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Abstract— This paper proposes a simplified version of classical
models for urban traffic networks and studies the problem
of optimizing the network overall efficiency by controlling the
signalized intersections. Differently from traditional approaches
to control traffic signaling, the tractability of our framework
allows us to effectively model large-scale interconnections and
enables the design of critical parameters while considering
network-wide measures of efficiency. Motivated by the increasing
availability of real-time high-resolution traffic data, we cast an
optimization problem that formalizes the goal of optimizing
vehicle evacuation by controlling the durations of green lights
at the intersections under the current congestion conditions.
Our framework allows us to relate efficiency objectives with
the optimization of a metric of controllability of the associated
dynamical network. We then provide a technique to efficiently
solve the optimization by parallelizing the computation among
a group of distributed agents. Last, we assess the benefits of
the proposed modeling and optimization framework through
macroscopic and microscopic simulations on daily commute
scenarios for the urban interconnection of Manhattan, NY, USA.

Index Terms— Traffic control, signalized intersections, traffic
networks, distributed optimization, controllability.

I. INTRODUCTION

EFFECTIVE control of transportation systems is at the
core of the smart city paradigm, and has the potential for

improving efficiency and reliability of urban mobility. Modern
urban transportation architectures comprise two fundamental
components: traffic intersections and interconnecting roads.
Intersections connect and regulate conflicting traffic flows
among adjacent roads, and their effective control can sensibly
improve travel time and prevent congestion. Congestion is the
result of networks operating close to their capacity, and often
leads to degraded throughput and increased travel time.

The increasing availability of sensors for vehicle detection
and flow estimation, combined with modern communica-
tion capabilities (e.g. vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communication), have inspired the
development of infrastructure control algorithms that are adap-
tive [1], that is, policies that adjust the operation of the
system based on the current traffic conditions. Nevertheless,
the remarkable complexity of modern urban transportation
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infrastructures has recently promoted the diffusion of control
policies that are distributed, that is, algorithms that adapt
the operation of individual network components based on the
partial knowledge of the current network state and dynamics.
The lack of a global network model, capable of captur-
ing the interactions between spatially-distributed components
and capable of modeling all the relevant network dynamics,
often results in suboptimal performance [2]. In this paper,
we propose a simplified model to capture the time and spatial
relationships between traffic flows in urban traffic networks
in certain regimes. The model represents a tradeoff between
accuracy and complexity, and sets out as a tractable framework
to study efficiency and reliability of this class of dynamical
systems. The proposed dynamical framework is employed in
this work for the control of signalized traffic intersections.

Related Work: The design of feedback policies for the
control of traffic infrastructures is an intensively-studied topic,
and the available techniques can mainly be divided into three
categories: routing policies, flow control, and intersections
control. Routing policies rely on game-theoretic models to
capture the behavior of the drivers and to influence their
turning preferences in order to optimize congestion objec-
tives, and have been studied both in a centralized [3] and
distributed [4] framework. Flow control uses a combination
of speed limits and gating techniques to regulate the road
flows and network inflows, respectively [5], [6]. Conversely,
intersection control refers to the design of the scheduling of the
(automated) intersections so that the flow through intersections
is maximized, and can be achieved: (i) by controlling the
signaling sequence and offset, and/or (ii) by designing the
durations of the signaling phases. The control of signaling
offsets typically aims at tuning the synchronization of green
lights between adjacent intersections in order to produce
green-wave effects [7], and consists of solving a group of
optimization problems that take into account certain subparts
of the infrastructure, while minimizing metrics such as the
number of stops experienced by the vehicles. In contrast,
the durations of green times at intersections affects the average
behavior of the traffic flows in the network, and plays a
significant role in the efficiency of large-scale networks [2].

Widely-used distributed signaling control programs include
SCOOT [8], RHODES [9], OPAC [10], SCATS [11], and
emerge as the most common techniques currently employed
in major cities. The sub-optimal performance of these meth-
ods has recently motivated the development of Max-Pressure
techniques [1]. The Max-Pressure controller is based on
a store-and-forward model, where queues at intersections

1524-9050 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3234-5535
https://orcid.org/0000-0002-8457-8656


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

have unlimited capacity and, under this assumption, Max-
Pressure is guaranteed to maximize the network throughput
by stabilizing the network. Centralized policies require higher
modeling efforts but, in general, have better performance
guarantees [12]. Among the centralized policies, the Traffic-
Responsive Urban Control [2] has received considerable inter-
est for its simplicity and good performance. Based on a
store-and-forward modeling paradigm, the method consists
in minimizing the network queue lengths through a linear-
quadratic regulator that uses a relaxation of the physical
constraints to abide with the high complexity. Variations of
these techniques to incorporate physical constraints have been
studied in [13], [14].

