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Abstract— Advanced traffic navigation systems, which pro-
vide routing recommendations to drivers based on real-time
congestion information, are nowadays widely adopted by road-
way transportation users. Yet, the emerging effects on the
traffic dynamics originating from the widespread adoption of
these tools have remained largely unexplored until now. In
this paper, we propose a dynamic model where drivers imitate
the path preferences of previous drivers, and we study the
properties of its equilibrium points. Our model is a dynamic
generalization of the classical traffic assignment framework,
and extends it by accounting for dynamics both in the path
decision process and in the network’s traffic flows. We show that
when travelers learn shortest paths by imitating other travelers,
the overall traffic system benefits from this mechanism and
transfers the maximum admissible amount of traffic demand.
On the other hand, we demonstrate that when the travel
delay functions are not sufficiently steep or the rates at which
drivers imitate previous travelers are not adequately chosen,
the trajectories of the traffic system may fail to converge to an
equilibrium point, thus failing asymptotic stability. Illustrative
numerical simulations combined with empirical data from
highway sensors illustrate our findings.

I. INTRODUCTION

Roadway traffic networks are fundamental components
of modern societies, making economic activity possible by
enabling the transfer of passengers, goods, and services in a
timely and reliable fashion. Despite their critical role, these
transportation systems are impaired by the long-standing
problem of traffic congestion, which wastes billions of
gallons of fuel each year [1], [2]. Advanced navigation
systems are nowadays widely adopted by travelers, largely
thanks to the widespread use of smartphone-based navigation
apps (such as Google Maps, Inrix, Waze, Apple Maps,
etc.) [3]. Advanced navigation systems provide shortest-path
routing recommendations based on real-time global travel
time information. On the one hand, these technologies have
enabled travelers to save time and fuel but, on the other hand,
they have transformed the transportation infrastructure orig-
inating unanticipated effects and disrupting existing traffic
flow patterns [4]. While the implications of the widespread
adoption of advanced navigation systems have been analyzed
game-theoretically [5], a characterization of the impact of
these technologies on dynamic models of traffic for general,
dynamic, traffic networks has remained elusive until now.

In this work, we study the stability properties of a traffic
system composed of the interconnection between a dynamic
model of traffic flows (inspired from the Cell Transmission
Model [6]) and a dynamic model of route selection (derived
from the Replicator Dynamics [7]). Our choice of using the
replicator equation is motivated by recent studies that showed
that this model emerges as an aggregate description of learn-

ing processes in large populations and as the limiting case of
the best response dynamics [8]. We show that, at equilibrium,
our model shares the same properties as the well-studied
routing game [5], and thus it is consistent with existing
studies that focus on systems operating at equilibrium. It
is worth noting that, with respect to the classical routing-
game framework, our model accounts for dynamics both
in the route selection process as well as in the traffic flow
model. Our dynamical model suggests that systems where
travelers continuously prefer highways with minimal latency
to destination – and select these highways by imitating other
travelers already in the network – admit an equilibrium point
provided that the external inflow is bounded above by the
min-cut capacity. This implies that traffic systems where
the users learn through imitation transfer the maximum
amount of flow that is transferable by a network operating
at equilibirum. This connects our work with classical static
flow models used in the transportation literature. Moreover,
our results show that when the rate of imitation (namely, the
frequency at which new users imitate the path preferences of
other users) is either too small or too large, the equilibrium
points may fail to be asymptotically stable, thus implying that
in unregulated networks the congestion state may oscillate
around (or escape from) the equilibria.

Related Work. The traffic model proposed here finds its
roots in the well-established routing game [9] and corre-
sponding traffic assignment problem [5], which have been
used in the transportation literature to model how travelers
make decisions in congested traffic. Recently, this framework
has received increased attention with several studies investi-
gating the impact of different sources of information on the
traffic system; e.g., see [10]–[13] and the references therein.
One of the main limitations of this classical approach is that
it models systems operating at equilibrium, thus neglecting
dynamics near these points. For this reason, evolutionary
dynamics [7] have been proposed to study the dynamic
properties of equilibria [14], [15]. Although these works
represent a step forward toward understanding the impact
of advanced navigation systems on traffic patterns, the used
models still rely on static descriptions, where traffic flows
propagate instantaneously across the network. It is immediate
to realize that such models are accurate only when the
routing preferences update at a slower timescale than that
of the traffic dynamics (e.g., when drivers update their
path preferences from day-to-day as a result of a personal
observation) On the other hand, in modern traffic networks,
advanced navigation systems allow drivers to update their
routing preferences at the same timescale as the traffic flows,
thanks to real-rime traffic state measurements. This connects



our work with the body of literature on dynamic traffic
flow models. Our model is a continuous-time version of
the Cell-Transmission Model [6] and related to the model
studied in [16]. Dynamic traffic models with static routing
preferences have been studied in [17] using monotonicity,
in [18] using mixed monotonicity, in [19] using passivity. Of
particular relevance to the framework studied here are [17],
[20]. With respect to these works, here we study path
selection mechanisms governed by the replicator equation
and we focus on the game-theoretic properties of this model
and its stability analysis. This work extends the preliminary
work of the authors [19] in several directions, including
a formal proof of uniqueness and evolutionary stability of
the Nash equilibrium, and a sufficient condition to ensure
asymptotic stability of the equilibrium point. Finally, the
recent works [21], [22] also highlighted detrimental effects
of navigation systems in a small-scale (two-link) network.

Contribution. The contribution of this work is threefold.
First, we propose a dynamic model derived from the repli-
cator dynamics to describe the path selection mechanism
underlying drivers’ decisions in congested traffic. We then
couple this routing model with a dynamic model of traf-
fic, which describes the evolution of traffic flows in the
network in relation to the instantaneous routing choices.
Relative to the classical traffic assignment framework, the
use of a dynamic traffic model describes modern networks
where routing decisions and traffic flows update at the same
timescale. As illustrated in Section V, this model allows us to
capture dynamic behaviors observed in practice, which could
not be explained using static models [23], [24]. Second,
we study the game-theoretic properties of the equilibria
of the interconnected model. We show that, under suitable
assumptions, an equilibrium point exists, is unique, and
coincides with an evolutionary stable Nash (or Wardrop)
equilibrium [25]. This relates our work with the well-
established routing game [9]. Third, we study the stability
properties of the equilibrium. By using a Lyapunov-based
reasoning, we derive sufficient conditions under which the
equilibrium is asymptotically stable. In simulation, we show
that the conditions are tight and that oscillating trajectories
can emerge when our conditions do not hold. Intuitively,
oscillations originate because the population is overreacting
to small changes in congestion, more precisely, in practice
this occurs because individual users update their routing
preferences without anticipating the preferences of the rest
of the population. This behavior is consistent with field data
(see, e.g., [23], [24]).

Organization. This paper is organized as follows. Section
II presents the proposed model. Section III derives conditions
for existence and uniqueness of an equilibrium point and in
Section IV we study the stability properties of the equilibria.
Section V illustrates our findings via numerical simulations
and Section VI concludes the paper.

