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Abstract— This paper investigates the use of Infrastructure-
To-Vehicle (I2V) communication to generate routing suggestions
for drivers in transportation systems, with the goal of optimiz-
ing a measure of overall network congestion. We define link-
wise levels of trust to tolerate the non-cooperative behavior
of part of the driver population, and we propose a real-
time optimization mechanism that adapts to the instantaneous
network conditions and to sudden changes in the levels of
trust. Our framework allows us to quantify the improvement in
travel time in relation to the degree at which drivers follow the
routing suggestions. We then study the resilience of the system,
measured as the smallest change in routing choices that results
in roads reaching their maximum capacity. Interestingly, our
findings suggest that fluctuations in the extent to which drivers
follow the provided routing suggestions can cause failures of
certain links. These results imply that the benefits of using
Infrastructure-To-Vehicle communication come at the cost of
new fragilities, that should be appropriately addressed in order
to guarantee the reliable operation of the infrastructure.

I. INTRODUCTION

Transportation systems are fundamental components of
modern smart cities, and their effective and reliable operation
are critical aspects to guarantee the development of quickly-
growing metropolitan areas. Recent advances in vehicle tech-
nologies, such as Infrastructure-To-Vehicle (I2V) communi-
cation and Vehicle-To-Vehicle (V2V) communication [1], set
out an enormous potential to overcome the inefficiencies of
traditional transportation systems. Notwithstanding, the de-
velopment efficient control algorithms capable of effectively
engaging these capabilities is an extremely-challenging task
due to the tremendous complexity of the interconnections
[2], that often results in suboptimal performance [3], and
that can potentially generate novel fragilities [4], [5].

In this paper, we discuss the use of I2V communication
to partially influence the routing decisions of the drivers,
with the goal of optimizing a measure of overall network
congestion. We define link-wise levels of trust to tolerate the
non-cooperative behavior of a certain ratio of the drivers, and
we develop an optimization-based control mechanism to pro-
vide real-time routing suggestions based on the current state
congestion levels. Differently from traditional approaches
for network routing design, our methods allow us to take
into account quickly-varying traffic volumes, and do not
require the knowledge of the traffic demands associated with
every origin-destination pair. Moreover, we study the impact
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of changes in routing that result in roads reaching their
maximum capacity, thus leading to traffic jams or cascading
failure effects. We develop a technique to classify the links
based on their resilience, and we study the fragility of the
network against changes in routing. Surprisingly, our findings
demonstrate that networks where the routing is partially
controlled by a system planner can be more fragile to traffic
jam phenomena as compared to networks where drivers
perform traditional selfish routing choices.
Related Work Routing decisions of traditional human
drivers are non-cooperative, namely, drivers act as a group
of distinct agents that make selfish routing decisions with the
goal of minimizing their individual delay [6]. The inefficien-
cies of such noncooperative behavior are often quantified
through the price of anarchy [7], [8], [9], a measure that
captures the cost of suboptimality with respect to the societal
optimal efficiency. The availability of V2V and I2V has re-
cently demonstrated the potential to influence the traditional
behavior of drivers in a transportation system [3], [10]. In
particular, the control of the routing choices was proposed as
a promising solution to improve the efficiency of the network
[10] and to enhance its resilience [11]. Differently from this
line of previous work, this paper focuses on systems operat-
ing at non-equilibrium points, on tolerating the presence of
non-cooperative driver behaviors, and on characterizing the
impact of controlled routing on the resilience of the system.
Contribution The contribution of this paper is fourfold.
First, we formulate and solve an optimization problem to
design optimal routing suggestions with the goal of mini-
mizing the travel time experienced by all network users. The
optimization problem incorporates link-wise trust parameters
that describe the extent to which drivers on that link are
willing to follow the suggested routing policy. Second, we
develop an online update scheme that takes into account
instantaneous changes in the levels of trust on the provided
routing suggestions. Discrepancies between the modeled and
actual trust parameters can be the result of quickly varying
traffic demands, or can be the effect of selfish routing
decisions. Third, we study the resilience of the network,
measured as the smallest change in the trust parameters
that results in roads reaching their maximum capacity. We
present an efficient technique to approximate the resilience
of the network links, and we discuss how these quantities can
be computed from the output of the optimization problem.
Fourth, we demonstrate through simulations that, although
partially controlling the routing may improve the travel time
for all network users, it also results in increased network
fragility due to possible fluctuations in the trust parameters.
Organization The rest of this paper is organized as follows.
Section II describes the dynamical network framework, and
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formulates the problem of optimal network routing with
varying levels of trust. Section III presents a method to nu-
merically solve the optimization, and illustrates our real-time
update mechanism. Section IV is devoted to the study and
characterization of the network resilience, while Section V
presents simulations results to validate our methods. Finally,
Section VI concludes the paper.

