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Abstract— This paper proposes a data-driven framework
to solve time-varying optimization problems associated with
unknown linear dynamical systems. Making online control
decisions to regulate a dynamical system to the solution of
an optimization problem is a central goal in many modern
engineering applications. Yet, the available methods critically
rely on a precise knowledge of the system dynamics, thus
mandating a preliminary system identification phase before a
controller can be designed. In this work, we leverage results
from behavioral theory to show that the steady-state transfer
function of a linear system can be computed from data
samples without any knowledge or estimation of the system
model. We then use this data-driven representation to design a
controller, inspired by a gradient-descent optimization method,
that regulates the system to the solution of a convex optimization
problem, without requiring any knowledge of the time-varying
disturbances affecting the model equation. Results are tailored
to cost functions satisfy the Polyak-Łojasiewicz inequality.

I. INTRODUCTION

Online optimization problems have attracted significant at-
tention in various disciplines, including machine learning [1],
control systems [2], [3], and transportation management [4].
When used as a controller for dynamical systems, an online
optimization method seeks to make control decisions at every
time instant to minimize a loss function that is time-varying
and possibly uncertain as described by the system dynamics.
The vast majority of works on online optimization for dy-
namical systems make a strict assumption on the knowledge
of the underlying system dynamics (see e.g. [2], [5]–[7]).
However, besides their theoretical value, maintaining and
refining full system models is often undesirable because:
(i) perfect knowledge of the dynamics is rarely available in
practice since it requires explicit system identification and
periodic model re-updates, and (ii) identifying a full model
of the system is often unnecessary since most optimization-
inspired controllers rely on simpler representations of the
dynamical system. To the best of our knowledge, efficient
and numerically reliable online optimization methods that
bypass the model identification phase are still lacking.

In this work, we take a novel approach to design online
optimization controllers that relies on Willems’ fundamental
lemma [8] to construct a data-driven representations of
the dynamical system to control, which is then used for
algorithm synthesis. Precisely, we assume the availability

This work was supported by the National Science Foundation Awards
CMMI 2044946 and 2044900, and by NREL through the subcontract UGA-
0-41026-148. G. Bianchin and E. Dall’Anese are with the Department
of Electrical, Computer, and Energy Engineering, University of Colorado
Boulder. M. Vaquero is with the School of Human Sciences and Technology,
IE University. J. Cortés is with the Department of Mechanical and Aerospace
Engineering, University of California San Diego.

of noise-free historical data, i.e., finite-length trajectories
produced by the open-loop dynamics, and we show that the
steady-state transfer function of a linear system can be com-
puted from non steady-state input-output data. The noise-free
assumption corresponds to scenarios where accurate sensors
or signal-processing techniques can be utilized offline to
recover noise-free sample trajectories (a similar approach
was taken in [9], [10]). Then, we build upon such data-driven
representation to propose a controller inspired by online
optimization methods that regulates the dynamical system to
an equilibrium point that minimizes a prescribed loss func-
tion despite unknown and time-varying noise terms affecting
the model equation. Interestingly, our results suggest that
a suitable choice of the controller stepsize is sufficient to
guarantee asymptotic convergence to the desired optimizers,
up to an asymptotic error that is bounded by the time-
variability of the exogenous noise terms.
Related Work. The results presented here are tied to the
fields of data-driven control and online optimization. The
success of data-driven control methods mainly originates
from the possibility of synthesizing controllers without first
identifying a full system model. Among these methods,
the behavioral framework has recently regained considerable
attention [8], [11]. Recent extensions include distributed for-
mulations [12], combinations with model predictive control
[9], [13], trajectory tracking [10], and nonlinear systems [14],
[15]. In this work, we leverage the behavioral framework to
build a data-driven representation of a dynamical system that
is the used for optimization purposes. Especially relevant to
this work are the recent results [10], [16]–[18] that focus on
the presence of noise in the data.