Notation. Given x ∈ Rn, u ∈ Rm, we let (x, u) ∈ Rn+m
denote their concatenation; if n = m, ⟨x, u⟩ denotes the inner
product. For symmetric matrix M, λmax(M) and λmin(M)
denote its largest and smallest eigenvalue, respectively.

II. MODEL OF TRAFFIC NETWORK

In this section, we present our models of traffic flows and
routing decisions, and we formalize the problem we study.

A. Traffic flow model

We model a transportation network using a digraph G =
(V, E), where V is the set of nodes and L is the set of links.
In what follows, we let L = {1, . . . n}, n ∈ N>0. For a link
i ∈ L, we denote by oi ∈ V its origin node and by di ∈ V
its destination node. Motivated by real-world transportation
networks with parallel highways, we will allow for parallel
links, namely, we admit i, j ∈ L such that i ̸= j and have
the same origin and destination: oi = oj and di = dj .
A path in G is a sequence of links {i1, i2, . . . } such that
the origin node of each link is the destination node of the
preceding one. Notice that a path may contain repeated links
and, going along the path, one may reach repeated nodes. A
path is simple if it does contain the same link more than
once. The length of a path is the number of edges contained
in {i1, i2, . . . }. Following the Cell Transmission Model [6],
we describe the macroscopic behavior of traffic on each link
i ∈ L over time t ≥ 0 using the conservation law:

ẋi(t) = f in
i (x(t))− f out

i (x(t)), (1)

where xi(t) ∈ R is the traffic density in link i, f in
i (x(t)) is

the traffic inflow entering at upstream, and f out
i (xi(t)) is the

traffic outflow exiting at downstream. We make the following
assumptions on the outflow functions.

Assumption 1: For all i ∈ L, the outflow function f out
i (x)

depends only on the density xi, namely, f out
i (x) = fi(xi).

Moreover, fi : R≥0 → R≥0 satisfies fi(xi) = 0 if and only
if xi = 0, it is continuous, and strongly monotone; namely,

(xi − x̄i)(fi(xi)− fi(x̄i)) ≥ µ|xi − x̄i|2, (2)

for some µ > 0 and for all xi, x̄i ∈ R≥0. □
We discuss this assumption in Remark 2.1 and we illustrate
some choices of outflow functions in Example 2.2.

Assumption 1 guarantees that (1) is a positive system [26],
namely, for every non-negative initial state and every non-
negative input at all times, its state trajectory is non-negative.
In what follows, for all i ∈ L, we let

Ci := sup
z∈R

fi(z),

and C = (C1, . . . , Cn). If fi(·) is unbounded, Ci = +∞.
Remark 2.1 (Validity of Assumption 1): It is known (see,

e.g., [16]) that the assumption that fi(xi) only depends on xi
and is strictly increasing is valid provided that we restrict our
focus to free-flow regimes [6]. More precisely, it has been
shown in [16] that the free-flow equilibrium points of a more
complete traffic model (that accounts for congestion regimes
and backpropagation through the junctions) inherit the same
stability properties of the model considered here. Hence,
the conclusions drawn here will be applicable also to more
complete models, provided that their operation is restricted
to the free-flow regimes [16]. While we acknowledge that ac-
counting for congested regimes is an important problem, due



to the technical challenges in dealing with a more complete
model, we leave a generalization of our framework as the
focus of future works. Regarding the condition fi(xi) = 0
if and only if xi = 0, the “if” part ensures that no vehicle
density can flow out of a link when there is no density on it,
and the “only if” part guarantees that any density is allowed
to exit. □

Example 2.2 (Flow functions that satisfy Assumption 1):
A class of functions satisfying Assumption 1 (and used in,
e.g., [27]) is that of linear outflow functions, given by

f out
i (xi) = αixi, αi > 0.

In this case, Ci = +∞ and µ = min{αi}i∈L. A second class
of functions satisfying Assumption 1 and used in [28] is

f out
i (xi) = Ci(1− e−βixi), βi > 0,

which is strongly monotone on any bounded set. □
Throughout this paper, we will focus on single-commodity

networks, namely, networks for which there is a single origin
node o where exogenous traffic flows enter the network, and
a single destination node d, where flows exit the network.
We assume that G is outflow-connected, namely, there is a
path in G from every i ∈ L to d. To avoid trivial cases, we
will also assume that there exists at least one path from o to
d. We denote by λ ∈ R>0 the commodity inflow rate at o.

To model mass propagation through the nodes, we intro-
duce the scalar routing ratios (or routing splits)

{rij(t)}i,j∈L, t ≥ 0,

where rij(t) models the fraction of flow exiting link i that
proceeds toward j. We let rij(t) be normalized fractions, so
that rij(t) ∈ [0, 1]. Because exchange of flow is allowed only
between consecutive links in the network, we have rij(t) > 0
only if di = oj . Finally, mass is conserved through the nodes
when

∑
j rij(t) = 1. Similarly, we let roi(t) ∈ [0, 1] be

the fraction of exogenous inflow λ that is routed from the
origin node o to link i; analogously, we have roi(t) = 0
if oi ̸= o, and

∑
i∈L roi = 1. In what follows, it will be

useful to combine the network routing ratios into a matrix
R(t) = [rij(t)] ∈ Rn×n and the routing ratios at the origin
into a vector Ro = (ro1, . . . , ron) ∈ Rn. See Example 2.4
for an illustration of the model and notation.

Remark 2.3 (Temporal dependence in the routing ratios):
In this discussion, we treated {rij(t)}i,j∈L as time-varying
quantities; we will see shortly below (cf. Section II-B) that
the time-dependency in rij(t) implicitly originates as a
function of the traffic state x(t). □

At every node of G, traffic flows are conserved, and thus
the inflow to each link i ∈ L is given by

f in
i (x) = roi(t)λ+

∑

j∈L
rji(t)fj(xj(t)).

By substituting into (1), the density on each link evolves as:

ẋi(t) = roi(t)λ+
∑

j∈L
rji(t)fj(xj(t))− fi(xi(t)). (3)
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Fig. 1: Graph topology used to illustrate our model. See examples 2.4 and
2.6. Nodes labeled by ‘o’ and ‘d’ describe the origin and destination, where
exogenous inflows enter and exit the network, respectively. The dashed
arrow illustrates the exogenous inflow.