II. PROBLEM FORMULATION

We model a traffic network with a directed graph G =
(V, E), where V = {1, . . . ,m} denotes the set of nodes, and
E = {1, . . . , n} ⊆ V × V denotes the set of edges. Nodes
of the graph identify traffic junctions, while edges identify
sections of roads (links) that interconnect two junctions. An
element (i, j) ∈ E denotes a directed link from node j to
node i. We associate to every link i ∈ E a dynamical equation
of the form

ẋi = f in
i (x, t)− f out

i (x, t),

where t ∈ R≥0, xi : R≥0 → R≥0 denotes the traffic density
of link i, and f in

i (x, t) and f out
i (x, t) denote the inflow and

outflow of the link, respectively. We assume that vehicle
inflows enter the network at on-ramp links Eon, while vehicle
outflows exit the network at off-ramp links Eoff. We denote
by E in the set of internal links that are connected through
junctions, and assume that Eon, Eoff, and E in are disjoint sets,
with E = Eon ∪Eoff ∪E in (see Fig. 1 for an illustration). The
network topology described by G imposes natural constraints
on the dynamics of the links, where flow is possible only
between links that are interconnected by a node. We associate
to every pair of links a turning ratio rij ∈ [0, 1], describing
the fraction of vehicles entering link i ∈ E after exiting
j ∈ E . We combine the drivers turning preferences into a
matrix R = [rij ] ∈ Rn×n, where

rij ∈ [0, 1], rij 6= 0 only if (i, j) ∈ E . (1)

The conservation of flows at the junctions imposes the
following constraints on the entries of R:∑

i

rij = 1, for all j ∈ E \ Eoff,∑
i

rij = 0, for all j ∈ Eoff. (2)

We let RG be the set of matrices

RG = {R = [rij ] ∈ Rn×n : rij satisfy (1) and (2)},
and let nr = ‖R‖0 denote the number of nonzero entries in
matrix R. We assume that the vehicles routing is partially
controllable, and denote by σi : R≥0 → [0, 1] the ratio of
controllable vehicles that instantaneously occupy link i. For
every i ∈ E , we assume that a fraction (1− σi) of vehicles
leaving i will follow a selfish route choice rs

ij , for all j ∈ E ,
while the remaining vehicles can be routed according to the
routing decisions made by a system planner, namely rc

ij . The
parameter σi can be interpreted as the (average) extent to
which drivers follow the routing suggestion rc

ij . We combine
the selfish and controllable routing parameters into matrices
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Fig. 1. Example of traffic network interconnection. For this network, Eon =
{1, 2, 3}, E in = {4, . . . , 15}, and Eoff = {16}.

RS ∈ Rn×n and RC ∈ Rn×n, respectively, and decompose
the matrix of turning preferences as

R = ΣRC + (I − Σ)RS,

where Σ is a diagonal matrix Σ = Diag(σ1, . . . , σn). Note
that the graph topology and sparsity pattern of R impose the
following constraints on RS and RC:

RS ∈ RG , RC ∈ RG .