The tremendous complexity of urban traffic networks has
recently motivated the adoption of model-free control meth-
ods that rely only on historical data [15] and, concurrently,
the development of simplified models to deal with the switch-
ing nature of the traffic signals [16]. However, the highly-
nonlinear behavior of these dynamical systems still limits our
capability to consider adequate optimization and prediction
horizons, and the development of tractable models capable of
capturing all the relevant network dynamics is still an open
problem.

Contribution: Motivated by the considerable complexity
of urban transportation systems, in this paper we propose
a simplified framework to capture the behavior of traffic
networks operating in free-flow regimes with arbitrary travel
speeds. In this model, each road is modeled through multiple
state variables, representing the spatial evolution of traffic
densities within the road. This assumption allows us to capture
the non-uniform spatial displacement of traffic within each
road, and to construct a simplified network model that results
in a more- tractable framework for optimization.

We employ the proposed model to design the durations of
the green times at the intersections, and we relate congestion
objectives with the optimization of a metric of controllability
of the dynamical system associated with the traffic network.
To the best of the authors’ knowledge, this work represents a
novel, computationally-tractable, method to perform network-
wide optimization of the green-splits durations at intersections.
We provide conditions that guarantee stability of the system,
and we characterize the performance of the control policy
in relation to the network congestion. We use the concept
of smoothed spectral abscissa [17] to solve the optimization,
and we demonstrate the benefits of our methods through
a microscopic simulation on the urban interconnection of
Manhattan, NY. We characterize the complexity of our algo-
rithms, and propose a method to parallelize the computation
so that it can be solved efficiently by a group of cooperating
distributed agents. Our results and simulations suggest that
the increased system performance obtained by our control
method justifies the increment in complexity deriving from
the adoption of a global system description.

Organization: The rest of this paper is organized as fol-
lows. Section II illustrates our model of traffic network, and
formalizes the problem of designing the durations of the
green times at the intersections with the goal of optimizing

Fig. 1. (a) The portion of road comprised between two signalized intersec-
tions is modeled with a set of σi variables. (b) The almost-flat behavior in
regimes of free-flow or congestion motivates our approximation γ (ρi ) ≈ γi .

vehicle evacuation. The section includes a discussion of the
benefits in adopting a simplified model, and presents a com-
parison with more-established macroscopic models. Section III
illustrates the proposed centralized approach to numerically
solve the optimization problem, while Section IV presents
a technique to parallelize the computation among a set of
distributed agents for more efficient computation. Section V
is devoted to macroscopic and microscopic simulations to val-
idate our modeling assumptions and optimization techniques.
Finally, Section VI concludes the paper.

II. DYNAMICAL MODEL OF TRAFFIC NETWORKS

AND PROBLEM FORMULATION

We model urban traffic networks as a group of one-way
roads interconnected through signalized intersections. Within
each road, vehicles move at uniform velocity, while traffic
flows are exchanged between adjacent roads by means of
the signalized intersection connecting them. In this section,
we discuss a concise dynamical model for traffic networks in
certain regimes, that will be employed for the analysis.

A. Model of Road and Traffic Flow

Let N = (R,I) denote a traffic network with roads
R = {r1, . . . , rnr } and intersections I = {I1, . . . ,InI }.
Each element in the set R models a one way link inter-
connecting two signalized intersections, whereas intersections
regulate conflicting flows of traffic among adjacent roads (see
Section II-B). We assume that exogenous inflows enter the
network at (source) roads S ⊆ R and, similarly, vehicles exit
the network at (destination) roads D ⊆ R, with S ∩ D = ∅.
The following standard connectivity assumption ensures that
vehicles are allowed to leave the network.

Assumption 1: For every road ri ∈ R there exists at least
one path in N from ri to a road r j ∈ D.