By letting

x := (x1, . . . xn), f(x) := (f1(x1), . . . , fn(xn))

be the joint vectors of densities and flows, respectively, the
network state evolves according to:

ẋ(t) = (R(t)T − I)f(x(t)) +Ro(t)λ. (4)

We illustrate this traffic model in Example 2.4.
Example 2.4 (Illustration of traffic flow model):

Consider the network topology in Fig. 1. The model (4)
reads as:

ẋ1 = −f1(x1) + ro1λ, ẋ3 = −f3(x3) + r13f1(x1),

ẋ2 = −f2(x2) + ro2λ, ẋ4 = −f4(x4) + r14f1(x1),

ẋ5 = −f5(x5) + f2(x2) + f3(x3),

where time dependencies have been dropped for compact-
ness. Notice that the routing ratios satisfy ro1 + ro2 =
1, r13 + r14 = 1. □

B. Congestion-responsive path selection model

We next propose a model to describe the path selection
process followed by drivers that seek to minimize their travel
time to destination. Let P denote the set of simple paths
from o to d. We assume that when a vehicle driver (hereafter
called a user) enters the network at o, they select a path in
P, and they follow this path to destination without updating
it while traversing the network. To model this process, we
introduce the variables {yp(t)}p∈P , where yp(t) denotes the
fraction of exogenous inflow λ that is routed through path
p at time t. We stress that yp(t) models a virtual amount
of flow that may never be observed in the network: indeed,
yp(t) describes the fraction of λ that is routed through p at
time t, but the actual traffic flows on the links of p will be
determined by the traffic flow model, as described shortly
below. Hence, in what follows, we call yp(t) demanded path
flow for path p (for a discussion on this wording choice, see
Remark 2.7 shortly below). See Fig. 2 for an illustration.
Then, the set of admissible path flow demands is the scaled
simplex:

∆ := {y ∈ Rp≥0 :
∑

p∈P
yp = λ}. (5)

For link i ∈ L, we let

yli(t) :=
∑

p∈P:i∈p
yp(t), (6)



be the demanded link flows. Similarly to the demanded path
flows, the demanded link flow yli(t) describes the fraction
of λ that is routed through link i at time t. In vector form,
y(t) = (y1(t), . . . , y|P|(t)) and yl(t) := (yl1(t), . . . , y

l
n(t)).

Notice that [5, Thm 2.2] guarantees that for any y(t) ∈ ∆,
yl(t) is uniquely determined.

To every link i ∈ L, we associate a latency function
ℓli(xi) mapping traffic density into latency, and describing
the travel time or latency required to traverse that link. With
this notation, the total demanded traffic latency for path p is
given by the sum of latencies of the links in that path:

ℓp(x) :=
∑

i∈p
ℓli(xi). (7)

In vector form, ℓ(x) := (ℓ1(x), . . . , ℓ|P|(x)) and ℓl(x) :=
(ℓl1(x1), . . . , ℓ

l
n(xn)). Motivated by [29], we make the fol-

lowing assumption on the latency functions.
Assumption 2: For all i ∈ L, ℓli : R≥0 → R≥0 is non-

negative, continuous, and such that

lim
xi→f−1

i (Ci)

ℓli(xi) = +∞. (8)

□
Assumption 2 is very mild, as it requires that every link has

a non-negative travel time that varies smoothly as a function
of the traffic densities and that tends to infinity as the link
flow approaches the flow capacity; we refer to [29] for a
detailed discussion on the validity of this assumption.

We consider a model where the vector of path preferences
y(t) is continuously updated over time based on the traffic
state of the network. We adopt a model of path selection
where the preference for a certain path p ∈ P will increase
or decrease depending on whether that path has a better or
worse travel time compared to the network average. To this
end, we model the time-evolution of the flow demands using
the replicator dynamics [30]:

ẏp(t) = yp(ℓ̄(x(t), y(t))− ℓp(x(t))), (9)

where

ℓ̄(x(t), y(t)) = λ−1
∑

p∈P
yp(t)ℓp(x(t)), (10)

is the average latency of traversing the network from o to d.
Equation (9) states that the growth rate of flow demand for
path p is proportional to the difference between the average
latency of traversing the network ℓ̄p(x(t)) and the latency
of that path ℓp(x(t)). We motivate our choice of adopting
the replicator dynamics in Remark 2.5; we also note that
this model has been widely adopted in the transportation
literature to study dynamics in the routing game [14], [31].

Remark 2.5 (Choice of the replicator dynamics): The
replicator equation is a deterministic model of imitation,
where future path preferences are selected by imitating
successful path preferences of previous users. Replicator
dynamics have originated in biology, arising in the study
of animal behavior and evolution, and researchers later
proved that this model is also an accurate description of
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(b)

Fig. 2: (a) Demanded path flows: y1(t), y2(t), y3(t) describe the fraction
of λ that is routed through paths, respectively, p1, p2, p3 at time t. (b) The
demanded path flows follow a model of path selection (cf. (9)) where the
preference for a certain path will increase or decrease depending on whether
that path has a better or worse travel time compared to the network average.

processes governed by machine learning algorithms in
large populations [8]. Interestingly, this is a good model
to describe the outcome of machine learning processes as
its dynamics hinge on historical data and the paradigm
of imitation (i.e., users observe others’ travel times and
change their own strategies based on these observations).
Although our analysis is tailored to the replicator model,
other selection models could be also considered – such as
the best-response dynamics [32]. It is worth noting that the
asymptotic properties of the trajectories are common across
several different models of selection: for instance, [32]
showed that noisy versions of the best-response dynamics
have the same qualitative properties as the replicator
dynamics. □

Example 2.6 (Illustration of the path selection model):
Consider the network illustrated in Fig. 5 and discussed
in Example 2.4. This graph includes three simple paths
P = {p1, p2, p3} (see Fig. 2(a)) given by

p1 = (1, 4), p2 = (1, 3, 5), p3 = (2, 5).

The demanded path flows y1, y2, y3 are scalar quantities that
model the fraction of exogenous inflow λ that is routed
through, respectively, paths p1, p2, p3. According to (6),
the demanded flows on the links yl1, y

l
2, y

l
3, y

l
4, y

l
5 can be

computed from the demanded flows on the path as follows:

yl1 = y1 + y2, yl2 = y3 yl3 = y2, yl4 = y1, yl5 = y2 + y3.

In words, the above relationships state that the flow on each
link is the sum of the flows on paths passing through that
link. The demanded traffic latencies of the paths (7) are

ℓ1(x) = ℓl1(x1) + ℓl4(x4), ℓ3(x) = ℓl2(x2) + ℓl5(x5),

ℓ2(x) = ℓl1(x1) + ℓl3(x3) + ℓl5(x5).

Namely, the latency of each path is the sum of latencies
of all links that compose that path. The average latency of
traversing the network (10) is:

ℓ̄(x, y) = λ−1(y1ℓ1(x) + yeℓ2(x) + y3ℓ3(x)),

and models the latency required to traverse the network,
averaged over all paths. The replicator model (9) proposed



to describe the path selection process in this case reads as:

ẏ1 = y1(ℓ̄(x, y)− ℓ1(x)), ẏ2 = y2(ℓ̄(x, y)− ℓ2(x)),

ẏ3 = y3(ℓ̄(x, y)− ℓ3(x)).

In words, the preference of users for a certain path grows
proportionally to the difference between the average delay
in the network the delay of that path. See Fig. 2(b). □

It is important to recall some important properties of the
replicator model (9) that will be used throughout this paper.
First, (9) satisfies

∑
p∈P ẏp(t) = 0 at all times, and thus the

simplex ∆ is forward invariant. Namely, if y(0) ∈ ∆, then,
y(t) ∈ ∆ for all t > 0. Second, the boundary faces

bfp∆ := {y :
∑

p∈P
yp = λ, yi = 0}, p ∈ P,

are also forward invariant, and so are the boundary bd∆
(i.e., the union of all the boundary faces) and the interior
int∆ (the subset satisfying yi > 0 ∀i). It is worth noting
that, if y(0) ∈ int∆, the trajectories of (9) may converge to
the boundary only for t→ +∞ and are confined to int∆ for
all finite t.