We stress that in this work RC is a design parameter
containing the set of routing suggestions provided by the
system planner to influence the drivers routing choices.

Remark 1: (Selfish Route Choices) Typically, the selfish
behavior of drivers is captured by a Wardrop equilibrium [6],
that is, a configuration in which the travel time associated to
any source-destination path chosen by a nonzero fraction of
the drivers does not exceed the travel time associated to any
other path. We remark that, in our settings, such equilibrium
configuration is captured by the selfish routing matrix RS. �

We adopt Daganzo’s Cell Transmission Model [12], and
model the physical characteristic of each link by a demand
function di(xi) and a supply function si(xi), that represent
upper bounds on the outflow and inflow of each link,
respectively:

f in
i (x, t) ≤ si(xi), f out

i (x, t) ≤ di(xi). (3)

For every link i ∈ E we let Bi := sup{x : si(x) > 0}
denote its saturation density, which corresponds to the jam
density of the road. We model on-ramps i ∈ Eon as links
with infinite supply functions si(xi) = +∞, and denote by
λi(t) the corresponding inflow rate. Then, road inflows and
outflows are related by means of the following equations

f in
i (x, t) =

{
λi(t), i ∈ Eon,∑
j rijf

out
j (x, t), i ∈ E \ Eon,

(4)

which capture the conservation of flows at the junctions. We
model the outflows from the links as

f out
i (x, t) = κi(x)di(xi), (5)

where κi(x) ∈ [0, 1] is a parameter that enforces the bounds
(3) or, in other words, guarantees that every outgoing link has
adequate supply to accommodate the demand of its incoming
links. Different models for κi(x) have been proposed in the
literature, and prevalent roles have been played by FIFO
policies [13] and proportional allocation rules [14]. We
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combine the link dynamical equations with (4) and (5) to
derive the overall network dynamics

ẋ = (R− I)f (x, t) + λ, (6)

where I ∈ Rn×n is the identity matrix, x = [x1 . . . xn]T

is the vector of link densities, f = [f out
1 . . . f out

n ]T is the
vector of link outflows, and λ = [λ1 . . . λn]T denotes the
vector of exogenous inflows, where we let λi = 0 if i 6∈ Eon.

We consider the network performance measured by the
Total Travel Time (TTT),

TTT :=

∫ H
0

x1(t) + · · ·+ xn(t) dt,

which is a measure of the delay experienced by all users
[15], and we focus on the problem of designing the matrix
of turning preferences in a way that

min
RC

TTT

subject to ẋ = (R− I)f (x, t) + λ, (7a)

R = ΣRC + (I − Σ)RS, (7b)

RC ∈ RG , (7c)
x ≤ B, (7d)

where H is the control horizon, x(0) = x0 is the (given)
network initial configuration, and B = [B1 . . . Bn]T denotes
the vector of jam densities. From a real-time control and
implementation perspective, solving (7) sets out a number of
challenges. First, the length of the optimization horizon H is
a fundamental parameter that should be accurately chosen.
One should chose H adequately large to include all relevant
system dynamics, but unnecessarily large values of H can
drastically increase the computational burden. Second, rapid
changes in traffic volumes and driver preferences require
the development of control mechanisms that are capable
to adapt in real-time to sudden variations of σ. In fact,
the performance of the optimization strongly depends on σ,
and fluctuations in this parameter can lead to considerable
variability in network performance and efficiency.

To study the effects of fluctuations in σ, in the second part
of this paper we consider the problem of quantifying the
fragility of the network against changes in the trust levels
that result in links reaching their jam density. We assume
that a link irreversibly fails if it reaches its jam density, and
argue that such failure may propagate in the network and
potentially cause a cascading failure effect. We measure the
network resilience ρ(G, x0) as the L1-norm of the smallest
variation in σ that results in such failure phenomena, that is,

ρ(G, x0) := min
σ̃

‖σ̃ − σ‖1

such that ẋ = (R− I)f (x, t) + λ,

R = ΣRC + (I − Σ)RS,

xi ≥ Bi,

where x(0) = x0, t ∈ [0,H], and i ∈ {1, . . . , n}.

