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ABSTRACT Advanced traffic navigation systems, which provide routing recommendations to drivers based
on real-time congestion information, are nowadays widely adopted by roadway transportation users. Yet,
the emerging effects on the traffic dynamics originating from the widespread adoption of these technologies
have remained largely unexplored until now. In this paper, we propose a dynamic model where drivers
imitate the path preferences of previous drivers, and we study the properties of its equilibrium points.
Our model is a dynamic generalization of the classical traffic assignment framework, and extends it by
accounting for dynamics both in the path decision process and in the network’s traffic flows. We show
that, when travelers learn shortest paths by imitating other travelers, the overall traffic system benefits
from this mechanism and transfers the maximum admissible amount of traffic demand. On the other
hand, we demonstrate that, when the travel delay functions are not sufficiently steep or the rates at which
drivers imitate previous travelers are not adequately chosen, the trajectories of the traffic system may
fail to converge to an equilibrium point, thus compromising asymptotic stability. Illustrative numerical
simulations combined with empirical data from highway sensors illustrate our findings.

INDEX TERMS Network control, dynamical flow networks, traffic networks

I. INTRODUCTION
Roadway traffic networks are fundamental components of
modern societies, making economic activity possible by
enabling the transfer of passengers, goods, and services in a
timely and reliable fashion. Despite their critical role, these
transportation systems are impaired by the long-standing
problem of traffic congestion, which wastes billions of
gallons of fuel each year [1], [2]. Advanced navigation
systems are nowadays widely adopted by travelers, largely
thanks to the widespread use of smartphone-based navigation
apps (such as Google Maps, Inrix, Waze, Apple Maps,
etc.) [3]. Advanced navigation systems provide shortest-path
routing recommendations based on real-time global travel
time information. On the one hand, these technologies have
enabled travelers to save time and fuel but, on the other hand,
they have transformed the transportation infrastructure orig-
inating unanticipated effects and disrupting existing traffic
flow patterns [4]. While the implications of the widespread
adoption of advanced navigation systems have been analyzed
game-theoretically [5], a characterization of the impact of

these technologies on dynamic models of traffic for general,
dynamic, traffic networks has remained elusive until now.

In this work, we study the stability properties of a traffic
system composed of the interconnection between a dynamic
model of traffic flows and a dynamic model of route selection
(derived from the Replicator Dynamics [6]). Our choice
of using the replicator equation is motivated by recent
studies that showed that this model emerges as an aggregate
description of learning processes in large populations and
as the limiting case of the Best Response dynamics [7].
We show that, at equilibrium, our model shares the same
properties as the well-studied routing game [5], and thus
it is consistent with existing studies that focus on systems
operating at equilibrium. It is worth noting that, with respect
to the classical routing-game framework, our model accounts
for dynamics both in the route selection process as well
as in the traffic flows. Our dynamical model suggests that
systems where travelers continuously prefer highways with
minimal latency to destination – and select these highways
by imitating other travelers already in the network – admit
an equilibrium point, provided that the external inflow is
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bounded above by the min-cut capacity of the network.
This implies that traffic systems where the users learn
through imitation transfer the maximum amount of flow
that is transferable by that network. This connects our work
with classical static flow models used in the transportation
literature. Moreover, our results show that when the rate of
imitation (namely, the frequency at which new users imitate
the path preferences of other users) is either too small or too
large, the equilibrium points may fail asymptotic stability,
thus implying that in unregulated networks the congestion
state may oscillate around or diverge from the equilibria.

Related Work. The traffic model proposed here finds its
roots in the well-established routing game [8] and corre-
sponding traffic assignment problem [5], which have been
used in the transportation literature to model how travelers
make decisions in congested traffic. Recently, this framework
has received increased attention with several studies investi-
gating the impact of different sources of information on the
traffic system; e.g., see [9]–[12] and the references therein.
One of the main limitations of this classical approach is that
it models systems operating at equilibrium, thus neglecting
dynamics near these points. For this reason, evolutionary
dynamics [6] have been proposed to study the dynamic
properties of equilibria [13], [14]. Although these works
represent a step forward toward understanding the impact
of advanced navigation systems on traffic patterns, the used
models still rely on static descriptions, where traffic flows
propagate instantaneously across the network. It is immediate
to realize that such models are accurate only when the
routing preferences update at a slower timescale than that
of the traffic dynamics (e.g., when drivers update their
path preferences from day-to-day as a result of a personal
observation). On the other hand, in modern traffic networks,
advanced navigation systems allow drivers to update their
routing preferences at the same timescale as the traffic flows,
thanks to real-time traffic state measurements. This connects
our work with the body of literature on dynamic traffic
flow models. Our model is a simplified and continuous-
time version of the Cell-Transmission Model [15] and related
to the model studied in [16]. Dynamic traffic models with
static routing preferences have been studied in [17] using
monotonicity, in [18] using mixed monotonicity, in [19]
using passivity. Of particular relevance to the framework
studied here are [17], [20]. With respect to these works,
here we study path selection mechanisms governed by the
replicator equation and we focus on the game-theoretic
properties of this model and its stability analysis. This
work extends the preliminary work of the authors [19] in
several directions, including a formal proof of uniqueness
and evolutionary stability of the Nash equilibrium, and a
sufficient condition to ensure asymptotic stability of the
equilibrium point. Finally, the recent works [21], [22] also
highlighted detrimental effects of navigation systems in a
small-scale (two-link) network.

Contribution. The contribution of this work is threefold.
First, we propose a dynamic model derived from the repli-
cator dynamics to describe the path selection mechanism
underlying drivers’ decisions in congested traffic. We then
couple this routing model with a dynamic model of traf-
fic, which describes the evolution of traffic flows in the
network in relation to the instantaneous routing choices.
Relative to the classical traffic assignment framework, the
use of a dynamic traffic model describes modern networks
where routing decisions and traffic flows update at the same
timescale. As illustrated in Section V, this model allows us to
capture dynamic behaviors observed in practice, which could
not be explained using static models [23], [24]. Second,
we study the game-theoretic properties of the equilibria
of the interconnected model. We show that, under suitable
assumptions, an equilibrium point exists, is unique, and
coincides with an evolutionary stable Nash (or Wardrop)
equilibrium [25]. This relates our work with the well-studied
routing game [8]. Third, we study the stability properties of
the equilibrium. By using a Lyapunov-based reasoning, we
derive sufficient conditions under which the equilibrium is
asymptotically stable. In simulation and through an example,
we show that the conditions are tight and that oscillating
trajectories can emerge when our conditions do not hold.
Intuitively, oscillations originate because the population is
overreacting to small changes in congestion. In practice,
this occurs because individual users update their routing
preferences without anticipating the preferences of the rest
of the population. This behavior is consistent with field data
(see, e.g., [23], [24]).

Organization. This paper is organized as follows. Section
II presents the proposed model. Section III derives conditions
for existence and uniqueness of an equilibrium point and in
Section IV we study the stability properties of the equilibria.
Section V illustrates our findings via numerical simulations
and Section VI concludes the paper.

Notation. Given x ∈ Rn, u ∈ Rm, we let (x, u) ∈ Rn+m
denote their concatenation; if n = m, ⟨x, u⟩ denotes the inner
product. For symmetric matrix M, λmax(M) and λmin(M)
denote its largest and smallest eigenvalue, respectively.

II. Model of traffic network
In this section, we present our models of traffic flows and
routing decisions, and we formalize the problem we study.

A. Traffic flow model
We model a transportation network using a digraph G =
(V, E), where V is the set of nodes and L is the set of links.
In what follows, we let L = {1, . . . n}, n ∈ N>0. For a link
i ∈ L, we denote by oi ∈ V its origin node and by di ∈ V
its destination node. Motivated by real-world transportation
networks with parallel highways, we will allow for parallel
links, namely, we admit i, j ∈ L such that i ̸= j and have
the same origin and destination: oi = oj and di = dj .
A path in G is a sequence of links {i1, i2, . . . } such that
the origin node of each link is the destination node of the
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preceding one. Notice that a path may contain repeated links
and, going along the path, one may reach repeated nodes.
A path is simple if it does contain the same link more than
once. The length of a path is the number of edges contained
in {i1, i2, . . . }. Following the Cell Transmission Model [15],
we describe the macroscopic behavior of traffic on each link
i ∈ L over time t ≥ 0 using the conservation law:

ẋi(t) = f in
i (x(t))− f out

i (x(t)), (1)

where xi(t) ∈ R is the traffic density in link i, f in
i (x(t)) is

the traffic inflow entering at upstream, and f out
i (xi(t)) is the

traffic outflow exiting at downstream. We make the following
assumptions on the outflow functions.