Importantly, these properties imply that if the initial con-
dition y(0) is such that yp(0) ∈ bfp for some p ∈ P, the
replicator equation will ignore yp (namely, yp(t) = 0 for
all t ≥ 0). This fact implies that one can define a new set
of |P| − 1 dimensional dynamics (9) where the variable yp
is removed, and the trajectories of the |P| dimensional and
|P| − 1 dimensional dynamics coincide at all times with the
additional condition yp(t) = 0 for all t ≥ 0. Motivated by
this observation, in what follows it will be convenient to
restrict the state space ∆ of (9) to the sub-simplex ∆′ given
by the support of the vector of initial conditions y(0) :

∆′ := {y ∈ Rp≥0 :
∑

p∈P
yp = λ, yp = 0 ∀p : yp(0) = 0}.

(11)

C. Combined model of traffic with congestion-responsive
routing

In this section, we connect the traffic flow model (4)
with the path selection model (9) to derive a model of
traffic network with congestion-responsive routing. The key
observation to relate the two models is that the set of
demanded link flows y(t) implicitly determines the routing
ratios rij(t), as described next. For a link j ∈ L, let
θj :=

∑
i∈L:oi=oj

yli denote the total demanded flow flowing
through its origin node oj . Then, given y ∈ ∆′, we let
the routing ratios depend on the demanded traffic flows as
follows:

rij(y) =





0 if oj ̸= dj ,

ylj/θj if oj = di and θj > 0,
1

|{k∈L:ok=oj}| otherwise,
(12)

where ylj is implicitly obtained from y using (6). The
model (12) states that the outflow exiting link i splits among
the available downstream links proportionally to the total
flow demand on each downstream link, provided that each
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Fig. 3: The proposed model couples a compartmental-like model of traffic
flows (see “Traffic flow physics”) with an economic model of route selection
(see “Path selection mechanism”). Grey-shaded blocks illustrate dynamic
models while white blocks illustrate algebraic relationships.

downstream link carries a nontrivial amount of flow, and
is split uniformly among the downstream links otherwise.
Notice that other allocation rules may be considered (e.g.,
where splits are non-uniform when θj = 0).

By combining (4), (7), (9), and (12) we obtain the fol-
lowing joint traffic flow model with congestion-responsive
routing:

ẋ(t) = T (x(t), y(t)), (13a)
ẏ(t) = F (x(t), y(t)), (13b)

where T : Rn≥0×∆′ → Rn, F : Rn≥0×∆′ → Rp, are defined
entry-wise, for all i ∈ {1, . . . , n} and p ∈ P, as:

Ti(x, y) = roi(y)λ+
∑

j∈L
rji(y)fj(xj)− fi(xi),

Fp(x, y) = η yp(ℓ̄(x, y)− ℓp(x)).

Here, scalar η > 0 is a design parameter that we have
introduced to modify the rate at which path preferences are
updated. When the equation (13b) describes the behavior
of users following routing recommendations provided by
a navigation system, η can be modified by deciding the
frequency at which travel recommendations are updated. For
this reason, in what follows, we refer to η to as imitation rate.
We illustrate the interconnection (13) and the quantities that
establish the coupling between the two models in Fig. 3.

We next introduce some basic notation that will be used
in the remainder. Since (12) ensures conservation of flows
at the nodes, it guarantees that the vector of link flows yl is
an equilibrium for (4), namely,

0 = (R(y)T − I)yl +Ro(y)λ. (14)

From (14), we deduce that a set of demanded path flows y
implicitly defines a set of demanded densities corresponding
to these flows. These are defined as:

φ(y) := f−1(yl), where yli =
∑

p∈P:i∈p
yp, ∀i ∈ L,

and f−1 : Rn≥0 → Rn≥0 denotes the entrywise inverse
function of f(·). In words, the function φ(y) maps a vec-
tor of demanded flows into the corresponding (demanded)
densities. Similarly to demanded flows, demanded densities
are virtual densities, which may never be observed in the
network, and that model the amount of traffic density needed
to support the instantaneous demanded flows y(t).



We conclude this section by stressing that the flows on the
links f(x(t)) imposed by the traffic dynamics differ from
the demanded flows yl(t), which are imposed by the path
selection model. We discuss in Remark 2.7 the important
differences between these two quantities.

Remark 2.7 (Demanded flows vs actual flows): It is im-
portant to stress a conceptual difference between “de-
manded” traffic variables and traffic variables imposed by
the traffic dynamics. Regarding traffic flows, the vector of
traffic flows f(x(t)) describes the flows on the links imposed
by the traffic dynamics; on the other hand, the vector of
demanded traffic flows yl(t) describes the fraction of flow
demand λ entering at o and that is routed to the links based
on an economic process of path selection. Analogously, the
traffic densities x(t) are quantities that are imposed by the
physics, while the demanded traffic densities φ(y) are virtual
quantities describing the densities associated with the the
traffic demand. Importantly, the traffic latencies ℓ(x) describe
the actual travel latencies imposed by the physics, which in
general differ from the demanded traffic latencies ℓ(φ(y)).
Notice that the two quantities converge to each other as the
dynamics of the traffic physics become infinitely fast. This
discrepancy differentiates our framework from the classical
routing game [5], where the dynamics of traffic are infinitely
fast. □

D. Connections with game-theoretic framework

In this section, we show that our framework can be related
to a population game [33]. This will allows us to connect our
setting to the routing game [9] and to relate the equilibirum
points of the model (13) to Wardrop equilibria [25].

The replicator equation (9) naturally defines an asso-
ciated population game [33], as described next. A (cost-
minimization) population game is defined by the triple
(S,X , κ), where S is a set of pure strategies, X is a
(generalized) simplex, and κ : X → R|S| is a vector-
valued cost function describing the cost associated with each
strategy, see [33, Sec. 13.2]. The replicator equation (9)
implicitly defines a population game defined by

S = P, X = ∆′, κ(y) = ℓ ◦ φ(y), (15)

which in what follows we denote by R∆′ := (P,∆′, ℓ ◦ φ).
In line with the existing literature [33], we will call a vector
of the simplex y ∈ ∆′ a (mixed) strategy. To this end, we
will say that a strategy ybr ∈ ∆′ is a best reply to y if:

yTbr ℓ(φ(y)) ≤ wTℓ(φ(y)), ∀w ∈ ∆′.

Associated with R, we have the following classical notion.
Definition 2.8 (Nash Equilibrium): A vector y∗ ∈ ∆′ is

said to be a Nash equilibrium of R∆′ if

⟨y∗, ℓ(φ(y∗))⟩ ≤ ⟨y, ℓ(φ(y∗))⟩, ∀y ∈ ∆′. (16)

□
In other words, a Nash equilibrium is a best reply to itself.
By noting that yTℓ(φ(y)) is the average population latency or
cost (cf. (10)), a Nash equilibrium describes a situation where
the population has no incentive to deviate away from strategy

y as any other strategy will yield a non-smaller latency. Nash
equilibria are used to describe routing games governed by
selfish individuals, where each individual chooses their path
to minimize their travel cost.