Online optimization approaches aim to optimize loss func-
tions that depends on the state of an underlying and uncertain
dynamical system. Linear time-invariant systems are consid-
ered in e.g., [2]–[4], [6], stable nonlinear systems in [5],
[19], and switched systems in [7]. In contrast with the above
line of work, which considers continuous-time dynamics, the
focus of this paper is on systems and controllers that operate
at discrete time. Although data-driven online optimization
methods are studied in the recent work [20], results are
however limited to the absence of noise and regret analysis.
Contributions. This work features two main contributions.
First, we show that the steady-state transfer function of a
linear time-invariant dynamical system can be obtained from
historical (non steady-state) input-output trajectories gener-
ated by the open-loop dynamics, without any knowledge
or estimation of the system parameters. Interestingly, our
results also suggest that the steady-state transfer function can



be computed exactly from input-output data even when the
trajectories are affected by constant noise terms. Our work
offers contributions with respect to the vast majority of the
available literature on data-driven control, which considers
disturbances affecting only the output equation (see e.g.
[16], [18]), by accounting for the presence of disturbance
terms affecting the model equation. Second, we propose a
controller inspired from online optimization methods, which
steers the dynamical system to one solution of a time-varying
convex optimization problem. We prove convergence of the
system with controller to the desired optimal points; pre-
cisely, we show input-to-state stability (ISS) of the controlled
dynamical system with respect to exogenous disturbances
affecting the dynamics. Our results build upon the theory of
ISS Lyapunov functions for discrete-time dynamical systems
[21], properly modified to guarantee stability with respect to
compact sets of optimizers [22].

II. PRELIMINARIES

We first outline the notation and recall few basic concepts.
Notation. Given a symmetric matrix M ∈ Rn×n, λ(M)
and λ̄(M) denote the smallest and largest eigenvalue of M ,
respectively; M � 0 indicates that M is positive definite.
For vectors u ∈ Rn and w ∈ Rm, (x, u) ∈ Rn+m denotes
their concatenation. We denote by ‖u‖ the Euclidean norm of
u; u> denotes transposition; given nonempty compact sets
A,B ⊂ Rn, |u|A = infz∈A ‖z − u‖ denotes the point-to-
set distance, while dist(A,B) := max{supx∈A infy∈B ‖x−
y‖, supy∈B infx∈A ‖x− y‖} denotes the Hausdorff distance.

A continuous function β : R≥0 × R≥0 → R≥0 is of
class KL if it is strictly increasing in its first argument,
decreasing in its second argument, limr→0+ β(r, s) = 0 for
each s ∈ R≥0, and lims→∞ β(r, s) = 0 for each r ∈ R≥0.
A continuous function γ : R≥0 → R≥0 is of class K if it is
strictly increasing and γ(0) = 0, and it is of class K∞ if it
is of class K and, in addition, limr→∞ γ(r) =∞.
Persistency of Excitation. We recall some useful facts on
behavioral system theory from [8]. For a signal k 7→ zk ∈
Rσ , k ∈ Z≥0, we denote by z[k,k+T ], k ∈ Z, T ∈ Z≥0, the
vectorization of z restricted to the interval [k, k+T ], namely,

z[k,k+T ] = (zk, . . . , zk+T ).

Given z[0,T−1], t ≤ T , and q ≤ T − t+1, we let Zt,q denote
the Hankel matrix of length t associated with z[0,T−1]:

Zt,q =


z0 z1 . . . zq−1

z1 z2 . . . zq
...

...
. . .

...
zt−1 zt . . . zq+t−2

 ∈ Rσt×q.

The signal z[0,T−1] is persistently exciting of order t if Zt,q
has full row rank; that is, rank(Zt,q) = σt. Notice that
persistency of excitation implicitly requires q ≥ σt and,
consequently, T ≥ (σ + 1)t− 1.

The linear dynamical system

xk+1 = Axk +Buk, yk = Cxk +Duk, (1)

x ∈ Rn, is controllable if C := [B,AB,A2B, . . . , An−1B]
satisfies rank(C) = n. We recall the following two properties
of (1) when its input is persistently exciting.

Lemma 2.1: (Fundamental Lemma) [8, Corollary 2] As-
sume (1) is controllable, let (u[0,T−1], x[0,T−1]), T ∈ Z>0,
be an input-state trajectory of (2). If u[0,T−1] is persistently
exciting of order n+ L, then:

rank

[
UL,q
X1,q

]
= Lm+ n,

where UL,q and X1,q denote the Hankel matrices associated
with u[0,T−1] and x[0,T−1], respectively. �

Lemma 2.2: (Data Characterizes Full Behavior [8, The-
orem 1]) Assume (1) is controllable and observable, let
(u[0,T−1], y[0,T−1]), T ∈ Z>0, be an input-output trajectory
generated by (2). If u[0,T−1] is persistently exciting of order
n + L, then any pair of L-long signals (ũ[0,L−1], ỹ[0,L−1])
is an input-output trajectory of (2) if and only if there exists
α ∈ Rq such that:[

ũ[0,L−1]

ỹ[0,L−1]

]
=

[
UL,q
YL,q

]
α,

where UL,q and YL,q denote the Hankel matrices associated
with u[0,T−1] and y[0,T−1], respectively. �

In words, persistently exciting signals generate output
trajectories that can be used to express any other trajectory.