Assumption 1:
For all i ∈ L, the outflow function f out

i (x) depends only
on the density xi, namely, f out

i (x) = fi(xi). Moreover, fi :
R≥0 → R≥0 satisfies fi(xi) = 0 if and only if xi = 0, it is
continuous, and strongly monotone; namely,

(xi − x̄i)(fi(xi)− fi(x̄i)) ≥ µ|xi − x̄i|2, (2)

for some µ > 0 and for all xi, x̄i ∈ R≥0. □

We discuss this assumption in Remark 1 and we illustrate
some choices of outflow functions in Example 2.

Assumption 1 guarantees that (1) is a positive system [26],
namely, for every non-negative initial state and every non-
negative input at all times, its state trajectory is non-negative.
In what follows, for all i ∈ L, we let

Ci := sup
z∈R

fi(z),

and C = (C1, . . . , Cn). If fi(·) is unbounded, Ci = +∞.

Remark 1 (Validity of Assumption 1):
It is known (see, e.g., [16]) that the assumption that fi(xi)

only depends on xi and is strictly increasing is valid provided
that we restrict our focus to free-flow regimes [15]. More
precisely, it has been shown in [16] that the free-flow equilib-
rium points of a more complete traffic model (that accounts
for congestion regimes and backpropagation through the
junctions) inherit the same stability properties of the model
considered here. Hence, the conclusions drawn here will be
applicable also to more complete models, provided that their
operation is restricted to the free-flow regimes [16]. While
we acknowledge that accounting for congested regimes is an
important problem, due to the technical challenges in dealing
with a more complete model, we leave a generalization of
our framework as the focus of future works. Regarding the
condition fi(xi) = 0 if and only if xi = 0, the “if” part
ensures that no vehicle density can flow out of a link when
there is no density on it, and the “only if” part guarantees
that any density is allowed to exit. □

Example 2 (Flow functions that satisfy Assumption 1):

A class of functions satisfying Assumption 1 (and used in,
e.g., [27]) is that of linear outflow functions, given by

f out
i (xi) = αixi, αi > 0.

In this case, Ci = +∞ and µ = min{αi}i∈L. A second class
of functions satisfying Assumption 1 and used in [28] is

f out
i (xi) = Ci(1− e−βixi), βi > 0,

which is strongly monotone on any bounded set. □

Throughout this paper, we will focus on single-commodity
networks, namely, networks for which there is a single origin
node o where exogenous traffic flows enter the network, and
a single destination node d, where flows exit the network.
We assume that G is outflow-connected, namely, there is a
path in G from every i ∈ L to d. To avoid trivial cases, we
will also assume that there exists at least one path from o to
d. We denote by λ ∈ R>0 the commodity inflow rate at o.

To model mass propagation through the nodes, we intro-
duce the scalar routing ratios (or routing splits)

{rij(t)}i,j∈L, t ≥ 0,

where rij(t) ∈ [0, 1] models the fraction of flow exiting
link i that proceeds toward j. Because exchange of flow is
allowed only between consecutive links in the network, we
have rij(t) > 0 only if di = oj . Finally, mass is conserved
through the nodes when

∑
j rij(t) = 1. Similarly, we let

roi(t) ∈ [0, 1] be the fraction of exogenous inflow λ that is
routed from the origin node o to link i; analogously, we have
roi(t) = 0 if oi ̸= o, and

∑
i∈L roi = 1. In what follows,

it will be useful to combine the network routing ratios into
a matrix R(t) = [rij(t)] ∈ Rn×n and the routing ratios
at the origin into a vector Ro = (ro1, . . . , ron) ∈ Rn. See
Example 4 for an illustration of the model and notation.

Remark 3 (Temporal dependence in the routing ratios):
In this discussion, we treated {rij(t)}i,j∈L as time-varying
quantities; we will see shortly below (cf. Section II.B) that
the time-dependency in rij(t) implicitly originates as a result
of the dependence between the routing ratios and the traffic
state x(t). □

At every node of G, traffic flows are conserved, and thus
the inflow to each link i ∈ L is given by

f in
i (x) = roi(t)λ+

∑

j∈L
rji(t)fj(xj(t)).

By substituting into (1), the density on each link evolves as:

ẋi(t) = roi(t)λ+
∑

j∈L
rji(t)fj(xj(t))− fi(xi(t)). (3)

By letting

x := (x1, . . . , xn), f(x) := (f1(x1), . . . , fn(xn)),

be the joint vectors of densities and flows, respectively, the
network state evolves according to:

ẋ(t) = (R(t)T − I)f(x(t)) +Ro(t)λ. (4)
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Fig. 1: Graph topology used to illustrate our model. See examples 4
and 7. Nodes labeled by ‘o’ and ‘d’ describe the origin and
destination, where exogenous inflows enter and exit the network,
respectively. The dashed arrow illustrates the exogenous inflow.

We illustrate this traffic model in Example 4.

Example 4 (Illustration of traffic flow model):
Consider the network topology in Fig. 1. The model (4)

reads as:

ẋ1 = −f1(x1) + ro1λ, ẋ3 = −f3(x3) + r13f1(x1),

ẋ2 = −f2(x2) + ro2λ, ẋ4 = −f4(x4) + r14f1(x1),

ẋ5 = −f5(x5) + f2(x2) + f3(x3),

where time dependencies have been dropped for compact-
ness. Notice that the routing ratios satisfy ro1 + ro2 =
1, r13 + r14 = 1. □

B. Congestion-responsive path selection model
We next propose a model to describe the path selection
process followed by drivers that seek to minimize their travel
time to destination. Let P denote the set of simple paths from
o to d. To model this process, we introduce the variables
{yp(t)}p∈P , where yp(t) denotes the fraction of exogenous
inflow λ that is routed through path p at time t. We stress
that yp(t) models a virtual amount of flow that may never be
observed in the network: indeed, yp(t) describes the fraction
of λ that is routed through p at time t, but the actual traffic
flows on the links of p will be determined by the traffic flow
model, as described shortly below. Hence, in what follows,
we call yp(t) demanded path flow for path p (for a discussion
on this wording choice, see Remark 10 shortly below). See
Fig. 2 for an illustration. Then, the set of admissible path
flow demands is the scaled simplex:

∆ := {y ∈ R|P|
≥0 :

∑

p∈P
yp = λ}. (5)

For link i ∈ L, we let

yli(t) :=
∑

p∈P:i∈p
yp(t), (6)

be the demanded link flows. Similarly to the demanded path
flows, the demanded link flow yli(t) describes the fraction
of λ that is routed through link i at time t. In vector form,
y(t) = (y1(t), . . . , y|P|(t)) and yl(t) := (yl1(t), . . . , y

l
n(t)).

Notice that [5, Thm 2.2] guarantees that for any y(t) ∈ ∆,
yl(t) is uniquely determined.

To every link i ∈ L, we associate a latency function
ℓli(xi) mapping traffic density into latency, and describing

the travel time or latency required to traverse that link. With
this notation, the total demanded traffic latency for path p is
given by the sum of latencies of the links in that path:

ℓp(x) :=
∑

i∈p
ℓli(xi). (7)

In vector form, ℓ(x) := (ℓ1(x), . . . , ℓ|P|(x)) and ℓl(x) :=
(ℓl1(x1), . . . , ℓ

l
n(xn)).

Remark 5 (Choice of relating latencies to densities):
In this work, we make the assumption that the link latencies

are functions of the densities, rather than of the flows (as in,
e.g., [17]). The reason for this choice stems from the trans-
portation literature, where is it well-established that one can
model the relationship velocity-density using a bijective map,
while the map velocity-flow is not bijective (see, e.g. [29,
Fig. 4.12]). Although in our setting the two frameworks
are equivalent (by virtue of Assumption 1), we believe that
our framework is more amenable to generalizations to non-
free-flow conditions (where Assumption 1 does not hold) as
compared to models that relate latencies to flows. □

Motivated by [30], we make the following assumption.

Assumption 2:
For all i ∈ L, ℓli : R≥0 → R≥0 is non-negative, continuous,

and such that

lim
xi→f−1

i (Ci)

ℓli(xi) = +∞. (8)

□

Assumption 2 is very mild, as it requires that every link
has a non-negative travel time that varies smoothly as a
function of the traffic densities and that tends to infinity as
the link flow approaches the flow capacity; we refer to [30]
for a detailed discussion on the validity of this assumption.