A very useful reformulation of the notion of Nash equi-
librium is that of Wardrop equilibrium [34]: y is a Wardrop
equilibrium if, for all p ∈ P,

yp > 0 implies ℓp(φ(y)) ≤ ℓp′(φ(y)), ∀p′ ∈ P. (17)

In line with the findings of [34], in what follows we will
use the wording Nash equilibrium and Wardrop equilibrium
interchangeably.

A desirable property for Nash equilibria is that of evolu-
tionary stability. Intuitively, a strategy y ∈ ∆′ is evolutionary
stable if it is a Nash equilibrium and small perturbations from
this strategy have a strictly larger average latency.

Definition 2.9 (Evolutionary stable point): A vector y ∈
∆′ is said to be an evolutionary stable point of R∆′ if it is
a Nash equilibrium and, for all w ∈ ∆′, w ̸= y,

wTℓ(φ(y)) = yTℓ(φ(y)) implies wTℓ(w) > yTℓ(φ(w)).
(18)

□
In words, y is evolutionary stable if any other best response
w to y is not a Nash equilibrium. It is worth stressing that
evolutionary stability is a property of the game R as it is
defined independently of the choice of the vector field in (9).

We conclude this section with an important observation,
which highlights the novelty of the model in Section II with
respect to the classical routing game framework [9]. We
remark that, in the routing game, both the traffic and path
selection mechanisms operate at the Nash equilibrium [9]
at all times. This requirement implicitly makes two highly
limiting assumptions: (i) the highways have trivial (infinitely
fast) dynamics so that the traffic flows can be modeled as
an algebraic map φ(y) of the flow demands; (ii) there are
no transients in the path selection process, so that the path
preferences can be described as a Nash equilibrium (16) at
all times. Remarkably, when the framework of the routing
game framework was derived in the 1950s [9], travelers
could update their routing preferences only from day to
day and networks would often operate near equilibrium as
traffic demands would change slowly. In contrast, in modern
networks, travelers can update their routing preferences at a
fast timescale, as they have access to instantaneous real-time
traffic information, and traffic demands are highly dynamic.
Hence, we conjecture that the model proposed here is a more
accurate description of modern traffic systems.

III. PROPERTIES OF THE EQUILIBRIUM POINTS

In this section, we study the properties of the equilibrium
points of the interconnection (13). We begin by noting that
solutions to (13) are well-defined, as formalized next.

Proposition 3.1 (Well-posedness of solutions): Let
Assumptions 1 and 2 be satisfied, x(0) ∈ Rn≥0, and
y(0) ∈ ∆′. Then, there exists a unique solution



(x(t), y(t)), t ≥ 0, to the initial value problem (13).
Moreover, (x(t), y(t)) ∈ Rn≥0 ×∆′ for all t ≥ 0. □

Proof: Existence and uniqueness of the solutions follow
from the Lipschitz continuity of the vector fields in (13). The
claim x(t) ∈ Rn≥0 follows from Assumption 1, and y(t) ∈ ∆′

follows from
∑
p∈P ẏp = 0.

A. Existence of fixed points
We begin by investigating under what conditions the

interconnected model (13) admits equilibrium points. Inter-
estingly, we will show that their existence depends solely on
the magnitude of external inflows entering the network. To
this end, the min-cut capacity of the traffic flow model is:

Ccut = min
S⊆V:

o∈S,d̸∈S

∑

i∈L:
oi∈S,di ̸∈S

Ci.

Notice that Ccut may or may not be finite, precisely, Ccut ∈
[0,+∞].

Proposition 3.2 (Existence of equilibria): Let Assump-
tions 1 and 2 be satisfied. If λ < Ccut, then the interconnected
system (13) admits an equilibrium point that is a Nash
equilibrium. Conversely, if λ > Ccut, then, no equilibirum
point exists for (13). □

Proof: (Case λ < Ccut) To prove this implication,
we show the existence of a point that satisfies the Wardrop
conditions and that is an equilibrium of (13). Following [5,
Thm. 2.1], a vector of path flows ȳ ∈ R|P| is a Wardrop
equilibrium if and only if it satisfies the first-order optimality
conditions of the following optimization problem:

min
y1,...,y|P|∈R

∑

i∈L

∫ yli

0

ℓli(s)ds, (19a)

s. to
∑

p∈P
yp = λ, (19b)

yp ≥ 0, ∀p ∈ P, (19c)∑

p∈P:i∈P
yp = yli, ∀i ∈ L, (19d)

In (19), yl1, . . . , y
l
n are dependent variables (describing link

flows) that are uniquely determined by (19d) (see [5, Thm
2.2]). Since the objective function is continuous and non-
decreasing (cf. Assumption 2), according to Weierstrass’
Theorem, it admits a minimum provided that the feasible
set is closed, bounded, and nonempty. The feasible set
of (19) is unbounded, but from the positiveness of the latency
functions, one may add the constraint yp ≤ dp, where
dp > 0 is sufficiently large. Hence, the feasible set can
be made closed and bounded without affecting the solution
of [5, Thm 2.1]. Since λ < Ccut, by the max-flow min-
cut theorem [35, Thm 4.1], the feasible set is nonempty.
Hence, by Weierstrass’ Theorem, the game R admits a Nash
equilibrium.

Let y∗ denote a Nash equilibrium of R; we next show
that y∗ is an equilibrium flow for (13a). Let R(y∗) be the
routing matrix obtained from y∗ via (12); by using (14), we
have

(R(y∗)T − I)φ(y∗) + λ = 0,

and thus we conclude that the pair (x∗, y∗), x∗ := φ(y∗), is
an equilibrium of (13a). We are left to show that (x∗, y∗), is
also an equilibrium of (13b). Since y∗ is a Nash equilibrium,
it satisfies:

ℓp(φ(y
∗)) = c, ∀p ∈ P : ȳp > 0,

and thus we have ℓ̄(φ(y∗), y∗) = c. This proves that (x∗, y∗),
is an equilibrium of (13b).

(Case λ > Ccut) By contradiction, assume that an equilib-
rium point (x∗, y∗) exists. Because the replicator equation
guarantees y(t) ∈ ∆′ ∀t ≥ 0, we must have

∑

p∈P
y∗p = λ and y∗p ≥ 0, ∀p ∈ P.

Under these two conditions, the max-flow min-cut theorem
is applicable, which guarantees that, for some i ∈ L,

∑

p∈P:i∈P
y∗p > Ci, (20)

but this contradicts the equilibrium condition (R(y∗)T −
I)φ(y∗) + λ = 0, thus proving the claim.