III. PROBLEM FORMULATION

We consider discrete-time linear time-invariant dynamical
systems subject to state noise, described by:

xk+1 = Axk +Buk + Ewk, yk = Cxk, (2)

where k ∈ Z≥0 is the time index, xk ∈ Rn is the state,
uk ∈ Rm describes the control decision, wk ∈ Rr denotes an
unknown exogenous input or disturbance, which is assumed
to be bounded at all times, yk ∈ Rn is the measurable
output, and A,B,C,E are matrices of suitable dimensions.
We assume that any equilibrium point of (2) is asymptotically
stable, as formalized next.

Assumption 1: (Stability of Plant) The matrix A is Schur
stable, i.e., for any Q � 0 there exists P � 0 such that
ATPA − P = −Q. Moreover, (2) is controllable and the
columns of C are linearly independent. �

Remark 1: (Linear Independence Columns of C) Linear-
independence of the columns of C implies that the state of
(2) can be fully determined at every time given the system
output. This assumption can be relaxed, as shown in [23]. �

Under Assumption 1, for any fixed u ∈ Rm and w ∈ Rr,
the system (2) admits a well-posed steady-state input-output
relationship, given by:

y = C(I −A)−1B︸ ︷︷ ︸
:=G

u+ C(I −A)−1E︸ ︷︷ ︸
:=H

w. (3)

We focus on cases where the matrices (A,B,C,E) are
unknown, and we consider the problem of regulating (2) to



an equilibrium point that is specified as the solution of the
following optimization problem:

u∗k ∈ arg min
ū

φ(ū) + ψ(Gū+Hwk), (4)

where φ : Rm → R and ψ : Rp → R are given cost functions
describing losses associated withe the system input and
output, respectively. We note that, at every time k, the value
of the objective function in (4) is unknown and time-varying,
since it depends on the unknown matrices (A,B,C,E)
and on the unknown and time-varying disturbance wk. The
optimization problem (4) formalizes an optimal regulation
problem, where the goal is to regulate (2) to an optimal
equilibrium point, as described by the cost in (4).

We make the following assumption on the costs in (4).
Assumption 2: (Lipschitz Smoothness and PL) The func-

tions u 7→ φ(u) and y 7→ ψ(y) are differentiable and
have Lipschitz-continuous gradients with constants `φ, `ψ ,
respectively. Moreover, f(u) := φ(u) + ψ(Gu + Hw) is
radially-unbounded, has a nonempty set of minimizers, and
satisfies the Polyak-Łojasiewicz (PL) inequality, i.e., there
exists µ > 0 such that 1

2‖∇f(u)‖2 ≥ µ(f(u) − f(u∗)), for
all u ∈ Rm and all minimizers u∗. �

Lipschitz-continuity assumptions are commonly used for
the study of first-order optimization methods (see e.g. [24]).
The PL inequality allows us to guarantee that every critical
point of (4) is a global minimizer. Also, we note that the PL
condition is a weaker assumption than strong convexity (in
particular, it implies invexity), and has been widely adopted
to study convergence of optimization algorithms [24].

We seek to synthesize a controller that does not require
any prior knowledge of the matrices (A,B,C,E) as well as
of the disturbance wk, with the following structure:

uk+1 = Fc(uk, yk), (5)

that guarantees that (2) tracks the optimizers of the opti-
mization problem (4) (see Fig. 1 for an illustration). Two
important observations are in order. First, because the ex-
ogenous input wk is time-varying, the optimizers of (4) are
also time-varying. Formally, by denoting by U∗k := {u∗k :
0 = ∇φ(u∗k) +∇ψ(Gu∗k + Hwk)} the set of optimizers of
(4) at time k, in general we have that U∗k+1 6= U∗k . Second,
because we assume no prior knowledge on wk, any controller
of the form (5) can track the solutions of (4) up to an error
that depends on the time-variability of wk+1−wk. For these
reasons, we aim at guaranteeing that the output of the system
(2) satisfies a tracking bound of the form:

|ξk − ξ∗k|U∗
k
≤ β(|ξk0 − ξ∗k0 |U∗

k0
, k − k0)