We consider a model where the vector of path preferences
y(t) is continuously updated over time based on the traffic
state of the network. We adopt a model of path selection
where the preference for a certain path p ∈ P will increase
or decrease depending on whether that path has a better or
worse travel time compared to the network average. To this
end, we model the time-evolution of the flow demands using
the replicator dynamics [31]:

ẏp(t) = yp(ℓ̄(x(t), y(t))− ℓp(x(t))), p ∈ P, (9)

where

ℓ̄(x(t), y(t)) = λ−1
∑

p∈P
yp(t)ℓp(x(t)), (10)

is the average latency of traversing the network from o to
d. Equation (9) states that the growth rate of flow demand
for path p is proportional to the difference between the
average latency of traversing the network ℓ̄(x(t), y(t)) and
the latency of that path ℓp(x(t)). We motivate our choice of
adopting the replicator dynamics in Remark 6; we also note
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(b)

Fig. 2: (a) Demanded path flows y1(t), y2(t), y3(t) describe the
fraction of λ that is routed through the paths, respectively,
p1, p2, p3. (b) The demanded path flows follow a model of path
selection (cf. (9)) where the preference for a certain path will
increase or decrease depending on whether that path has a better
or worse travel time compared to the network average. This model
ensures that the trajectories y1(t), y2(t), y3(t) are trapped inside
the simplex (5).

that this model has been widely adopted in the transportation
literature to study dynamics in the routing game [13], [32].

Remark 6 (Choice of the replicator dynamics):
The replicator equation is a deterministic model of imitation,
where future path preferences are selected by imitating
successful path preferences of previous users. Replicator
dynamics have originated in biology, arising in the study of
animal behavior and evolution, and researchers later proved
that this model is also an accurate description of learning
processes in large populations [7]. Interestingly, this is a
good model to describe the outcome of machine learning
processes as its dynamics hinge on historical data and the
paradigm of imitation (i.e., users observe others’ travel times
and change their own strategies based on these observations).
Although our analysis is tailored to the replicator model,
other selection models could be also considered – such as
the Best Response dynamics [33]. It is worth noting that
the asymptotic properties of the trajectories are common
across several different models of selection: for instance,
[33] showed that noisy versions of the best-response dy-
namics have the same qualitative properties as the replicator
model. □

Example 7 (Illustration of the path selection model):
Consider the network illustrated in Fig. 1 and discussed

in Example 4. This graph includes three simple paths P =
{p1, p2, p3} (see Fig. 2(a)) given by

p1 = (1, 4), p2 = (1, 3, 5), p3 = (2, 5).

The demanded path flows y1, y2, y3 are scalar quantities that
model the fraction of exogenous inflow λ that is routed
through, respectively, paths p1, p2, p3. According to (6),
the demanded flows on the links yl1, y

l
2, y

l
3, y

l
4, y

l
5 can be

computed from the demanded flows on the path as follows:

yl1 = y1 + y2, yl2 = y3 yl3 = y2, yl4 = y1, yl5 = y2 + y3.

In other words, the above relationships state that the flow on
each link is the sum of the flows on paths passing through
that link. The demanded traffic latencies of the paths (7) are:

ℓ1(x) = ℓl1(x1) + ℓl4(x4), ℓ3(x) = ℓl2(x2) + ℓl5(x5),

ℓ2(x) = ℓl1(x1) + ℓl3(x3) + ℓl5(x5).

Namely, the latency of each path is the sum of latencies
of all links that compose that path. The average latency of
traversing the network (10) is:

ℓ̄(x, y) = λ−1(y1ℓ1(x) + y2ℓ2(x) + y3ℓ3(x)),

and models the latency required to traverse the network,
averaged over all paths. The replicator model (9) proposed
to describe the path selection process in this case reads as:

ẏ1 = y1(ℓ̄(x, y)− ℓ1(x)), ẏ2 = y2(ℓ̄(x, y)− ℓ2(x)),

ẏ3 = y3(ℓ̄(x, y)− ℓ3(x)).

In words, the preference of users for a certain path grows
proportionally to the difference between the average delay
in the network and the delay of that path. See Fig. 2(b). □

Remark 8 (Forward invariance of replicator dynamics):
We state three important properties of (9) that will be used

throughout this paper.
P1 - Forward invariance of ∆. If y(0) ∈ ∆, then y(t) ∈ ∆

for all t ∈ R>0. This follows by noting that, when y(0) ∈ ∆,
from (9)-(10), we have

∑
p∈P ẏp(t) = 0 ∀t ∈ R>0.

P2 - Forward invariance of boundary faces. Define the
boundary faces of ∆ as:

bfi∆ := {y :
∑

p∈P
yp = λ, yi = 0}. i ∈ P.

By inspection of (9), we have that all boundary faces are
forward invariant. In addition, the boundary bd∆ (i.e., the
union of all the boundary faces) is also forward invariant.

P3 - Forward invariance of int∆. Let int∆ denote the
interior of ∆, namely, the subset satisfying yi > 0 ∀i. If
y(0) ∈ int∆, the trajectories of (9) satisfy y(t) ∈ int∆ for
all t ∈ R>0. To see this, notice that

lim
yp→0

yp(ℓ̄(x(t), y(t))− ℓp(x(t))) = 0,

and thus the trajectories of (9) may converge to the boundary
of ∆′ only for t → +∞, and are thus confined to int∆ for
all finite t. □

By property P2 in Remark 8, if yp(0) ∈ bfp for some
p ∈ P, the replicator equation will satisfy

yp(t) = 0 ∀t ≥ 0,

namely, the dynamics will ‘ignore’ yp. In this case, by letting
P ′ denote the set of simple paths from o to d such that
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yp(0) > 0, one can replace (9) with a new set of |P ′|-
dimensional dynamics where the variables such that yp(0) =
0 are removed:

ẏp(t) = yp(ℓ̄(x(t), y(t))− ℓp(x(t))), p ∈ P ′. (11)
In this case, the trajectories of (9) and (11) coincide at all
times, with the additional condition

yp(t) = 0, ∀p ∈ P \ P ′.

Motivated by this observation, in what follows it will be
convenient to consider (11) in place of (9), as well as a
restricted state space:

∆′ := {y ∈ R|P′|
>0 :

∑

p∈P′

yp = λ}, (12)

and initial conditions y(0) ∈ int∆′. Notice that, by properties
P1 and P3 in Remark 8, if y(0) ∈ int∆′, then y(t) ∈ int∆′

for all t ∈ R>0.

C. Combined model of traffic with
congestion-responsive routing
In this section, we connect the traffic flow model (4) with the
path selection model (9) to derive a model of traffic network
with congestion-responsive routing. The key observation to
relate the two models is that the set of demanded link
flows y(t) implicitly determines the routing ratios rij(t), as
described next. For a link j ∈ L, let θj :=

∑
i∈L:oi=oj

yli
denote the total demanded flow transferred by its origin node
oj . Then, we let the routing ratios depend on the demanded
flows as follows: for all j such that oj = di,

rij(y) =

{
ylj/θj if θj > 0,

1
|{k∈L:ok=oj}| otherwise,

(13)

and rij(y) = 0 for all j such that oj ̸= di. Note that ylj is
implicitly defined by y through (6). The model (13) states
that the outflow exiting link i splits among the available
downstream links proportionally to the flow demand of each
downstream link, provided that the intermediate node carries
a nontrivial amount of demanded flow; the outflow is split
uniformly if the intermediate node transfers zero demanded
flow. Notice that other allocation rules may be considered
(e.g., where splits are non-uniform when θj = 0).

Remark 9 (An online path selection mechanism):
According to (13), the routing ratios in the entire network are
instantaneously imposed by the demanded path flows (which
are governed by the path selection mechanism (11) occurring
at the network origin). In turn, this implies that our model
describes traffic systems where travelers update their path
while they are traversing the network (and do not necessarily
follow the path chosen upon entering the network) in the
interest of minimizing their travel time to destination. □

By combining (4) and (11), we obtain the following joint
traffic flow model with congestion-responsive routing:

ẋ(t) = T (x(t), y(t)), (14a)
ẏ(t) = F (x(t), y(t)), (14b)

Path selection 
mechanism

<latexit sha1_base64="/MxD0hKUpyQK5P2y1fH96pPYgjI="></latexit>

ẏp = yp(¯̀(x, y) � `p(x))

Link latencies 
model

Traffic flow dynamics
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Fig. 3: The proposed model couples a compartmental-like model
of traffic flows (see Section II.A) with an economic model of route
selection (see Section II.B). Grey-shaded blocks illustrate dynamic
models while white blocks illustrate algebraic relationships.

where T : Rn≥0 × int∆′ → Rn, F : Rn≥0 × int∆′ → Rp, are
defined entry-wise, for all i ∈ {1, . . . , n} and p ∈ P ′, as:

Ti(x, y) = roi(y)λ+
∑

j∈L
rji(y)fj(xj)− fi(xi),

Fp(x, y) = η yp(ℓ̄(x, y)− ℓp(x)).