In words, fixed points exist when the external flow demand
is bounded above by the min-cut capacity; moreover, at
least one equilibrium point is a Wardrop equilibrium. This
has two important implications. First, it shows that our
model is consistent with the classical literature, in particular,
with the widely established notion of Wardrop equilibrium.
Importantly, while Wardrop equilibria were developed for
static models operating at equilibrium, our model instead is a
dynamic generalization of this classical framework [5]. Sec-
ond, the result relates our work with the fundamental bound
concerning the maximum amount of flow transferable by a
static graph (as given by the max-flow min-cut theorem [35]):
it shows that traffic systems where users learn through
imitation can transfer, asymptotically, the same amount of
flow as static graphs with free routing. This implies that
imitation-based selection benefits the overall traffic system,
enabling it to transfer the maximum admissible amount of
flow. We remark that this property is in contrast with dynamic
traffic flow models with static routing, which may not admit
equilibrium points even when λ < Ccut (see, e.g., [6], [16,
Prop. 2]).

B. Conditions for uniqueness of the Nash equilibrium

While Proposition 3.2 guarantees existence of a Nash
equilibrium, it remains unclear whether such an equilibrium
is unique or evolutionary stable. We address this aspect next.

Proposition 3.3 (Uniqueness and evolutionary stability):
Let Assumptions 1–2 be satisfied and R∆′ be the game
induced by (9) and defined as in (15). Further, assume that
the latency functions are strictly monotone, namely, for all
i ∈ L,

(xi − x̄i)(ℓ
l
i(xi)− ℓli(x̄i)) > 0, (21)

for all xi, x̄i ∈ [0, Ci), xi ̸= x̄i. Then, the game R∆′ admits
a unique Nash equilibrium. Moreover, such equilibrium is
evolutionary stable.



The following lemma is instrumental for the proof.
Lemma 3.4 (Strict monotonicity of the flow latencies):

Under the assumptions of Proposition 3.3, the demanded
path flow latency functions are strictly monotone, namely,

⟨y − ȳ, ℓ(φ(y))− ℓ(φ((ȳ))⟩ > 0, ∀y, ȳ ∈ ∆′, y ̸= ȳ.
(22)

□
Proof: We have:

⟨y − ȳ, ℓ(φ(y))− ℓ(φ((ȳ))⟩
=

∑

p∈P
(yp − ȳp)(ℓp(φ(y))− ℓp(φ(ȳ)))

=
∑

p∈P
(yp − ȳp)


∑

i∈p
ℓli(φi(y))−

∑

i∈p
ℓli(φi(ȳ))




=
∑

i∈L

∑

p∈P:i∈p
(yp − ȳp)

(
ℓli(φi(y))− ℓli(φi(ȳ))

)

=
∑

i∈L
(yli − ȳli)

(
ℓli(φi(y))− ℓli(φi(ȳ))

)
,

where the second identity follows from (7) and the fourth
identity from (6). Next, let i ∈ L be fixed, and distinguish
among three cases. (Case 1) Assume yli > ȳli, we have:

(yli − ȳli)
(
ℓli(φi(y))− ℓli(φi(ȳ))

)
> 0, (23)

since ϕi and ℓli are strictly increasing. (Case 2) Assume yli <
ȳli. In this case, (23) also holds since φi and ℓli are strictly
increasing. (Case 3) Assume yli = ȳli. We have:

(yli − ȳli)
(
ℓli(φi(y))− ℓli(φi(ȳ))

)
= 0.

Since y ̸= ȳ, there exists at least one link i ∈ L for
which (23) is satisfied, from which we conclude that (22)
holds.

We are now ready to prove the proposition

Proof of Proposition 3.3: Let y∗ ∈ ∆′ denote a Nash
equilibrium of R∆′ and y ∈ ∆′. Using (16), we have

⟨y∗, ℓ(φ(y∗))⟩+ ⟨y, ℓ(φ(y))⟩ ≤ ⟨y, ℓ(φ(y∗))⟩+ ⟨y, ℓ(φ(y))⟩,
by re-arranging:

⟨y, ℓ(φ(y))⟩ ≥ ⟨y∗, ℓ(φ(y∗))⟩+ ⟨y, ℓ(φ(y))− ℓ(φ(y∗)⟩
> ⟨y∗, ℓ(φ(y∗))⟩+ ⟨y∗, ℓ(φ(y))− ℓ(φ(y∗)⟩
= ⟨y∗, ℓ(φ(y))⟩, (24)

where the second row follows from (22) and the third
row follows from re-arranging the terms. Inequality (24)
proves (18), thus showing that y∗ is evolutionary stable.
Finally, since the above condition holds for all y ∈ ∆′, no
other point in ∆′ other than y∗ can satisfy (16), thus proving
uniqueness. ■

Proposition 3.3 shows that, under an additional mono-
tonicity requirement on the latency functions, the game R∆′

admits a unique Nash equilibrium that is evolutionary stable.
See Fig. 4. We stress that uniqueness and evolutionary stabil-
ity are properties of the Nash equilibrium of the game R∆′ ,

Properties of game Properties of (13)

Nash
Equilibirum

Evolutionary 
Stable Point

Equilibrium
Point

Globally Asymptotically 
Stable Equilibrium

Point

Thm 4.1Prop 3.3
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Thm 4.1

Fig. 4: Summary of the properties established in the main results of this
paper. Proposition 3.3 shows existence of a unique Nash equilibirum and
that such equilibirum is evolutionary stable; Theorem 4.1 shows that the
unique Nash equilibrium of R∆′ is also an equilibrium point of (13) and
that such a point is globally asymptotically stable.

(and not of the joint dynamics (13)). However, we will show
in the next section that these properties can be harnessed to
study the asymptotic properties of the trajectories of (13).

IV. ASYMPTOTIC STABILITY OF THE NASH EQUILIBRIUM

In this section, we study the stability properties of the
equilibrium points of the interconnection (13). To proceed,
we reinforce Assumption 2 as follows.

Assumption 3: The conditions in Assumption 2 are satis-
fied. Moreover, the latency functions are strongly monotone,
namely, there exists σ > 0 such that

(xi − x̄i)(ℓ
l
i(xi)− ℓli(x̄i)) ≥ σ|xi − x̄i|2, (25)

for all xi, x′i ∈ [0, Ci) and i ∈ L. □
In words, the assumption asks that the latency functions

grow at least linearly with the traffic densities1; the parameter
σ quantifies the “steepness” of the density-latency maps. In
what follows, we will interpret σ as a free parameter, which
can be tuned by a system planner to improve the efficiency
of a traffic system modeled by (13). The following result
characterizes the asymptotic behavior of (13).