+ γu( sup
t≥k0

dist(U∗t+1,U∗t )) + γw( sup
t≥k0
‖wt+1 − wt‖) (6)

for all 0 ≤ k0 ≤ k, where ξk := (xk, uk) denotes the joint
system-controller state, ξ∗k := ((I −A)−1(Bu∗k +Ewk), u∗k)
denotes the optimizer of (4) at time k, β is a class-KL
function, γu, γw are class-K functions, and dist(U∗t+1,U∗t )
denotes the Hausdorff distance [25] between the compact
sets U∗t+1 and U∗t . Observe that, because the cost function

y

u
xk+1 = Axk +Buk + Ewk

yk = Cxk

Dynamical Plant

Optimizing Controller

uk+1 = Fc(uk, yk)

Fig. 1. Online gradient-flow optimizer used as an output feedback controller
for unknown LTI systems subject to time-varying disturbances.

is radially-unbounded (see Assumption 2), the set of opti-
mizers of (4) is compact and thus the Hausdorff distance
dist(U∗t+1,U∗t ) is finite for all k [25].

Remark 2: (Time-Varying Optimizers) We notice that al-
though dist(U∗t+1,U∗t ) may be reconducted to the time-
variability of wk, in general (6) reflects more accurately the
role of individual error terms, since the precise relationship
between wk+1 − wk and dist(U∗t+1,U∗t ) is unknown for
general cases. Furthermore, in cases where the loss φ(u)
and ψ(y) are time-varying, the term dist(U∗t+1,U∗t ) can be
used to account for the time-variability of the optimizers. �

IV. DATA-DRIVEN METHOD FOR ONLINE OPTIMIZATION

To track the optimizers of (4), we propose the following
controller inspired from an online gradient method:

xk+1 = Axk +Buk + Ewk, yk = Cxk,

uk+1 = uk − η(∇φ(uk) +GT∇ψ(yk)), (7)

where η ∈ R>0 is a tunable controller parameter (see Fig. 1).
We note that the controller in (7) does not rely on any
knowledge of the system matrices (A,B,C,E), instead, it
requires an exact expression for the map G. In order to
implement (7), we propose a two-phase control method,
where data samples are used to determine G, and then
the feedback controller (7) is used to track the optimizers
of (4). Fig. 2 illustrates the two phases. Similar approaches
using data recorded offline were proposed in [10] for output
tracking as well as in [9] for model predictive control.

A. Data-Driven Characterization of the Transfer Function

The following result shows that, when wk = 0 at all times,
the steady-state transfer function G can be computed from a
(non-steady-state) sample trajectory of the system.

Theorem 4.1: (Data-Driven Characterization of Transfer
Function in the Absence of Noise) Let Assumption 1 hold,
let u[0,T−1] be persistently exciting of order n+1 and assume
W1,T = 0. Then, there exists M ∈ Rq×m such that:

Y diff
1,TM = 0, U1,TM = I, (8)

where Y diff
1,T = [y1−y0, y2−y1, . . . yT −yT−1]. Moreover,

for any M that satisfies (8), the steady-state transfer function
of (2) equals G = Y1,TM . �

The proof is presented in [23]. Theorem 4.1 asserts that
G can be computed from sample data originated from (2),
by solving the set of linear equations (8). Two important
observations are in order. First, the matrix M that satisfies (8)
depends on the sample data u[0,T−1]. Second, given a sample
sequence u[0,T−1], in general, there exists an infinite number
of choices of M that satisfy (8). Despite M not being unique,



wk+1 = wk wk+1 != wk0 T − 1

Data Collection Phase uk+1 = Fc(uk, yk)

time

G = Y1,qM

Online Control Phase

Fig. 2. Two-phase control method where noise-free historical data is used
to compute the map G, and then a dynamical controller is used to track the
optimizers of (4) despite unknown and time-varying disturbances.

Theorem 4.1 shows that Y1,qM is unique and independent of
the choice of u[0,T−1] used to generate the data. It is worth
noting that Theorem 4.1 requires one to collect T samples of
the (persistently exciting) input sequence u[0,T−1], and T+1
samples of the associated output sequence y[0,T ].