III. DESIGN OF THE TURNING PREFERENCES

In this section we present a method to numerically solve
the optimization problem (7), and illustrate an online-update
technique to address the control challenges outlined above.

A. Computing Optimal Routing Suggestions
We begin by recasting the optimization problem (7) in a

way that allows us to numerically compute its solutions. We
perform three simplifying steps, described next.

First, in order to generate a tractable prediction of the time
evolution of the network state, we discretize (6) by means of
the Euler discretization technique. We use a sampling time
Ts ∈ R>0 that is chosen to guarantee the Courant-Friedrichs-
Lewy assumption maxi

viTs

Li
≤ 1 for all links [12], where

vi ∈ R≥0 and Li ∈ R>0 denote the maximum speed and
the length of the section of road, respectively. Let vec (R) =
[r11 . . . rn1 r12 . . . rnn] denote the vectorization of matrix
R = [rij ], and let tk = kTs, k ∈ N. Then, the time-evolution
of (6) from tk to tk+1 = tk + Ts can be discretized as

xk+1 = xk+Ts((Rk−I)f(xk)+λk) := F(xk, rk, λk), (8)

where rk = vec (Rk). We remark that the dependency on
time of the routing matrix is the result of time-varying σ.

Second, we vectorize equation (7b) and let

rk = (ΣT
k ⊗ I)rc + ((I − Σk)T ⊗ I)rs := Ψ(σk, r

s, rc),

where rc = vec
(
RC
)
, rs = vec

(
RS
)
, the symbol ⊗ denotes

the Kronecker product, and where we used the identity
vec (AXB) = (BT ⊗ A) vec (X) for matrices A, X , and
B of appropriate dimensions.

Third, we observe that the Euler discretization technique
employed in (8) preserves the sparsity pattern of RC, and we
rewrite the sparsity constraints (7c) as∑

i

rc
ij = bj , 0 ≤ rijc ≤ 1, (i, j) ∈ E ,

where bj = 1 if j ∈ E \ Eoff, and bj = 0 if j ∈ Eoff.
Finally, we recast the optimization problem (7) by using

the discretized dynamics as

min
rc

h∑
k=1

1Txk

subject to xk+1 = F(xk, rk, λk), k = 1, . . . , h, (9a)
rk = Ψ(σk, r

s, rc), k = 1, . . . , h, (9b)∑
i

rij = bj , j = 1, . . . , n, (9c)

0 ≤ rijc ≤ 1, (i, j) ∈ E , (9d)
xk ≤ B, k = 1, . . . , h, (9e)

where 1 ∈ Rn denotes the vector of all ones, and h and Ts
are chosen so that hTs = H. As discussed in e.g. [16], the
constraints (9a) are often nonconvex in the decision variables.
Thus, the optimization problem (9) is of the form of a
nonconvex nonlinear programming optimization problem,
over nr = ‖R‖0 decision variables, and can be solved
numerically through common nonlinear optimization solvers,
such as interior-point methods [17].
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ẋ = (R− I)f(x, t) + λ

Solve Nonlinear Programming

Problem (8)

Real-Time Update

x,RS

RC∗(σ)
σ

RC∗(σ0)
kTc

Fig. 2. Real-time update scheme.

B. Online Update Mechanism
In order to take into account for the quick variability of the

parameter σ and to deal with the considerable computational
effort required to determine the solution to (9), we propose
an adaptive control scheme that generates real-time updates
based on the instantaneous changes in σ. The proposed
adaptive mechanism is outlined in Fig. 2, and is structured
as follows. We assume that a central processing unit is in
charge of computing RC∗(σ0), that is, the solution to the
optimization problem (9) with a given (fixed) set of trust
parameters σ0. The underlying choice for σ0 can reflect
the current network conditions, or can be dictated by the
availability of historical data. Moreover, we assume that the
solution RC∗(σ0) is intermittently made available at time
instants t = kTc, where Tc ∈ R>0 is the time required
to solve the optimization. We are interested in constructing
an efficient mechanism to determine RC∗(σ), the optimal
solution to (9) with the instantaneous value of σ, by updating
RC∗(σ0). Our online update method is motivated by the fact
that σ is subject to small variations from the nominal value
σ0. In fact, the following inequality follows from (1)

‖σ − σ0‖ ≤ ‖[1 · · · 1]T‖ =
√
nr.