Here, the scalar η > 0 is a design parameter that we have
introduced to modify the rate at which path preferences are
updated. When the equation (14b) describes the behavior
of users following routing recommendations provided by
a navigation system, η can be modified by deciding the
frequency at which travel recommendations are updated. For
this reason, in what follows, we refer to η to as imitation
rate. We illustrate the interconnection (14) and the quantities
that establish the coupling between the two models in Fig. 3.

We next introduce some basic notation that will be used
in the remainder. Since (13) ensures conservation of flows
at the nodes, it guarantees that the vector of link flows yl is
an equilibrium for (4), namely, at all times:

0 = (R(y)T − I)yl +Ro(y)λ. (15)

From (15), we deduce that a set of demanded path flows y
implicitly defines a set of demanded densities corresponding
to these flows. These are defined as:

φ(y) := f−1(yl), where yli =
∑

p∈P′:i∈p
yp, ∀i ∈ L,

and f−1 : Rn≥0 → Rn≥0 denotes the entrywise inverse
function of f(·). In words, the function φ(y) maps a vec-
tor of demanded flows into the corresponding (demanded)
densities. Similarly to demanded flows, demanded densities
are virtual densities, which may never be observed in the
network, describing the amount of traffic density needed to
support the instantaneous demanded flows y(t).

We conclude this section by stressing that the flows on the
links f(x(t)) imposed by the traffic dynamics differ from
the demanded flows yl(t), which are imposed by the path
selection model. We discuss in Remark 10 the important
differences between these two quantities.

Remark 10 (Demanded flows vs actual flows):
It is important to stress a conceptual difference between

“demanded” traffic variables and traffic variables imposed by
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the traffic dynamics. Regarding traffic flows, the vector of
traffic flows f(x(t)) describes the flows on the links imposed
by the traffic dynamics; on the other hand, the vector of
demanded traffic flows yl(t) describes the fraction of flow
demand λ entering at o and that is routed to the links based
on an economic process of path selection. Analogously,
the traffic densities x(t) are quantities that are imposed by
the physics, while the demanded traffic densities φ(y) are
virtual quantities describing the densities associated with
the traffic demand. Importantly, the traffic latencies ℓ(x)
describe the actual travel latencies imposed by the physics,
which in general differ from the demanded traffic latencies
ℓ(φ(y)). This discrepancy differentiates our framework from
the classical routing game [5], where the dynamics of traffic
are infinitely fast. □

D. Connections with game-theoretic framework
In this section, we show that our framework can be related
to a population game [34]. This will allow us to connect our
settings to the routing game [8] and to relate the equilibrium
points of the model (14) to Wardrop equilibria [25].

The replicator equation (9) naturally defines an asso-
ciated population game [34], as described next. A (cost-
minimization) population game is defined by the triple
(S,X , κ), where S is a set of pure strategies, X is a
(generalized) simplex, and κ : X → R|S| is a vector-
valued cost function describing the cost associated with each
strategy, see [34, Sec. 13.2]. The replicator equation (9)
implicitly defines a population game defined by

S = P ′, X = ∆′, κ(y) = ℓ ◦ φ(y), (16)

which in what follows we denote by R∆′ := (P ′,∆′, ℓ◦φ).
In line with the existing literature [34], we will call a vector
of the simplex y ∈ ∆′ a (mixed) strategy. To this end, we
will say that a strategy ybr ∈ ∆′ is a best reply to y if:

yTbr ℓ(φ(y)) ≤ wTℓ(φ(y)), ∀w ∈ ∆′.

Associated with R, we have the following classical notion.

Definition 11 (Nash Equilibrium):
A vector y∗ ∈ ∆′ is said to be a Nash equilibrium of R∆′

if

⟨y∗, ℓ(φ(y∗))⟩ ≤ ⟨y, ℓ(φ(y∗))⟩, ∀y ∈ ∆′. (17)

□

In other words, a Nash equilibrium is a best reply to itself.
By noting that yTℓ(φ(y)) is the average population latency
or cost (cf. (10)), a Nash equilibrium describes a situation
where the population has no incentive to deviate away
from strategy y as any other strategy will yield a non-
smaller latency. Nash equilibria are used to describe routing
games governed by selfish individuals, where each individual
chooses their path to minimize their travel cost.

A very useful reformulation of the notion of Nash equi-
librium is that of Wardrop equilibrium [35]: y is a Wardrop

equilibrium if, for all p ∈ P ′,

yp > 0 implies ℓp(φ(y)) ≤ ℓp′(φ(y)), ∀p′ ∈ P ′. (18)

In line with the findings of [35], in what follows we will
use the wording Nash equilibrium and Wardrop equilibrium
interchangeably.

A desirable property for Nash equilibria is that of evolu-
tionary stability. Intuitively, a strategy y ∈ ∆′ is evolutionary
stable if it is a Nash equilibrium and small perturbations from
this strategy have a strictly larger average latency.

Definition 12 (Evolutionary stable point):
A vector y ∈ ∆′ is said to be an evolutionary stable point of
R∆′ if it is a Nash equilibrium and, for all w ∈ ∆′, w ̸= y,

wTℓ(φ(y)) = yTℓ(φ(y)) implies wTℓ(w) > yTℓ(φ(w)).
(19)

□

In words, y is evolutionary stable if any other best response
w to y is not a Nash equilibrium. It is worth stressing that
evolutionary stability is a property of the game R∆′ as it is
defined independently of the choice of the vector field in (9).

We conclude this section with an important observation,
which highlights the novelty of the model in Section II with
respect to the classical routing game framework [8]. We
remark that, in the routing game, both the traffic and path
selection mechanisms operate at the Nash equilibrium [8]
at all times. This requirement implicitly makes two highly
limiting assumptions: (i) the highways have trivial (infinitely
fast) dynamics so that the traffic flows can be modeled as
an algebraic map φ(y) of the flow demands; (ii) there are
no transients in the path selection process, so that the path
preferences can be described by a Nash equilibrium (17) at
all times. Remarkably, when the routing game framework
was proposed in the 1950s [8], travelers could update their
routing preferences only from day to day and networks
would often operate near equilibrium as traffic demands
would change slowly. In contrast, in modern networks,
travelers can update their routing preferences at a faster
timescale, as they have access to instantaneous real-time
traffic information, and traffic demands are highly dynamic.
Hence, we conjecture that the model proposed here is a more
accurate description of modern traffic systems.

III. Properties of the equilibrium points
In this section, we study the properties of the equilibrium
points of (14). We begin by showing that solutions to (14)
are well-defined.

Proposition 13 (Well-posedness of solutions):
Let Assumptions 1-2 hold and (x0, y0) ∈ Rn≥0×int∆′. There
exists a unique solution (x(t), y(t)) ∈ Rn≥0×int∆′ ∀t ∈ R≥0

to (14) with x(0) = x0 and y(0) = y0.

Proof:
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Notice that, in the int∆′, the function rij(y) in (13) is
continuously differentiable since θj > 0 ∀j. This implies
that, under Assumptions 1-2, the vector field in (14) is
Lipschitz continuous everywhere in its domain (namely,
Rn≥0× int∆′). By [36, Thm 3.1] existence and uniqueness of
solutions to (14) follows. Finally, (x(t), y(t)) ∈ Rn≥0× int∆′

follows from Remark 8 and (12).

Remark 14 (Lipschitz continuity of the vector fields (14)):

Note that, from Remark 8, the set Rn≥0 × int∆′ is forward-
invariant for (14). Note also (cf. proof of Proposition 13)
that the vector fields T (·, ·), and F (·, ·) of (14) are Lipschitz
continuous everywhere in their domain of definition. Alto-
gether, these two properties guarantee that the state variables
(x, y) do not leave the set Rn≥0 × int∆′ and that the vector
fields are Lipschitz continuous everywhere in this set. □

A. Existence of fixed points
We begin by investigating under what conditions the inter-
connected model (14) admits equilibrium points. Interest-
ingly, we will show that their existence depends solely on
the magnitude of external inflows entering the network. To
this end, the min-cut capacity of the traffic flow model is:

Ccut = min
S⊆V:

o∈S,d ̸∈S

∑

i∈L:
oi∈S,di ̸∈S

Ci.

Notice that Ccut may or may not be finite, precisely, Ccut ∈
[0,+∞].