Theorem 4.1 assumes the availability of a finite-length
trajectory produced by the open-loop system (2) in the
absence of exogenous disturbance wk. When wk is non-zero
but constant at all times, Theorem 4.1 can still be used to
determine G, as described next. For all k ∈ Z≥0, define

dk := xk+1 − xk, rk := yk+1 − yk, vk := uk+1 − uk. (9)

By substituting into (2), the new variables satisfy:

dk+1 = Adk +Bvk, rk = Cdk. (10)

By leveraging (10), Theorem 4.1 can be used to determine
G when the sample data is affected by constant disturbance.

Corollary 4.2: (Data-Driven Characterization of Trans-
fer Function With Constant Noise) Let Assumption 1 hold,
assume u[0,T ] is persistently exciting of order n + 1. If
wk = w ∈ Rr is fixed for all k ∈ Z≥0, then the steady-
state transfer function of (2) equals G = R1,qM , where

Rdiff
1,qM = 0, V1,qM = I, (11)

Rdiff
1,q = [r1− r0, r2− r1, . . . rq − rq−1], and q = T + 1. �
Corollary 4.2 provides a direct way to compute the transfer

function G when the sample data is affected by constant
noise. Notice that, the Hankel matrices R1,q, V1,q , and Rdiff

1,q

can be computed directly from an input-output trajectory of
(2) by preprocessing the data samples as described by (9).

B. Convergence to First-Order Optimizers

We now turn our attention to the online control phase,
where the map G computed according to Theorem 4.1 is
used in the gradient-based controller in (7). The following
result guarantees global convergence to the set of optimizers
of (4) under a suitable choice of the stepsize η.

Theorem 4.3: (Tracking of Optimal Solutions) Let As-
sumptions 2-1 hold, let ` = `φ + ‖G‖2`ψ , and assume that
Q satisfies λ(Q) > a

ε(1−ε) , where a = 1
2`

2
ψ‖C‖2‖G‖2 and

ε ∈ (0, 1) is a fixed parameter. Moreover, let

η∗ :=
1− ε
`/2 + b

, b :=
2‖ATPḠ‖2
ελ(Q)

+ ‖ḠTPḠ‖,

where Ḡ := (I − A)−1B. Then, for every η < η∗ there
exists a class-KL function β and class-K functions γu, γw
such that all solutions of (7) satisfy (6). �

The proof of Theorem 4.3 relies on the following result,
which can be interpreted as an extension of the characteriza-
tion of input-to-state stability for equilibrium points studied
in [21] to the case of compact forward invariant sets [22].

Lemma 4.4: (ISS with Respect to Compact Sets) Con-
sider the system zk+1 = f(zk, vk) where f : Rn×Rm → Rn
is locally Lipschitz and vk is a bounded input sequence. Let
A ⊂ Rn be a nonempty and compact set that is forward
invariant for the unforced system. Let V : Rn → R≥0 be a
continuous function such that

α1(|z|A) ≤ V (z) ≤ α2(|z|A), (12a)
V (f(z, v))− V (z) ≤ −α3(|z|A) + σ(|v|A), (12b)

hold for all z ∈ Rn, and v ∈ Rm, where α1, α2, α3 are class
K∞ functions and σ is of class K. Then, there exists a class
KL function β and a class K function γ such that the system
solutions satisfy

|zk|A ≤ β(|zk0 |A, k − k0) + γ( sup
t≥k0
‖vt‖),

for all 0 ≤ k0 ≤ k, and for any zk0 ∈ Rn. �
Proof: The claim follows by iterating the proof of [21,

Lemma 3.5]. Precisely, we note that, when A is nonempty
and compact, the quantity |z|A is well-defined and bounded
for any z ∈ Rn, and thus all Euclidean norms in [21, Lemma
3.5] can be replaced by the point-to-set distance | · |A.

Proof of Theorem 4.3: We begin by performing a change
of variables for (7). Let x̃k := xk − M(uk, wk), where
M(u,w) = Ḡu−H̄w, Ḡ := (I−A)−1B, H̄ := (I−A)−1E.
In the new variables:

x̃k+1 = Ax̃k −M(uk+1, wk+1) +M(uk, wk) (13)
= Ax̃k − Ḡ(uk+1 − uk)− H̄(wk+1 − wk),

uk+1 = uk − η(∇φ(uk) +GT∇ψ(Cx̃k +Guk +Hwk)).