Next, we derive our online update mechanism. We denote
in compact form by

f0(rc, x̂, σ) =

h∑
k=1

1Txk, g(rc, x̂, σ) =

 rijc − 1
−rijc

xk −B

 ,
h(rc, x̂, σ) =

xk+1 −F(xk, rk, λk)
rk −Ψ(σ, rs, rc)∑

i rij − bj

 ,
where x̂ = [xT1 . . . x

T
h ]T ∈ Rnh denotes the joint vector of

model-prediction variables, and rewrite (9) as

min
rc

f0(rc, x̂, σ)

subject to gi(r
c, x̂, σ) ≤ 0, i ∈ {1, . . . , q},

hj(r
c, x̂, σ) = 0, j ∈ {1, . . . , p}, (10)

where we have made explicit the dependency of the optimiza-
tion problem on the decision variables rc, on the prediction
variables x̂, and on the parameter σ. To characterize the
solutions to (10), we compose the Lagrangian

L(rc, x̂, σ, w, u) = f0(rc, x̂, σ)+

uTg(rc, x̂, σ) + wTh(rc, x̂, σ),

where u = [u1 . . . uq]
T and w = [w1 . . . wp]

T are the vectors
of Lagrange Multipliers, and we write the first order Karush-
Kuhn-Tucker (KKT) conditions:

∇L(rc∗, x̂∗, σ0, w
∗, u∗) = 0,

uigi(r
c∗, x̂∗, σ0) = 0,

hj(r
c∗, x̂∗, σ0) = 0,

with the additional inequalities u∗i ≥ 0, and gi(rc∗, x̂∗, σ0) ≤
0, where ∇ = [∂/∂rc

1 . . . ∂/∂r
c
nr

]T denotes the gradient
operator with respect to the decision variables rc. We denote
the set of KKT equality conditions in compact form as

F (rc∗, x̂∗, σ0, u
∗, w∗) = 0, (11)

and note that (11) is an implicit equation that character-
izes the optimal solutions to (10). Finally, by letting y =
[rc(σ) u(σ) w(σ)] and by assuming that (11) holds for σ near
σ0, we compute the total derivative of the implicit function
(11) with respect to σ to obtain the following relationship
that holds at optimality:

M(σ)
dy

dσ
+N(σ) = 0,

where the matrices M(σ) = [∂Fi/∂yj ], dy/dσ = [dyi/dσj ],
and N(σ) = [∂Fi/∂σj ]. Finally, to formalize our online
update rule we make the following classical assumption (see
e.g. [18]), which guarantees: (i) that rc∗ is a local isolated
minimizing point, (ii) the uniqueness of the Lagrange Mul-
tipliers, and (iii) the invertibility of matrix M(σ0).

Assumption 3.1: (Second Order Minimizer Point)
(Second-order KKT conditions) The inequality
vT∇2L(rc∗, x̂∗, σ, w∗, u∗)v > 0 holds for every vector
v ∈ Rn+m+p, v 6= 0, that satisfies

vT∇gi(rc∗, x̂∗, σ0) ≤ 0, for all i where u∗i = 0,

vT∇gi(rc∗, x̂∗, σ0) = 0, for all i where u∗i > 0,

vT∇h(rc∗, x̂∗, σ0) = 0.