We denote by �i ∈ R>0 the length of road ri , and we model
each road ri by discretizing it into σi = ��i/h� segments
of uniform length h ∈ R≥0 (see Fig. 1). We denote by
xk

i ∈ R the traffic density associated with the k-th segment of
road ri , k ∈ {1, . . . , σi }. We assume that inflows of vehicles
f in
ri

enter the road in correspondence of its upstream segment
(i.e. k = 1); accordingly, outflows f out

ri
leave the road in

correspondence of its downstream segment (i.e. k = σi ).
We approximate the relationship between traffic flows and
densities by assuming that vehicles move from upstream to
downstream with uniform velocity γi . Then, the dynamics of
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the road state xi = [x1
i · · · xσi

i ]T are described by:
⎡
⎢⎢⎢⎣

ẋ1
i

ẋ2
i
...

ẋσi
i

⎤
⎥⎥⎥⎦ =

γi

h

⎡
⎢⎢⎢⎣

−1
1 −1

. . .
. . .

1 0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Di

⎡
⎢⎢⎢⎣

x1
i

x2
i
...

xσi
i

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

f in
ri

0
...

− f out
ri

⎤
⎥⎥⎥⎦ . (1)

Differently from more-established network models where a
single state variable is associated to a uniform road segment
(e.g., [1], [18]), the choice of a constant space-discretization
step allows us to capture the fact that the density of vehicles
may not be uniform along the road.

Remark 1 (Equivalence With Hydrodynamic Models): The
dynamical model (1) derives from the mass-conservation con-
tinuity equation [19] in certain traffic regimes, as we explain
next. Let ρi = ρi (s, t) ≥ 0 denote the (continuous) density of
vehicles within road ri at the spatial coordinate s ∈ [0, �i ] and
time t ∈ R≥0. Let fi = fi (s, t) ≥ 0 denote the (continuous)
flow of vehicles along the road, and let traffic densities and
traffic flows follow the hydrodynamic relation

∂ρi

∂ t
+ ∂ fi

∂s
= 0.

We complement the above equation with the Lighthill-
Whitham-Richards relation fi = fi (ρi ), where flows instan-
taneously change with the density. Then, we include the
speed-density fundamental relationship fi = ρiv(ρi ), where
v : R≥0→ R≥0 represents the speed of flow, to obtain

∂ρi

∂ t
+

(
v(ρi )+ ρi

d v(ρi )

dρi

)
∂ρi

∂s
= 0.

Solutions to the above relation are kinematic waves [20],
moving at speed γ (ρi ) = v(ρi )+ρi

dv(ρi )
dρi

. We consider regimes
where the speed of the kinematic wave can be approximated as
γ (ρi ) ≈ γi . As illustrated in Fig. 1(b), this approximation is
accurate in regimes of free flow or congestion, characterized
by dv(ρi )

dρi
≈ 0. By letting γi denote the average speed of flow,

the approximated continuity equation reads

∂ρi

∂ t
+ γi

∂ρi

∂s
= 0.

We then discretize in space the above relation by defining the
discrete spatial coordinate

sk = kh, k ∈ {0, . . . , σi },

and by replacing the partial derivative with respect to s with
the difference quotient

∂ρi (sk, t)

∂ t
= −γi

ρi (sk, t) − ρi (sk−1, t)

h
.

This discretization leads to the dynamical model (1), by
introducing the boundaries inflows f in

ri
and outflows f out

ri
, and

by replacing ρi (sk, t) with the compact notation xk
i . �

Fig. 2. Typical set of phases at a four-ways intersection.

B. Model of Intersection and Interconnection Flow

Signalized intersections alternate the right-of-way of vehi-
cles to coordinate and secure conflicting flows between adja-
cent roads. Every signalized intersection I j ∈ I, j ∈
{1, . . . , nI}, is modeled as a set I j ⊆ R × R, consisting
of all allowed movements between the intersecting roads. For
road ri ∈ R, let Iri

in denote the (unique) intersection at road
upstream; similarly, let Iri

out denote the (unique) intersection
at road downstream. We model the switching behavior of a
signalized intersection through the green split function s :
R×R×R≥0→ {0, 1} that assumes Boolean values 1 (green
phase) or 0 (red phase), and let the interconnection flows be

f in
ri
=

∑

(ri ,rk)∈Iri
in

s(ri , rk, t) f (ri , rk)+ uri ,

f out
ri
=

∑

(rk ,ri )∈Iri
out

s(rk , ri , t) f (rk, ri )+wri , (2)