Theorem 4.1 (Stability of interconnected system):
Let Assumption 1 and 3 hold and λ < Ccut. Let
(x(t), y(t)) denote the solution of (13) with initial
conditions (x(0), y(0)), ∆′ the restricted simplex induced
by y(0), R∆′ the game defined by (15), and y∗ the unique
Nash equilibrium of R∆′ . There exists σ∗, η1, η2 > 0 such
that if σ and η satisfy:

σ > σ∗, η ∈ [η1, η2], (26)

then, for any (x(0), y(0)) ∈ Rn≥0 ×∆′,

lim
t→∞

∥(x(t), y(t))− (x∗, y∗)∥ = 0,

where x∗ := φ(y∗). □
The following lemma is a minor extension of Lemma 3.4

under Assumption 3, and is instrumental for the proof.
Lemma 4.2 (Strong monotonicity of the flow latencies):

When Assumptions 1 and 3 hold, the path flow latency

1Indeed, strong monotonicity of ℓli(xi) is equivalent to imposing that
ℓli(xi)−σxi is a monotone function (this follows by rewriting the inequality
as (xi − x̄i)((ℓ

l
i(xi)− σxi)− (ℓli(x̄i)− σxi)) ≥ 0).



functions are strongly monotone, namely, there exists
σ > 0 :

⟨y − ȳ, ℓ(φ(y))− ℓ(φ((ȳ))⟩ ≥ σ∥y − ȳ∥2, ∀y, ȳ ∈ ∆′.
(27)

□

Proof of Theorem 4.1: Our proof technique relies on show-
ing that the potential function

V (x, y) := Vx(x) + Vy(y),

where Vx(x) is a potential function for (13a) and Vx(x) is
a potential function for (13b) strongly decreases along the
trajectories of (13) and achieves its minimum at (φ(y∗), y∗).
We will use the following compact notation:

A(y) := R(y)T − I, ϕ(y) := −A(y)−1Ro(y)λ,

with ϕ(y) = (ϕ1(y), . . . , ϕn(y)). Since G is outflow con-
nected, [36, Thm. 3] guarantees that A(y) is invertible
for any y. Since −A(y∗) is a nonsingular M-matrix, [37,
Prop. I25] guarantees the existence of a positive diagonal
matrix D = diag(d1, . . . , dn) such that

Q = −(A(y∗)D +DA(y∗)), (28)

is symmetric and positive definite. Let

Vx(x) := 2
∑

i∈L
d−1
i

∫ xi

0

f(s)− ϕi(y
∗)ds. (29)

The time-derivative of Vx(x) along the solutions of (13) is:

V̇ (x) = 2(f(x)− ϕ(y∗))D−1(A(y)f(x) +Ro(y)λ)

= 2(f(x)− ϕ(y∗))TD−1(A(y∗)f(x) +Ro(y
∗)λ)

+ 2(f(x)− ϕ(y∗))TD−1(ψx(y)− ψx(y
∗))

= −(f(x)− ϕ(y∗))TQ(f(x)− ϕ(y∗))

+ 2(f(x)− ϕ(y∗))TD−1(ψx(y)− ψx(y
∗))

≤ −µλmin(Q)∥x− φ(y∗)∥2 + k∥x− φ(y∗)∥∥y − y∗∥

≤ −µλmin(Q)

2
∥x− φ(y∗)∥2 + k2

2µλmin(Q)
∥y − y∗∥2.

(30)

Here, in the second row, we used the compact notation

ψx(y) := A(y)f(x) +Ro(y)λ,

the third row follows from (28). The fourth row follows
by using the Cauchy-Schwarz inequality and by noting that
ψx(y) is Lipschitz continuous in y, uniformly in x, and by
letting k = 2∥D−1∥LψLf , where Lψ and Lf denote the
Lipschitz constants of ψx(·) and f(·), respectively. The fifth
row follows from the inequality −ax2 + bx ≤ b2/4a for
a, b > 0, x ∈ R.

Next, we let

Vy(y) =
∑

p∈P
y∗p ln

(
y∗p
yp

)
.

The time-derivative of Vy(y) along the solutions of (13) is
given by:

V̇y(y) = −η
∑

p

y∗p(ℓ̄(x, y)− ℓp(x))

= −λℓ̄(x, y) + η
∑

p

y∗pℓp(x)

= −η
∑

p

(yp − y∗p)ℓp(x)

= −η
∑

p

(yp − y∗p)ℓp(φ(y))

− η
∑

p

(yp − y∗p)(ℓp(x)− ℓp(φ(y))

≤ −ησ∥y − y∗∥2 + ηLℓ∥y − y∗∥∥x− φ(y)∥ (31)

Here, the second row follows from
∑
p y

∗
p = λ; the third

row follows from (10); the fourth row from adding and
subtracting ℓp(φ(y)). The fifth row follows by application of
the Cauchy-Schwarz inequality, by using continuity of ℓ(·)
(where Lℓ denotes the corresponding Lipschitz constant), and
from the following inequality:

⟨y − y∗, ℓ(φ(y))⟩ ≥ σ∥y − y∗∥2. (32)

To prove (32), since y∗ is a Nash equilibrium, we have
from (16):

⟨y∗, ℓ(φ(y∗))⟩+ ⟨y, ℓ(φ(y))⟩ ≤ ⟨y, ℓ(φ(y∗))⟩+ ⟨y, ℓ(φ(y))⟩,
by re-arranging:

⟨y, ℓ(φ(y))⟩ ≥ ⟨y∗, ℓ(φ(y∗))⟩+ ⟨y, ℓ(φ(y))− ℓ(φ(y∗)⟩
> ⟨y∗, ℓ(φ(y∗))⟩+ c∥y − y∗∥2 + ⟨y∗, ℓ(φ(y))− ℓ(φ(y∗)⟩
= ⟨y∗, ℓ(φ(y))⟩+ c∥y − y∗∥2, (33)

where the second row follows from Lemma 4.2. This
proves (32). We can further bound (31) as:

V̇y(y) ≤ −η(σ − LℓLφ)∥y − y∗∥2 (34)
+ ηLℓ∥y − y∗∥∥x− φ(y∗)∥

≤ −η(σ
2
− LℓLφ)∥y − y∗∥2 + ηL2

ℓ

2σ
∥x− φ(y∗)∥2,

where the first inequality follows from the Cauchy-Schwarz
inequality and by continuity of φ(·) (where Lφ denotes
the corresponding Lipschitz constant), and the second row
follows from the inequality −ax2 + bx ≤ b2/4a for a, b >
0, x ∈ R.

By combining (30) and (34) we conclude:

V̇ (x, y) ≤ −c1∥x− φ(y∗)∥2 − c2∥y − y∗∥2, (35)

where the constants c1 and c2 are given by:

c1 :=
µλmin(Q)

2
− ηL2

ℓ

2σ
, c2 := η

(σ
2
− LℓLφ

)
− k2

2µλmin(Q)
.

We thus have that c1 ≥ 0 and c2 ≥ 0 when, respectively,

η ≤ η2 :=
µσλmin(Q)

L2
ℓ

, η ≥ η1 :=
k2

µλmin(Q)(σ − LℓLφ)
.

(36)
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Fig. 5: Time series data for SR60-W and I10-W on March 6, 2020. Results
obtained by identifying the parameters of (13) using a prediction-correction
algorithm that minimizes the fitting error. (a) Traffic network and graph.
(b) Traffic flow data obtained from sensors (continuous lines with circles)
and traffic state predicted by our models (continuous lines). (c) Routing
predicted by our models. (d) Combined traffic demand entering at the origin.
The data illustrates a case where the trajectories of (13) oscillate and thus
the equilibria lack to be asymptotically stable.