Next, let f(u) := φ(u) + ψ(Gu + Hwk), and denote by
u∗ any minimizer of f(u). We will show that the following
Lyapunov function satisfies the assumptions of Lemma 4.4:

U(x, u) := V (u) +W (x̃), (14)

where V (u) = 1
η (f(u)− f(u∗)), W (x̃) = x̃TPx̃.

First, (12a) follows by application of [26, Lemma 4.3] by
noting that U(x, u) is continuous, positive definite, and radi-
ally unbounded. Next, we show (12b). By letting Fc(x̃, u) :=
−∇φ(u) − GT∇ψ(Cx̃ + Gu + Hwk), and by noting that
∇f(u) = −Fc(0, u), V (·) satisfies:

V (uk+1)− V (uk) =
f(uk+1)− f(uk)

η
− f(u∗k+1) + f(u∗k)

η

≤ 〈∇f(uk),
uk+1 − uk

η
〉+

`

2η
|uk+1 − uk|2U∗

k

+ 〈∇f(u∗k),
u∗k+1 − u∗k

η︸ ︷︷ ︸
=0

〉+
`

2η
‖u∗k+1 − u∗k‖2

≤ −(1− `η

2
)|Fc(x̃k, uk)|2U∗

k
+

`

2η
‖u∗k+1 − u∗k‖2

+ `ψ‖C‖‖G‖|x̃|U∗
k
|Fc(x̃k, uk)|U∗

k
, (15)



where the first inequality follows from f(u) − f(v) ≤
∇f(v)T(u−v)+ `

2‖u−v‖2, which holds ∀u, v ∈ Rm under
Assumption 2, and the last inequality follows by noting that
|uk+1 − uk|2U∗

k
= η2|Fc(x̃k, uk)|2U∗

k
and by using:

〈∇f(uk),
uk+1 − uk

η
〉 = −〈Fc(0, uk), Fc(x̃k, uk)〉

= −〈Fc(0, uk) + Fc(x̃k, uk)− Fc(x̃k, uk), Fc(x̃k, uk)〉
≤ −|Fc(x̃k, uk)|2U∗

k
+ `ψ‖C‖‖G‖‖x̃k‖|Fc(x̃k, uk)|U∗

k
,

where we used Assum. 2. By completing the squares in (15):

V (uk+1)− V (uk) ≤ −(1− ε

2
− `η

2
)|Fc(x̃k, u)|2U∗

k
(16)

+
`2ψ‖C‖2‖G‖2

2ε︸ ︷︷ ︸
:=a1

|x̃k|2U∗
k

+
`

2η︸︷︷︸
:=a2

‖u∗k+1 − u∗k‖2.

By denoting in compact form ∆wk := wk+1−wk and by
recalling that uk+1 − uk = ηFc(x̃k, uk), W (·) satisfies:

W (x̃k+1)−W (x̃k) = x̃Tk (ATPA− P )x̃k

+ η2FT
c (x̃k, uk)ḠTPḠFc(x̃k, uk) + ∆wT

k H̄
TPH̄∆wk

− 2ηx̃TkA
TPḠFc(x̃k, uk)− 2x̃TkA

TPH̄∆wk

+ 2ηFT
c (x̃k, uk)ḠTPH̄∆wk

≤ −λ(Q)|xk|2U∗
k

+ 2η‖ATPḠ‖|x̃k|U∗
k
|Fc(x̃k, uk)|U∗

k

+ η2‖ḠTPḠ‖|Fc(x̃k, uk)|2U∗
k

+ 2‖ATPH̄‖|x̃k|U∗
k
‖∆wk‖

+ ‖H̄TPH̄‖‖∆wk‖2 + 2η‖ḠTPH̄‖|Fc(x̃k, uk)|U∗
k
‖∆wk‖

By completing the squares:

W (x̃k+1)−W (x̃k) ≤ −(1− ε)λ(Q)|x̃k|2U∗
k

+ η2
(

2‖ATPḠ‖2

ελ(Q)
+ ‖ḠTPḠ‖

)
︸ ︷︷ ︸

:=b1

|Fc(x̃k, uk)|2U∗
k

+

(
2‖ATPH̄‖2

ελ(Q)
+ ‖H̄TPH̄‖

)
︸ ︷︷ ︸

:=b2

‖∆wk‖2

+ 2η‖ḠTPH̄‖|Fc(x̃k, uk)|2U∗
k
‖∆wk‖2. (17)