(Constraints independence) The vectors ∇g(rc∗, x̂∗, σ0) and
∇h(rc∗, x̂∗, σ0) are linearly independent.
(Strict complementary slackness) If gi(rc∗, x̂∗, σ0) = 0, then
u∗i > 0. �

Lemma 3.2: (Linear Update Rule) Let Assumption 3.1
hold, let rc∗(σ0) denote a solution to (9) with σ = σ0, and
let η := M−1(σ0)N(σ0) be partitioned as

η =

η1

η2

η3

 ,
where η1 ∈ Rnr×n, η2 ∈ Rq×n, and η3 ∈ Rp×n. Then,

rc∗(σ) = rc∗(σ0) + η1(σ − σ0) + o(‖σ − σ0‖2). (12)

We argue that the update (12) can be computed through
simple vector multiplications, and thus is significantly more
efficient than solving (9). The accuracy of the linear ap-
proximation rule is numerically validated in Fig. 3, which
demonstrates the quadratic decay of the approximation error
as σ approaches σ0 (see Section V for a thorough discussion).
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Fig. 3. Numerical validation of the update rule (12).

IV. NETWORK RESILIENCE

In this section, we study the resilience of the network
against changes in the degrees of trust of the drivers, and
we illustrate a technique that allows us to classify the links
in relation to their resilience properties. We start with the
following definition of margin of resilience of a network link.

Definition 1: (Links Margin of Resilience) Let i ∈ E , and
let Bi be its jam density. The margin of resilience of link i
is

ρi(x0) := min
σ

‖σ − σ0‖1

such that ẋ = (R− I)f (x, t) + λ,

R = ΣRC + (I − Σ)RS,

xi ≥ Bi, for some t ∈ [0,H].

�
In other words, the resilience of a certain link is defined as
the smallest change in σ that generates its jam failure. Next,
we present a lower bound on the margin of resilience of the
links. Our approach is based on the real-time control rule
(12), and on first-order approximations of the constraints.

Theorem 4.1: (Lower Bound on Margin of
Resilience) Let i ∈ E , let F(xk, rk, λk) =
[F1(xk, rk, λk) . . .Fn(xk, rk, λk)]T, and let

Ψi(rk, xk, λk, σ) :=
∂Fi(xk, rk, λk)

∂σ
+
∂Fi(xk, rk, λk)

∂rc η1,

where η1 is defined in (12). Then,

ρi(x0) ≥ min
k

Bi −Fi(xk, rk, λk)

‖Ψi(k, λ, σ0)‖∞
.

Proof: We first recast the notion of margin of resilience
in terms of the discretized system (9). The margin of re-
silience of link i is the smallest change ‖σ− σ0‖1 such that

Fi(xk, rk(σ), λk) ≥ Bi, (13)

for some k ∈ {1, . . . , h}. We then rewrite Fi(xk, rk(σ), λk)
by taking its Taylor expansion for around σ0

Fi(xk, rk(σ), λk) = Fi(xk, rk(σ0), λk)+

dFi
dσ

(xk, rk(σ), λk)

∣∣∣∣
σ=σ0︸ ︷︷ ︸

Ψi(rk,xk,λk,σ)

δσ + o(‖δσ‖2),

10 20 30 40
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Fig. 4. Travel time reduction for degrees of trust and optimization horizons.

where δσ = σ − σ0, and where we used the implicit
differentiation rule to compute Ψi(rk, xk, λk, σ) = ∂Fi

∂σ +
dFi

drc
drc

dσ , with drc/dσ = η1. By substituting into (13) and by
rearranging the terms we obtain

Bi −Fi(xk, rk(σ0),λk) + o(‖δσ‖2) ≤ Ψi(rk, xk, λk, σ)δσ.

Finally, we take the L1-norm on both sides of the above
inequality, which yields

|Bi −Fi(xk, rk(σ0), λk) + o(‖δσ‖2)|
≤ |Ψi(r

c, xk, λk, σ)δσ| ≤ ‖Ψi(r
c, xk, λk, σ)‖∞ ‖(δσ)‖1

where we used Holder’s inequality [19]. To conclude, we
iterate the above reasoning for all times k ∈ {1, . . . , h},
which yields the given bound for the margin of resilience
and concludes the proof.