Proposition 15 (Existence of equilibria):
Let Assumptions 1 and 2 be satisfied. If λ < Ccut, then

the interconnected system (14) admits an equilibrium point
that is a Nash equilibrium. Conversely, if λ > Ccut, then, no
equilibirum point exists for (14). □

Proof:
(Case λ < Ccut) To prove this implication, we show the
existence of a point that satisfies the Wardrop conditions
and that is an equilibrium of (14). Following [5, Thm. 2.1],
a vector of path flows ȳ ∈ R|P′| is a Wardrop equilibrium
if and only if it satisfies the first-order optimality conditions
of the following optimization problem:

min
y1,...,y|P′|∈R

∑

i∈L

∫ yli

0

ℓli(s)ds, (20a)

s. to
∑

p∈P′

yp = λ, (20b)

yp ≥ 0, ∀p ∈ P ′, (20c)∑

p∈P′:i∈P′

yp = yli, ∀i ∈ L, (20d)

In (20), yl1, . . . , y
l
n are dependent variables (describing link

flows) that are uniquely determined by (20d) (see [5, Thm

2.2]). Since the objective function is continuous (cf. As-
sumption 2), according to Weierstrass’ Theorem, it admits a
minimum provided that the feasible set is closed, bounded,
and nonempty. To see that the feasible set of (20) is bounded,
notice that from (20b):

yi = λ−
∑

p∈P′:p̸=i

yp ≤ λ,

from the positiveness of the path flow variables. Hence, the
feasible set can be made closed and bounded by adding the
constraints yp ≤ λ ∀p ∈ P ′ without affecting the solution.
Since λ < Ccut, by the max-flow min-cut theorem [37, Thm
4.1], the feasible set is nonempty. Hence, by Weierstrass’
Theorem, the game R∆′ admits a Nash equilibrium.

Let y∗ denote a Nash equilibrium of R∆′ ; we next show
that y∗ is an equilibrium flow for (14a). Let R(y∗) be the
routing matrix obtained from y∗ via (13); by using (15), we
have

(R(y∗)T − I)φ(y∗) + λ = 0,

and thus we conclude that the pair (x∗, y∗), x∗ := φ(y∗), is
an equilibrium of (14a). We are left to show that (x∗, y∗), is
also an equilibrium of (14b). Since y∗ is a Nash equilibrium,
it satisfies:

ℓp(φ(y
∗)) = c, ∀p ∈ P ′ : ȳp > 0,

and thus we have ℓ̄(φ(y∗), y∗) = c. This proves that (x∗, y∗),
is an equilibrium of (14b).

(Case λ > Ccut) By contradiction, assume that an equilib-
rium point (x∗, y∗) exists. Because the replicator equation
guarantees y(t) ∈ ∆′ ∀t ≥ 0, we must have

∑

p∈P′

y∗p = λ and y∗p ≥ 0, ∀p ∈ P ′.

Under these two conditions, the max-flow min-cut theorem
is applicable, which guarantees that, for some i ∈ L,

∑

p∈P′:i∈P′

y∗p > Ci, (21)

but this contradicts the equilibrium condition (R(y∗)T −
I)φ(y∗) + λ = 0, thus proving the claim.

In words, fixed points exist when the external flow demand
is bounded above by the min-cut capacity; moreover, at least
one equilibrium point is a Wardrop equilibrium. This has
two important implications. First, it ensures that our model
is consistent with the classical literature, in particular, with
the established notion of Wardrop equilibrium. Importantly,
while Wardrop equilibria were developed for static models
operating at equilibrium, our model instead is a dynamic
generalization of this classical framework [5]. Second, the re-
sult relates our work with the fundamental bound concerning
the maximum amount of flow transferable by a static graph
(as given by the max-flow min-cut theorem [37]): it shows
that traffic systems where users learn through imitation can
transfer, asymptotically, the same amount of flow as static
graphs with arbitrary routing. This implies that imitation-
based routing benefits the overall traffic system, enabling it to
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transfer the maximum admissible amount of flow. We remark
that this property is in contrast with dynamic traffic flow
models with static routing, which may not admit equilibrium
points even when λ < Ccut (see, e.g., [15], [16, Prop. 2]).

B. Conditions for uniqueness of the Nash equilibrium
While Proposition 15 guarantees existence of a Nash equi-
librium, it remains unclear whether such an equilibrium is
unique or evolutionary stable. We address this aspect next.

Proposition 16 (Uniqueness and evolutionary stability):
Let Assumptions 1–2 be satisfied and R∆′ be the game

induced by (9) and defined by (16). Further, assume that
the latency functions are strictly monotone, namely, for all
i ∈ L,

(xi − x̄i)(ℓ
l
i(xi)− ℓli(x̄i)) > 0, (22)

for all xi, x̄i ∈ [0, Ci), xi ̸= x̄i. Then, the game R∆′ admits
a unique Nash equilibrium. Moreover, such equilibrium is
evolutionary stable.

The following lemma is instrumental for the proof.

Lemma 1 (Strict monotonicity of the flow latencies):
Under the assumptions of Proposition 16, the demanded

path flow latency functions are strictly monotone, namely,

⟨y − ȳ, ℓ(φ(y))− ℓ(φ((ȳ))⟩ > 0, ∀y, ȳ ∈ ∆′, y ̸= ȳ.
(23)
□

Proof:
We have:

⟨y − ȳ, ℓ(φ(y))− ℓ(φ((ȳ))⟩
=
∑

p∈P′

(yp − ȳp)(ℓp(φ(y))− ℓp(φ(ȳ)))

=
∑

p∈P′

(yp − ȳp)

(∑

i∈p
ℓli(φi(y))−

∑

i∈p
ℓli(φi(ȳ))

)

=
∑

i∈L

∑

p∈P′:i∈p
(yp − ȳp)

(
ℓli(φi(y))− ℓli(φi(ȳ))

)

=
∑

i∈L
(yli − ȳli)

(
ℓli(φi(y))− ℓli(φi(ȳ))

)
,

where the second identity follows from (7) and the fourth
identity from (6). Next, let i ∈ L be fixed, and distinguish
among three cases. (Case 1) Assume yli > ȳli, we have:

(yli − ȳli)
(
ℓli(φi(y))− ℓli(φi(ȳ))

)
> 0, (24)

since φi and ℓli are strictly increasing. (Case 2) Assume yli <
ȳli. In this case, (24) also holds since φi and ℓli are strictly
increasing. (Case 3) Assume yli = ȳli. We have:

(yli − ȳli)
(
ℓli(φi(y))− ℓli(φi(ȳ))

)
= 0.

Since y ̸= ȳ, there exists at least one link i ∈ L for
which (24) is satisfied, from which we conclude that (23)
holds.

Properties of game       (16) Properties of interconn. (14)

Nash
Equilibirum

Evolutionary 
Stable Point

Equilibrium
Point

Globally Asymptotically 
Stable Equilibrium

Point

Thm. 17Prop. 16
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Thm. 17

Fig. 4: Summary of the properties established in the main results
of this paper. Proposition 16 shows existence of a unique Nash
equilibrium and that such equilibrium is evolutionary stable; Theo-
rem 17 shows that the unique Nash equilibrium of R∆′ is also
an equilibrium point of (14) and that such a point is globally
asymptotically stable.

We are now ready to prove the proposition

Proof of Proposition 16: Let y∗ ∈ ∆′ denote a Nash
equilibrium of R∆′ and y ∈ ∆′. Using (17), we have

⟨y∗, ℓ(φ(y∗))⟩+ ⟨y, ℓ(φ(y))⟩ ≤ ⟨y, ℓ(φ(y∗))⟩+ ⟨y, ℓ(φ(y))⟩,
by re-arranging:

⟨y, ℓ(φ(y))⟩ ≥ ⟨y∗, ℓ(φ(y∗))⟩+ ⟨y, ℓ(φ(y))− ℓ(φ(y∗)⟩
> ⟨y∗, ℓ(φ(y∗))⟩+ ⟨y∗, ℓ(φ(y))− ℓ(φ(y∗)⟩
= ⟨y∗, ℓ(φ(y))⟩, (25)

where the second row follows from (23) and the third
row follows from re-arranging the terms. Inequality (25)
proves (19), thus showing that y∗ is evolutionary stable.
Finally, since the above condition holds for all y ∈ ∆′, no
other point in ∆′ other than y∗ can satisfy (17), thus proving
uniqueness. ■

Proposition 16 shows that, under an additional mono-
tonicity requirements on the latency functions, the game
R∆′ admits a unique Nash equilibrium that is evolutionary
stable. See Fig. 4 (left) for a summarizing illustration of the
properties proven for R∆′ . We stress that uniqueness and
evolutionary stability are properties of the Nash equilibrium
of the game R∆′ , (and not of the joint dynamics (14)). How-
ever, we will show in the next section that these properties
can be harnessed to study the asymptotic properties of the
trajectories of (14).

IV. Asymptotic stability of the Nash equilibrium
In this section, we study the stability properties of the
equilibrium points of the interconnection (14).