Thus, there exists a feasible choice of η that guarantees that
c1 ≥ 0 and c2 ≥ 0 when σ > σ1 := 2LℓLφ and

k2

µλmin(Q)(σ − LℓLφ)
≤ µσλmin(Q)

L2
ℓ

. (37)

Notice that (37) can always be guaranteed to hold, provided
that σ is chosen sufficiently large. Altogether this implies
that when σ > σ∗ – where σ∗ = max{σ1, σ2} and σ2
is the smallest value of σ such that (37) holds – and
η ∈ [η1, η2], V (x, y) decreases towards its minimum, given
by ξ(x, y) = 0, which implies (x, y) = (φ(y∗), y∗). The
claim thus follows by application of La Salle’s invariance
principle [38, Cor. 4.1]. ■

We illustrate in Fig. 4 the relationships between impli-
cations. The theorem shows that, provided that the latency
functions are sufficiently steep and the imitation rate η
is adequately chosen (as in (26)), the trajectories of (13)
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Fig. 6: Time evolution of the state trajectories of the model (13) for
the network in Fig. 1 with the choice η = 1. (Top) Evolution of the
traffic density state x. (Middle) Evolution of the demanded path flow state.
(Bottom) Evolution of the travel latencies on the paths. The choice η = 1
belongs to the range of stabilizing values characterized in Theorem 4.1,
and thus guarantees that the state asymptotically converges to the Nash
equilibrium of the underlying game.

converge to the unique Nash equilibrium of the game R∆′

from any initial condition. We note that, although the state-
ment provides an existence result for σ∗, η1, η2, an explicit
expression for these quantities is given in the proof in (36)
and (37). Intuitively, (37) states that as σ increases, the
interval [η1, η2] becomes wider since η1 → 0 and η2 → +∞.
In words, this implies that the steeper the latency functions,
the more freedom one has in the choice of η.

Interestingly, the result suggests that asymptotic stability
may fail to hold when the latency functions are not suf-
ficiently steep, or the imitation rate is either too small or
too large. Intuitively, when σ is small, the path selection
process is not sufficiently sensitive to variations of traffic
congestion on the links. On the other hand, when η is
too large, the population is overreacting to small changes
in congestion, and individual users update their preferences
without anticipating the strategy of the rest of the population.

V. SIMULATION RESULTS

This section presents two sets of numerical simulations
that illustrate our findings.

A. Study case from California SR60-W and I10-W

Consider the traffic network in Fig. 5(a), which schema-
tizes the west bounds of the freeways SR60-W and I10-W
in Southern California. Let x60 and x10 be the average traffic
density in the examined sections of SR60-W (absolute miles
13.1 − 22.4) and in the section of I10-W (absolute miles
24.4 − 36.02), respectively. Moreover, let r60 (resp. r10 =
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Fig. 7: Time evolution of the state trajectories of the model (13) for
the network in Fig. 1 with the choice η = 1. (Top) Evolution of the
traffic density state x. (Middle) Evolution of the demanded path flow
state. (Bottom) Evolution of the travel latencies on the paths. The choice
η = 30 does not belong to the range of stabilizing values characterized in
Theorem 4.1. As illustrated in the simulations, this choice of η originates
oscillating trajectories, describing a condition where users repeatedly switch
their path preferences.

1− r60) be the fraction of travelers choosing freeway SR60-
W over I10-W (resp. choosing freeway I10-W over SR60-W)
for their commute. Fig. 5(b) illustrates the time-evolution of
the recorded traffic densities on the two highways on Friday,
March 6, 2020, reconstructed using data from the Caltrans
Freeway Performance Measurement System (PeMS); in the
same figure, we show the time-evolution of the state of the in-
terconnected model (13). The parameters of the traffic system
(4) were derived from the nominal highway characteristics
provided by the PeMS. For the routing model (9), the link
latency functions are computed by integrating traffic speed
data. This data illustrates a case where the trajectories of (13)
oscillate over time, implying that the equilibrium points lack
to be asymptotically stable; this showcases a scenario where
the assumptions of Theorem 4.1 are not satisfied in practice.

B. Illustrative simulations on synthetic model

Consider the network illustrated in Fig. 1 and discussed
in Examples 2.4-2.6. Consider a model where λ = 1, for all
i ∈ L the outflow functions are linear fi(xi) = 0.5xi, and the
latency functions are given by ℓi(xi) = xi, i ∈ {1, 3, 5} and
ℓi(xi) = 2xi, i ∈ {2, 4}. Notice that these choices satisfy As-
sumption 1 and 3. Proposition 3.2 guarantees that the game
R∆′ admits an equilibrium point; by Proposition 3.1 such
equilibrium is unique and evolutionary stable. Solving (19),
one obtains the Nash equilibrium y∗ = (2/5, 1/5, 2/5). It
is then possible to use Theorem 4.1 to determine values
of η that guarantee that the trajectories of (13) converge
to the Nash equilibrium. For our choices of functions, one

can verify by inspection that µ = 0.5, Lf = 0.5, σ =
1, Lℓ = 2, σ = 1. Moreover, we estimated numerically
(sampling each variable uniformly in their domain using
a Latin Hypercube technique) Lφ = 0.125, Lψ = 1.1547.
We used D = 102I and obtained matrix Q (cf. (28))
with λmin(Q) = 20. This yields k = 0.2039. With these
choices, it is easy to see that (37) is verified, and η1 =
2.6667 10−6, η2 = 25. Fig. 6 illustrates the state trajectories
of (13) for η = 1. As anticipated by Theorem 4.1, the state
trajectories converge to the Nash equilibrium of the game
R∆′ . On the other hand, Fig. 7 illustrates the state trajectories
of the interconnected system with the choice η = 30.
The simulation demonstrates that an inadequate choice of
imitation rate η leads to trajectories that oscillate over time
and not approach the Nash equilibrium. The drawbacks of
this oscillating phenomenon can be visualized by comparing
the path latencies illustrated in the bottom figures of Fig. 6
and Fig. 7. The choice η = 1 guarantees that all used
paths have the same latency at equilibrium, thus ensuring
that all users experience the same travel time. On the other
hand, with the choice η = 50, travel latencies are not
homogeneous across the three paths, implying that certain
users experience a worse travel time and higher congestion.
From our simulations, we observed that the amplitude of
oscillating trajectories increases with the flow demand λ,
thus suggesting that the suboptimality discussed above could
deteriorate with increased congestion.

VI. CONCLUSIONS

This paper proposed a dynamic model of traffic and path
selection to describe the impact of app-informed travelers
in modern traffic networks. We studied the properties and
stability of the equilibrium points of this model, showing
that it is consistent with existing studies in transportation.
Our results suggest that the general adoption of navigation
systems enables these networks to transfer an amount of flow
no smaller than the min-cut capacity, and that the equilibrium
points are asymptotically stable provided that the latency
functions are sufficiently sensitive and the imitation rate is
adequately chosen. Future studies should investigate how our
conclusions translate to more general models that account for
bounded supply back propagation through the junctions. Our
results give rise to several opportunities for future work. By
coupling these models with common infrastructure control
models (such as variable speed limits and freeway metering),
these results may play an important role in designing dy-
namic controllers for congested infrastructures. Furthermore,
our models and stability analysis represents a fundamental
framework for future studies on robustness and security
analysis.
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