M. Because the subspace M uniquely
determines M⊥, we will denote ΠM,M⊥ compactly as ΠM.
Projections that are not orthogonal are called oblique.
Lemma B.1 [17, Thm. 2.11 and Thm. 2.31] Let Π ∈
Rn×n be a projection with rank (Π) = k. There exists an
invertible matrix T ∈ Rn×n such that

Π = T

[
Ik 0

0 0

]
T−1.

Moreover, if Π is an orthogonal projection, then T can be
chosen to be an orthogonal matrix, i.e., TTT = I. 2

Lemma B.2 [17, Thm. 2.26] Let M,N be complemen-
tary subspaces and the columns of M ∈ Rn×k and N ∈ Rn×k

form a basis for M and N⊥, respectively. Then,

ΠM,N = M(NTM)−1NT. 2

We recall the following known properties [17, Thm. 1.60]:

Im(MT) = Im(M†) = Im(M†M) = Im(MTM),

ker(M) = Im(MT)⊥ = ker(M†M) = Im(I −M†M).

From these properties and Lemma B.2, given M ∈ Rm×n:

ΠIm(M) = MM†, Πker(M) = I −M†M,

where M† ∈ Rn×m is the Moore-Penrose inverse of M .
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