A. Motivating example: existence of period orbits
It is a known result [38] that the solution trajectories of
compartmental models (as in (4)) with static routing are
not oscillatory orbits [38, Thm. 1]. Similarly, (under suit-
able monotonicity-type assumptions) the trajectories of the
replicator equation with algebraic latency functions are also
known to converge asymptotically to a Nash equilibrium [31,
Sec. 3]. Interestingly, when the two models are intercon-

VOLUME 00 2021 9

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2024.3397270

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



F. A. AUTHOR ET AL.: PREPARATION OF PAPERS FOR IEEE OPEN JOURNAL OF CONTROL SYSTEMS

<latexit sha1_base64="Tgm/zaUHq+9unmN36L2Jg3ozIiY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ/KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kD07GM4g==</latexit>o
<latexit sha1_base64="tIFbzsh3xg2sEThIflRAILDJbCo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJu3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBVcG9f9dgobm1vbO8Xd0t7+weFR+fikrZNMMWyxRCSqG1CNgktsGW4EdlOFNA4EdoLx3dzvPKHSPJEPZpKiH9Oh5BFn1FipGQ7KFbfmLkDWiZeTCuRoDMpf/TBhWYzSMEG17nluavwpVYYzgbNSP9OYUjamQ+xZKmmM2p8uDp2RC6uEJEqULWnIQv09MaWx1pM4sJ0xNSO96s3F/7xeZqJbf8plmhmUbLkoygQxCZl/TUKukBkxsYQyxe2thI2ooszYbEo2BG/15XXSvqx517Wr5lWlXs3jKMIZnEMVPLiBOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHwwWM1w==</latexit>

d
<latexit sha1_base64="3Ab2G2opiIkQ4LWBed1JSomqVkk=">AAAB7nicbVBNS8NAFHypX7V+VT16WSxCTyWRoh4LXjxWsK3QhrLZbNqlm03YfRFK6I/w4kERr/4eb/4bt20O2jqwMMzMY9+bIJXCoOt+O6WNza3tnfJuZW//4PCoenzSNUmmGe+wRCb6MaCGS6F4BwVK/phqTuNA8l4wuZ37vSeujUjUA05T7sd0pEQkGEUr9QbSRkM6rNbchrsAWSdeQWpQoD2sfg3ChGUxV8gkNabvuSn6OdUomOSzyiAzPKVsQke8b6miMTd+vlh3Ri6sEpIo0fYpJAv190ROY2OmcWCTMcWxWfXm4n9eP8Poxs+FSjPkii0/ijJJMCHz20koNGcop5ZQpoXdlbAx1ZShbahiS/BWT14n3cuGd9Vo3jdrrXpRRxnO4Bzq4ME1tOAO2tABBhN4hld4c1LnxXl3PpbRklPMnMIfOJ8/N+GPbA==</latexit>

�
<latexit sha1_base64="M6Cnmdl/c5LIx7D4JM1Eq/xJ4fs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdbmMpA==</latexit>

1
<latexit sha1_base64="aW0F2K6oODiElDNnfKU/hvYbTLY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9gNQT0GvHhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR0US27FXYBsEm9FSrBCY1D86g9jlkYoDRNU657nJsbPqDKcCZwV+qnGhLIJHWHPUkkj1H62OHRGrqwyJGGsbElDFurviYxGWk+jwHZG1Iz1ujcX//N6qQlv/YzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynYELz1lzdJu1rxriu1Zq1UL6/iyMMFXEIZPLiBOtxDA1rAAOEZXuHNeXRenHfnY9mac1Yz5/AHzucPdz2MpQ==</latexit>

2
<latexit sha1_base64="hLm02/byb3lqX9PIEDCErQUeTMo=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBG6Ckmojd0V3LisaB/QhjKZTtqhkwczEyGEfoIbF4q49Yvc+TdO2wgqeuDC4Zx7ufceP+FMKsv6MNbWNza3tks75d29/YPDytFxV8apILRDYh6Lvo8l5SyiHcUUp/1EUBz6nPb82dXC791TIVkc3aksoV6IJxELGMFKS7fZyBlVqpZp207TcZBlWkto0nTdC7eB7EKpQoH2qPI+HMckDWmkCMdSDmwrUV6OhWKE03l5mEqaYDLDEzrQNMIhlV6+PHWOzrUyRkEsdEUKLdXvEzkOpcxCX3eGWE3lb28h/uUNUhVcejmLklTRiKwWBSlHKkaLv9GYCUoUzzTBRDB9KyJTLDBROp2yDuHrU/Q/6Tqm3TDrN/Vqq1bEUYJTOIMa2OBCC66hDR0gMIEHeIJngxuPxovxumpdM4qZE/gB4+0TXPCNyw==</latexit>

y2

<latexit sha1_base64="ggMeBx/a5AC5dufIFjsWbkSP3j8=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBG6Ckmojd0V3LisaB/QhjKZTtqhkwczEyGEfoIbF4q49Yvc+TdO2wgqeuDC4Zx7ufceP+FMKsv6MNbWNza3tks75d29/YPDytFxV8apILRDYh6Lvo8l5SyiHcUUp/1EUBz6nPb82dXC791TIVkc3aksoV6IJxELGMFKS7fZyB5VqpZp207TcZBlWkto0nTdC7eB7EKpQoH2qPI+HMckDWmkCMdSDmwrUV6OhWKE03l5mEqaYDLDEzrQNMIhlV6+PHWOzrUyRkEsdEUKLdXvEzkOpcxCX3eGWE3lb28h/uUNUhVcejmLklTRiKwWBSlHKkaLv9GYCUoUzzTBRDB9KyJTLDBROp2yDuHrU/Q/6Tqm3TDrN/Vqq1bEUYJTOIMa2OBCC66hDR0gMIEHeIJngxuPxovxumpdM4qZE/gB4+0TW2yNyg==</latexit>

y1

(a)

0 5 10 15 20 25 30
Time

0

0.5

1

1.5

D
en

si
ty

x1 x2

0 5 10 15 20 25 30
Time

0
0.2
0.4
0.6
0.8
1

D
em

an
d
ed
.
ow

y1 y2

(c)

Fig. 5: (a) Network studied in Section IV.A. (b) Simulation of (26)-
(27) with λ = 1. The figure illustrates that, in some parameter
configurations, this network may admit periodic orbits.

nected as in (14), oscillatory solutions can emerge, as we
illustrate through an example next.

Consider the two-link network illustrated in Fig. 5(a). The
origin-destination paths are p1 = (1) and p2 = (2); the traffic
dynamics (4) are:

ẋ1 = −f1(x1) + ro1λ, ẋ2 = −f2(x2) + ro2λ. (26)

Let the latency functions be ℓl1(x1) = x1 and ℓl1(x2) = x2;
the corresponding path latencies are ℓ1(x) = x1, ℓ2(x) = x2.
In this case, the replicator model (9) simplifies to:

ẏ1 = y1(1− λ−1y1)(x2 − x1),

ẏ2 = y2(1− λ−1y2)(x1 − x2). (27)

It follows from (27) that the unique equilibrium (x∗, y∗) in
int∆′ is given by x∗1 = x∗2. Let the flow functions be:

f1(x1) = min{x1,
λ

2
}, f2(x2) = min{x2,

λ

2
}.

From (26), we have that the equilibrium flows are y∗1 =
f1(x

∗
1) = λ/2, y∗2 = f2(x

∗
2) = λ/2. Hence, (26)-(27) admits

an equilibrium given by (x∗1, x
∗
2, y

∗
1 , y

∗
2) = (λ2 ,

λ
2 ,

λ
2 ,

λ
2 ).

As a tool to investigate whether the trajectories are peri-
odic orbits, consider the continuously differentiable function:

V (x, y) =
1

2
(x2 − x1)

2 + λ ln

(
λ

y1

)
+ λ ln

(
λ

y2

)
, (28)

Defining the compact notation x̃ := x2 − x1, the time-
derivative of V (x, y) along the trajectories of (26)-(27) is:

V̇ (x, y) = x̃ ˙̃x− λ

y1
ẏ1 −

λ

y2
ẏ2

= −x̃(f(x2)− f(x1)) + λx̃(1− 2ro1)

− λx̃(1− λ−1y1) + λx̃(1− λ−1y2)

= −x̃(f(x2)− f(x1)) + λx̃(1− 2ro1)

− λx̃(1− 2λ−1y1)

= −(x2 − x1)(f(x2)− f(x1)).