We conclude this section by observing that the quantity
Ψi(rk, xk, λk, σ) is also a constraint of (9), and thus can be
directly computed from the output of the optimization. The
tightness of the bound and the implications of the theorem
are discussed in the next section.

V. SIMULATION RESULTS

This section provides numerical simulations in support to
the assumptions made in this paper, and includes discussions
and demonstrations of the benefits of the proposed methods.
We consider the network shown in Fig. 1, which comprises
n = 16 links and m = 7 nodes. Each link has capacity
Bi = B = 200veh, length Li = L = 5.25mi, and
velocity vi = v = 35mi/h. For all i, we let di(xi) =
v(1−exp(−axi)), a = 0.01, and si(xi) = v

L (B−xi) be the
link demand and supply functions, respectively, and choose
κi(x) according to a proportional allocation rule [14]. We
let Ts = 0.15h, and observe that maxi

vTs

L = 1 satisfies
the Courant-Friedrichs-Lewy assumption [12]. We let the
network inflows be λi = 10veh/min for all i ∈ Eon, and
assume that the density of the each link at time t = 0 is
100veh/mi, for all i ∈ E . The selfish turning preferences are
chosen so that rs

ij is split uniformly between the outgoing
links at every node. Moreover, we assume σi = σ for all i.

We begin by evaluating the benefits of partially control-
ling the network routing. Fig. 4 illustrates the reduction in
Total Travel Time in relation to different trust levels. The
figure highlights that a consistent reduction in Total Travel
Time is the combined result of significant levels of trust in
the provided routing suggestions and of considerably-large
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Fig. 5. Links distance from constraint violation (non-cooperative routing).

control horizons. Next, we investigate the network resilience
in relation to changes in σ (Fig. 5 and 6). To this aim, we
show in Fig. 5 the distance from jam density of every link
in the network when drivers follow non-cooperative routing
(i.e. σ = 0). Formally, this quantity is captured by the link
residual capacity

RCi := min
k

Bi −Fi(xk, rk, λk)

Bi
,

which is a measure of the distance between the link density
over time and its jam density Bi. Note that, for the consid-
ered case study, all links operate with less than 30% of their
residual capacity. The lower bound on the links margin of
resilience (Theorem 4.1) is show in Fig. 6. Two important
implications follow from the simulation results illustrated in
Fig. 6. First, the trends observed in the figure support our
observation that partially controlling the routing can result in
increased fragility. In fact, ρi(x0) for σ0 = 0 is strictly larger
that ρi(x0) for σ0 = 30% for all i ∈ {4, . . . 16} \ {5, 12}.
Second, values of ρi(x0) greater than 100% (observed, for
instance, on link i = 16) imply that no feasible change in
σ can lead to a jam failure of that link, while values of
ρi(x0) < 100% imply that there exists a feasible perturbation
in σ that results in jam-failures of that link. We note that the
values reported in Fig. 6 are consistent with the considered
network topology. In fact, the dynamics of link i = 16 are
independent of the routing choices performed by the drivers
in the rest of the network.

VI. CONCLUSIONS

This paper proposes a real-time optimization framework
to design routing suggestions with the goal of optimizing
the travel time experienced by all users in dynamical trans-
portation systems that operate at non-equilibrium points. Our
framework allows us to quantify the reduction in Total Travel
Time in relation to different levels of trust on the provided
routing suggestions, and to design a technique to study the
resilience of the network links against fluctuations in the
trust levels. Our results reveal a tradeoff between efficiency
and resilience in a transportation system, demonstrating that
partially controlling the routing can reduce the margin of
resilience of certain links. Interesting aspects that require
further investigation include extending the findings to more
general network topologies, and the design of incentive
mechanisms to regulate and control the trust parameters.
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Fig. 6. Lower bound on links margin of resilience.
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