By combining (16)-(17) and by completing the squares:

U(x̃k+1, uk+1)− U(x̃k, uk) ≤ −(1− ε− `η

2
)|Fc(x̃k, u)|2U∗

k

+ a1|x̃k|2U∗
k

+ a2‖u∗k+1 − u∗k‖2 − (1− ε)λ(Q)|x̃k|2U∗
k

+ ηb1|Fc(x̃k, uk)|2U∗
k

+ (b2 + b3)‖∆wk‖2,

where b3 = 2η2‖ḠTPH̄‖/ε. In summary, by letting z :=
(|Fc(x̃k, u)|U∗

k
, |x̃k|U∗

k
), v1 := ‖u∗k+1 − u∗k‖, and v2 :=

‖∆wk‖, if the following conditions are satisfied:

η <
1− ε

`/2 + b1
, λ(Q) >

a1

1− ε ,

then U(xk, uk) satisfies (12b) with:

α3(z) = min{(1− ε)− η`

2
− ηb1, (1− ε)λ(Q)− a1}z2,

σ(v1, v2) = a2v
2
1 + (b2 + b3)v2

2 .

(a) (b)

(c) (d)

Fig. 3. Error between data-driven G and model-based G when the
training data is affected by an unknown disturbance wk . The illustration
has been produced by using the output of a Montecarlo simulation where
the realization of w was varied over 10, 000 samples of a IID Gaussian
process. Continuous lines illustrate the mean of the trajectory, shaded areas
illustrates the 3-standard deviation confidence intervals. (a)-(c) When the
exogenous disturbance is constant over time (equivalently, when the variance
of wk in the Montecarlo simulations decays to zero asymptotically) then
Corollary 4.2 guarantees ‖G− Ĝ‖ → 0. (b)-(d) When the training data is
affected by time-varying disturbance (equivalently, when the variance of wk

in the Montecarlo simulations is constant over time), Theorem 4.1 allows
us to approximate G up to a finite error.

Finally, the claim follows by taking the supremum among
all u∗k and by replacing the Hausdorff distance. �

Theorem 4.3 asserts that a sufficiently-small choice of the
stepsize η is guarantees convergence to the optimizers, up to
an asymptotic error that depends on the time-variability of
the optimal set and on the time-variability of the unknown
exogenous signal wk. Although an exact computation of
η∗ requires the knowledge of the system matrices (A,C),
Theorem 4.3 provides an existence claim for the stepsize η.
Further, we note that the requirement λ(Q) > a

ε(1−ε) is non-
restrictive, since the choice of Q is arbitrary in Assumption 1.

Remark 3: (Relationship with Classical Convergence Re-
sults) We note that, when the plant is infinitely fast (i.e. the
plant dynamics in (7) are replaced by yk = Guk + Hwk),
standard results (see e.g. [24]) guarantee convergence of
gradient-like dynamics for all η < ηstatic := 2/`. By noting
that η∗ in Theorem 4.3 is strictly smaller that ηstatic, the
theorem suggests that a strictly smaller stepsize is required
when the system dynamics are non-negligible. �

V. SIMULATION RESULTS

To illustrate the conclusions drawn in Theorem 4.1, we
consider a system with n = 20, m = r = 10, p = n,
and matrices (A,B,C,E) with random entries that satisfy
Assumption 1. Fig. 3 illustrates the error in the computed
transfer function ‖G − Ĝ‖, where G denotes the model-
based steady-state transfer function, and Ĝ denotes the
transfer function computed according to Corollary 4.2. Ĝ
has been computed by using a rolling-horizon window that
discards old samples over time. The length of the collection
window is chosen equal to the smallest number of samples
needed to guarantee persistence of excitation, and all samples



(a)

(b)

Fig. 4. (a) Tracking error of (7). (b) Time-varying disturbance. The
simulation suggests that values of η larger than η∗ prevent convergence.