Hence, by defining the region

M ′ = {x1, x2 ∈ R≥0 : x1 ≥ λ

2
and x1 ≥ λ

2
},

the trajectories of (26)-(27) are trapped inside M ′ since at
the boundary of M ′ we have V̇ (x, y) = 0. Next, let

M =M ′ ∩ {(x, y) : V (x, y) = c},
where c ≥ 2λ ln(2). Notice that the unique equilibrium point
of this system is characterized by c = 2λ ln(2). By choosing
c > 2λ ln(2), any trajectory starting in M stays in M for all
future times and M contains no equilibrium point, hence,
by application of the Poincaré-Bendixson criterion [36,
Lem. 2.1], we conclude that M contains a periodic orbit.
The periodic orbits of this model are illustrated in Fig. 5.
We anticipate that the existence of periodic is connected to
the failure of our assumptions (cf. (2)); notice also that a
modification of (28) will be used as a Lyapunov function
shortly below (cf. Section IV.B).

B. Sufficient conditions for asymptotic stability
Motivated by the findings above, we reinforce Assumption 2
as follows.

Assumption 3:
The conditions in Assumption 2 are satisfied. Moreover, the

latency functions are strongly monotone, namely, there exists
σ > 0 such that

(xi − x̄i)(ℓ
l
i(xi)− ℓli(x̄i)) ≥ σ|xi − x̄i|2, (29)

for all xi, x′i ∈ [0, Ci) and i ∈ L. □

In words, the assumption asks that the latency functions
grow at least linearly with the traffic densities1; the parameter
σ quantifies the “steepness” of the density-latency maps. In
what follows, we will interpret σ as a free parameter, which
can be tuned by a system planner to improve the efficiency
of a traffic system modeled by (14). The following result
characterizes the asymptotic behavior of (14).

Theorem 17 (Stability of interconnected system):
Let assumptions 1 and 3 hold and λ < Ccut. Let

(x(t), y(t)) denote the solution of (14) with initial conditions

1Indeed, strong monotonicity of ℓli(xi) is equivalent to imposing that
ℓli(xi)−σxi is a monotone function (this follows by rewriting the inequality
as (xi − x̄i)((ℓ

l
i(xi)− σxi)− (ℓli(x̄i)− σxi)) ≥ 0).
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(x(0), y(0)), ∆′ the restricted simplex induced by y(0),
R∆′ the game defined by (16), and y∗ the unique Nash
equilibrium of R∆′ . There exists σ∗, η1, η2 > 0 such that
when σ and η satisfy:

σ > σ∗, η ∈ [η1, η2], (30)

then, for any (x(0), y(0)) ∈ Rn≥0 ×∆′,

lim
t→∞

∥(x(t), y(t))− (x∗, y∗)∥ = 0,

where x∗ := φ(y∗). □

The following lemma is a minor extension of Lemma 1
under Assumption 3, and is instrumental for the proof.

Lemma 2 (Strong monotonicity of the flow latencies):
When Assumptions 1 and 3 hold, the path flow latency

functions are strongly monotone, namely, there exists σ > 0 :

⟨y − ȳ, ℓ(φ(y))− ℓ(φ((ȳ))⟩ ≥ σ∥y − ȳ∥2, ∀y, ȳ ∈ ∆′.
(31)
□

Proof of Theorem 17: Our proof technique relies on show-
ing that the potential function

V (x, y) := Vx(x) + Vy(y), (32)

where Vx(x) is a potential function for (14a) and Vy(y) is
a potential function for (14b) strongly decreases along the
trajectories of (14) and achieves its minimum at (φ(y∗), y∗).
We will use the following compact notation:

A(y) := R(y)T − I, ϕ(y) := −A(y)−1Ro(y)λ,

with ϕ(y) = (ϕ1(y), . . . , ϕn(y)). Since G is outflow con-
nected, [39, Thm. 3] guarantees that A(y) is invertible
for any y. Since −A(y∗) is a nonsingular M-matrix, [40,
Prop. I25] guarantees the existence of a positive diagonal
matrix D = diag(d1, . . . , dn) such that

Q̃ = −(A(y∗)D +DA(y∗)T),

is symmetric and positive definite. It follows that the matrix

Q := D−1Q̃D−1, (33)

is also positive definite. Let

Vx(x) := 2
∑

i∈L
d−1
i

∫ xi

0

fi(s)− ϕi(y
∗)ds. (34)

The time-derivative of Vx(x) along the solutions of (14) is:

V̇x(x) = 2(f(x)− ϕ(y∗))D−1(A(y)f(x) +Ro(y)λ)

= 2(f(x)− ϕ(y∗))TD−1(A(y∗)f(x) +Ro(y
∗)λ)

+ 2(f(x)− ϕ(y∗))TD−1(ψx(y)− ψx(y
∗))

= −(f(x)− ϕ(y∗))TQ(f(x)− ϕ(y∗))

+ 2(f(x)− ϕ(y∗))TD−1(ψx(y)− ψx(y
∗))

≤ −µλmin(Q)∥x− φ(y∗)∥2 + k∥x− φ(y∗)∥∥y − y∗∥

≤ −µλmin(Q)

2
∥x− φ(y∗)∥2 + k2

2µλmin(Q)
∥y − y∗∥2.

(35)

Here, in the second row, we used the compact notation

ψx(y) := A(y)f(x) +Ro(y)λ,

the third row follows from (33). The fourth row follows
from strong monotonicity of the flow functions (where µ
is as in Assumption 1) and by using the Cauchy-Schwarz
inequality and by noting that ψx(y) is Lipschitz continuous
in y, uniformly in x, and by letting k = 2∥D−1∥LψLf ,
where Lψ and Lf denote the Lipschitz constants of ψx(·)
and f(·), respectively (see the proof of Proposition 13 and
Remark 14 for a discussion on the Lipschitz property). The
fifth row follows from the inequality −ax2 + bx ≤ b2/4a
for a, b > 0, x ∈ R.

Next, we let

Vy(y) =
∑

p∈P′

y∗p ln

(
y∗p
yp

)
.

The time-derivative of Vy(y) along the solutions of (14) is
given by:

V̇y(y) = −η
∑

p

y∗p(ℓ̄(x, y)− ℓp(x))

= −ηλℓ̄(x, y) + η
∑

p

y∗pℓp(x)

= −η
∑

p

(yp − y∗p)ℓp(x)

= −η
∑

p

(yp − y∗p)ℓp(φ(y))

− η
∑

p

(yp − y∗p)(ℓp(x)− ℓp(φ(y))

≤ −ησ∥y − y∗∥2 + ηLℓ∥y − y∗∥∥x− φ(y)∥ (36)

Here, the second row follows from
∑

p y
∗
p = λ; the third

row follows from (10); the fourth row from adding and
subtracting ℓp(φ(y)). The fifth row follows by application of
the Cauchy-Schwarz inequality, by using continuity of ℓ(·)
(where Lℓ denotes the corresponding Lipschitz constant),
and from the following inequality:

⟨y − y∗, ℓ(φ(y))⟩ ≥ σ∥y − y∗∥2. (37)

To prove (37), since y∗ is a Nash equilibrium, we have
from (17):

⟨y∗, ℓ(φ(y∗))⟩+ ⟨y, ℓ(φ(y))⟩ ≤ ⟨y, ℓ(φ(y∗))⟩+ ⟨y, ℓ(φ(y))⟩,
by re-arranging:

⟨y, ℓ(φ(y))⟩ ≥ ⟨y∗, ℓ(φ(y∗))⟩+ ⟨y, ℓ(φ(y))− ℓ(φ(y∗)⟩
> ⟨y∗, ℓ(φ(y∗))⟩+ c∥y − y∗∥2 + ⟨y∗, ℓ(φ(y))− ℓ(φ(y∗)⟩
= ⟨y∗, ℓ(φ(y))⟩+ c∥y − y∗∥2, (38)

where the second row follows from Lemma 2. This
proves (37). We can further bound (36) as:

V̇y(y) ≤ −η(σ − LℓLφ)∥y − y∗∥2 (39)
+ ηLℓ∥y − y∗∥∥x− φ(y∗)∥

≤ −η(σ
2
− LℓLφ)∥y − y∗∥2 + ηL2

ℓ

2σ
∥x− φ(y∗)∥2,
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Fig. 6: Time series data for SR60-W and I10-W on March 6,
2020. Results obtained by identifying the parameters of (14) using
a prediction-correction algorithm that minimizes the fitting error.
(a) Traffic network and graph. (b) Traffic flow data obtained from
sensors (continuous lines with circles) and traffic state predicted
by our models (continuous lines). (c) Routing predicted by our
models. (d) Combined traffic demand entering at the origin, used to
simulate the model. The data illustrates a case where the trajectories
of (14) oscillate, pointing to the lack of asymptotic stability for the
equilibrium.

where the first inequality follows from the Cauchy-Schwarz
inequality and by continuity of φ(·) (where Lφ denotes
the corresponding Lipschitz constant), and the second row
follows from the inequality −az2 + bz ≤ b2/4a for a, b >
0, x ∈ R.

By combining (35) and (39) we conclude:

V̇ (x, y) ≤ −c1∥x− φ(y∗)∥2 − c2∥y − y∗∥2, (40)

where the constants c1 and c2 are given by:

c1 :=
µλmin(Q)

2
− ηL2

ℓ

2σ
, c2 := η

(σ
2
− LℓLφ

)
− k2

2µλmin(Q)
.

We thus have that c1 ≥ 0 and c2 ≥ 0 when, respectively,
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Fig. 7: Time evolution of the state trajectories of the model (14)
for the network in Fig. 1 with η = 1. (Top) Evolution of the traffic
density state x. (Middle) Evolution of the demanded path flow state.
(Bottom) Evolution of the travel latencies on the paths. The choice
η = 1 belongs to the range of stabilizing values characterized
in Theorem 17, and thus guarantees that the state asymptotically
converges to the Nash equilibrium of the underlying game.

η ≤ η2 :=
µσλmin(Q)

L2
ℓ

, η ≥ η1 :=
k2

µλmin(Q)(σ − 2LℓLφ)
.

(41)

Thus, there exists a feasible choice of η that guarantees that
c1 ≥ 0 and c2 ≥ 0 when σ > σ1 := 2LℓLφ and

k2

µλmin(Q)(σ − 2LℓLφ)
≤ µσλmin(Q)

L2
ℓ

. (42)

Notice that (42) can always be guaranteed to hold, pro-
vided that σ is chosen sufficiently large. To see this, note that
σ and Lℓ are related, such that σ ≤ Lℓ. As a worst-case, we
consider the case σ = Lℓ. In this case, (42) simplifies to

k2

µλmin(Q)(1−2Lφ) ≤ µλmin(Q). Since the eigenvalues of Q
can be rescaled by rescaling D in (33), we conclude that it
is always possible to choose Q such that (42) holds.

Altogether this implies that when σ > σ∗ – where
σ∗ = max{σ1, σ2} and σ2 is the smallest value of σ
such that (42) holds – and η ∈ [η1, η2], V (x, y) decreases
towards its minimum, given by ξ(x, y) = 0, which implies
(x, y) = (φ(y∗), y∗). The claim thus follows by application
of La Salle’s invariance principle [36, Cor. 4.1]. ■

We illustrate in Fig. 4 the relationships between impli-
cations. The theorem shows that, provided that the latency
functions are sufficiently steep and the imitation rate η
is adequately chosen (as in (30)), the trajectories of (14)
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Fig. 8: Time evolution of the state trajectories of the model (14)
for the network in Fig. 1 with the choice η = 1. (Top) Evolution of
the traffic density state x. (Middle) Evolution of the demanded path
flow state. (Bottom) Evolution of the travel latencies on the paths.
The choice η = 30 does not belong to the range of stabilizing values
characterized in Theorem 17. As illustrated in the simulations, this
choice of η originates oscillating trajectories, describing a condition
where users repeatedly switch their path preferences.

converge to the unique Nash equilibrium of the game R∆′

from any initial condition. We note that, although the state-
ment provides an existence result for σ∗, η1, η2, an explicit
expression for these quantities is given in the proof in (41)
and (42). Intuitively, (42) states that as σ increases, the
interval [η1, η2] becomes wider since η1 → 0 and η2 → +∞.
In words, this implies that the steeper the latency functions,
the more freedom one has in the choice of η.

Interestingly, the result suggests that asymptotic stability
may fail to hold when the latency functions are not suf-
ficiently steep, or the imitation rate is either too small or
too large. Intuitively, when σ is small, the path selection
process is not sufficiently sensitive to variations of traffic
congestion on the links. On the other hand, when η is too
large, the population is overreacting to small changes in
congestion, and individual users update their preferences
without anticipating the strategy of the rest of the population.
Finally, a lower bound on η is needed to lower bound the rate
of decrease of the replicator model toward its equilibirum.

V. Simulation Results
This section presents two sets of numerical simulations that
illustrate our findings.

A. Study case from California SR60-W and I10-W
Consider the traffic network in Fig. 6(a), which schematizes
the west bounds of the freeways SR60-W and I10-W in
Southern California. Let x60 and x10 be the average traffic
density in the examined sections of SR60-W (absolute miles
13.1 − 22.4) and in the section of I10-W (absolute miles
24.4 − 36.02), respectively. Moreover, let r60 (resp. r10 =
1− r60) be the fraction of travelers choosing freeway SR60-
W over I10-W (resp. choosing freeway I10-W over SR60-W)
for their commute. Fig. 6(b) illustrates the time-evolution of
the recorded traffic densities on the two highways on Friday,
March 6, 2020, reconstructed using data from the Caltrans
Freeway Performance Measurement System (PeMS); in the
same figure, we show the time-evolution of the state of
the interconnected model (14). The parameters of the traffic
system (4) were derived from the nominal highway charac-
teristics provided by the PeMS. For the routing model (9),
the link latency functions are computed by integrating traffic
speed data. This data illustrates a case where the trajectories
of (14) oscillate over time, implying that the equilibrium
points lack to be asymptotically stable; this showcases a
scenario where the assumptions of Theorem 17 are not
satisfied in practice.

Remark 18 (Other models could explain Fig. 6):
We remark that several variables affect the behavior of traffic
densities in practice (e.g., variable demands, different origin-
destination pairs, etc.) and there may exist other viable
models that account for these variables and that also explain
the data. While all these models are plausible, Fig. 6 shows
that there exists a model, with constant inflow, whose state
approximately interpolates the available data. □

B. Illustrative simulations on synthetic model
Consider the network illustrated in Fig. 1 and discussed in
Examples 4-7. Consider a model where λ = 1, for all i ∈ L
the outflow functions are linear fi(xi) = 0.5xi, and the
latency functions are given by ℓi(xi) = xi, i ∈ {1, 3, 5} and
ℓi(xi) = 2xi, i ∈ {2, 4}. Notice that these choices satisfy
Assumption 1 and 3. Proposition 15 guarantees that the game
R∆′ admits an equilibrium point; by Proposition 13 such
equilibrium is unique and evolutionary stable. Solving (20),
one obtains the Nash equilibrium y∗ = (2/5, 1/5, 2/5). It is
then possible to use Theorem 17 to determine values of η that
guarantee that the trajectories of (14) converge to the Nash
equilibrium. For our choices of functions, one can verify by
inspection that µ = 0.5, Lf = 0.5, σ = 1, Lℓ = 2, σ = 1.
Moreover, we estimated numerically (sampling each vari-
able uniformly in their domain using a Latin Hypercube
technique) Lφ = 0.125, Lψ = 1.1547. We used D = 102I
and obtained matrix Q (cf. (33)) with λmin(Q) = 20. This
yields k = 0.2039. With these choices, it is easy to see
that (42) is verified, and η1 = 2.6667 10−6, η2 = 25.
Fig. 7 illustrates the state trajectories of (14) for η = 1. As
guaranteed by Theorem 17, the state trajectories converge to
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the Nash equilibrium of the game R∆′ . On the other hand,
Fig. 8 illustrates the state trajectories of the interconnected
system with the choice η = 30. The simulation demonstrates
that an inadequate choice of imitation rate η leads to trajec-
tories that oscillate over time and not approach the Nash
equilibrium. The drawbacks of this oscillating phenomenon
can be visualized by comparing the path latencies illustrated
in the bottom figures of Fig. 7 and Fig. 8. The choice
η = 1 guarantees that all used paths have the same latency at
equilibrium, thus ensuring that all users experience the same
travel time. On the other hand, with the choice η = 30,
travel latencies are not homogeneous across the three paths,
implying that certain users experience a worse travel time
and higher congestion. From our simulations, we observed
that the amplitude of oscillating trajectories increases with
the flow demand λ, thus suggesting that the suboptimality
discussed above could deteriorate with increased congestion.

VI. Conclusions
This paper proposed a dynamic model of traffic and path
selection to describe the impact of app-informed travelers in
modern traffic networks, where the path selection process oc-
curs at the same timescale as the traffic physics. We studied
the properties and stability of the equilibrium points of this
model, showing that it is consistent with existing studies in
transportation. Our results suggest that the general adoption
of navigation systems enables these networks to transfer an
amount of flow no smaller than the min-cut capacity, and
that the equilibrium points are asymptotically stable provided
that the latency functions are sufficiently sensitive and the
imitation rate is adequately chosen. Future studies should
investigate how our conclusions translate to more general
models that account for bounded supply. Our results give rise
to several opportunities for future work. By coupling these
models with common infrastructure control models (such as
variable speed limits and freeway metering), these results
may play an important role in designing dynamic controllers
for congested infrastructures. Furthermore, our models and
stability analysis represent a fundamental framework for
future studies on robustness and security analysis.
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