(including the ones used for initialization) are obtain by using
a random, persistently exciting, input. Fig. 3(a)-(c) validates
the conclusions drawn in Theorem 4.1: it shows that when the
disturbance affecting the training data wk is constant, then
the technique proposed in Corollary 4.2 allows us to compute
G from a sample trajectory. Fig. 3 illustrates numerically
that the error ‖G− Ĝ‖ is an increasing function of the time-
variability of the disturbance wk affecting the training data.

Fig. 4(a) illustrates the tracking error for a simulation of
the dynamics (7), subject to the time-varying disturbance w
illustrated in Fig. 4(b). In this case, the map G was computed
from noiseless historical data, according to Theorem 4.3.
For simplicity, we consider the case where φ(u) = uTQuu,
Qu � 0 and ψ(y) = (y − yref)TQy(y − yref), Qy � 0. The
figure validates Theorem 4.3 by showing that the tracking
error is governed by two terms: (i) an error component
associated with the initial conditions that decays to zero
asymptotically, and (ii) an error component associated with
the time-variability of wk, which vanishes only if wk+1 −
wk = 0. The numerical simulations also suggest that values
of η larger than η∗ prevent the convergence of the method.

VI. CONCLUSIONS

We proposed a data-driven method to steer a dynamical
system to the solution trajectory of a time-varying optimiza-
tion problem. The technique does not rely on any prior
knowledge or estimation of the system matrices or of the ex-
ogenous disturbances affecting the model equation. Instead,
we showed that noise-free input-output data originated by the
open-loop system can be used to compute the steady-state
transfer function of the dynamical environment. Moreover,
we showed that convergence of the proposed algorithm to
the time-varying optimizers is guaranteed when the dynamics
of the controller are sufficiently slower than those of the
dynamical system. This work sets out several opportunities
for future works, including extensions to scenarios where
historical data is affected by non-constant noise terms, and
the development of data-driven methods for the convergence
analysis of the interconnected system.

REFERENCES

[1] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Foundations and trends in Machine Learning, vol. 4, no. 2, pp. 107–
194, 2011.

[2] M. Colombino, E. Dall’Anese, and A. Bernstein, “Online optimization
as a feedback controller: Stability and tracking,” IEEE Trans Control
of Network Systems, vol. 7, no. 1, pp. 422–432, 2020.

[3] L. S. P. Lawrence, Z. E. Nelson, E. Mallada, and J. W. Simpson-
Porco, “Optimal steady-state control for linear time-invariant systems,”
in Proc CDC, Dec. 2018, pp. 3251–3257.

[4] G. Bianchin, J. Cortés, J. I. Poveda, and E. Dall’Anese, “Time-varying
optimization of LTI systems via projected primal-dual gradient flows,”
arXiv preprint, Jan. 2021, arXiv:2101.01799.

[5] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Timescale
separation in autonomous optimization,” IEEE Trans Automatic Ctrl,
vol. 66, no. 2, pp. 611–624, 2021.

[6] S. Menta, A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler,
“Stability of dynamic feedback optimization with applications to
power systems,” in Annual Conf. on Communication, Control, and
Computing, Oct. 2018, pp. 136–143.

[7] G. Bianchin, J. I. Poveda, and E. Dall’Anese, “Online optimization of
switched LTI systems using continuous-time and hybrid accelerated
gradient flows,” arXiv preprint, Aug. 2020, arXiv:2008.03903.

[8] J. C. Willems, P. Rapisarda, I. Markovsky, and B. D. Moor, “A note
on persistency of excitation,” IFAC Syst & Control L, vol. 54, no. 4,
pp. 325–329, 2005.

[9] J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive
control: In the shallows of the DeePC,” in 2019 18th European Control
Conference (ECC), 2019, pp. 307–312.

[10] L. Xu, M. Turan Sahin, B. Guo, and G. Ferrari-Trecate, “A data-driven
convex programming approach to worst-case robust tracking controller
design,” arXiv preprint, 2021, arXiv:2102.11918.

[11] C. D. Persis and P. Tesi, “Formulas for data-driven control: Stabiliza-
tion, optimality and robustness,” IEEE Trans Automatic Ctrl, vol. 65,
no. 3, pp. 909–924, 2020.

[12] A. Allibhoy and J. Cortés, “Data-based receding horizon control of
linear network systems,” IEEE Control Systems Letters, vol. 5, no. 4,
pp. 1207–1212, 2020.

[13] J. Berberich, J. Koehler, M. A. Müller, and F. Allgöwer, “Data-driven
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