where f : R×R→ R≥0 denotes the intersection transmission
rate. We remark that the notation f (ri , rk) represents the
transmission rate from road rk to ri and, similarly, s(ri , rk, t)
denotes the green split function that controls traffic flows from
rk and directed to ri . We note that equation (2) incorporates
the exogenous inflows and outflows to each road (flows of
traffic that are not originated or merge to modeled intersec-
tions or roads) through the terms uri : R≥0 → R≥0 and
wri : R≥0 → R≥0, respectively. We note that uri 
= 0 if and
only if ri is a source road (that is, ri ∈ S), and wri 
= 0 if
and only if ri is a destination road (that is, ri ∈ D).

Example 1 (Intersections and Scheduling Functions): Con-
sider the four-ways intersection I1 illustrated in Fig. 2. The
intersection is modeled through the set of allowed movements

I1 = {(r1, r6), (r1, r8), (r5, r2), (r5, r4), (r7, r2), (r3, r6),

(r3, r8), (r3, r2), (r7, r4), (r7, r6), (r5, r8), (r1, r4)}.
Allowed movements at a certain intersections are typically
grouped into sets of phases, where each phase represents a set
of movements that can occur simultaneously. For I1, a typical
set of phases is {P1,P2,P3,P4}, where

P1 = {(r1, r6), (r1, r8), (r5, r2), (r5, r4)},
P2 = {(r7, r2), (r3, r6)},
P3 = {(r3, r8), (r3, r2), (r7, r4), (r7, r6)},
P4 = {(r5, r8), (r1, r4)}.

The green split function alternates the set of available phases
within the cycle time T ∈ R>0, that is, for given scalars
t0, t1, t2, t3, t4, with 0 = t0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 = T , denoting
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the switching instants, the green split function is

s(ri , rk, t) =
{

1 if (ri , rk) ∈ P j and t ∈ [t j−1, t j ),

0 otherwise,

where j ∈ {1, . . . , 4}. �
We model the transmission rate during a green-light phase

as a function proportional to the density of vehicles “waiting”
in the downstream section of the road, that is,

f (ri , rk) = c(ri , rk)xσk
k , (3)

where c : R×R→ R≥0. In particular, c(ri , rk) incorporates
the turning preferences of the drivers when decomposing
c(ri , rk) = ϕ(ri , rk)φ(ri , rk), where ϕ : R × R → [0, 1]
represents the average routing ratio of vehicles entering road
ri after exiting rk ,

∑
i ϕ(ri , rk) = 1, and φ : R ×R→ R≥0

captures the speed of the outflow from the dedicated turn lane.
Differently from traditional traffic network models where

a single state variable is typically used to model a uniform
road segment [1], [18], our model associates multiple state
variables to each road segment interconnecting two signalized
intersections. This approach allows us to capture the fact
that the density of vehicles may not be uniform along each
link, and to model the outflows during a green-light phase
as functions that depend only on the state of the section of
road that is located in the proximity of the intersection. The
precision of the illustrated model is demonstrated through
a set of microscopic simulations in [21] for a small scale
network.

Remark 2 (Model Validity and Limitations): Two main lim-
itations can be identified in the simplified modeling settings
considered in this work with respect to more comprehensive
models, such as [18]. First, our model assumes a constant
speed of flow along each road segment connecting two sig-
nalized intersections. Second, the linear approximation does
not allow to limit the inflow to a certain road when that
road is congested, which corresponds to the assumption that
roads have infinite capacity. We remark, however, that these
two phenomena can be captured by appropriately tuning the
parameters γi and φ(ri , rk), respectively, when these situations
occur. Thus, if the network conditions do not change signifi-
cantly fast with respect to the network dynamics, one can tune
the parameters γi and φ(ri , rk) and occasionally re-update the
model to capture the current network conditions. We anticipate
that, although this approach implies that the model is accurate
only in the current network regime, the approach is well-suited
for the receding horizon technique that will be later adopted
in this paper (see Section II-D). �

C. Switching and Time-Invariant Traffic Network Dynamics

Individual road dynamics can be combined into a joint net-
work model that captures the interactions among all modeled
routes and intersections. To this aim, we adopt an approach
similar to [14], and assume that exogenous outflows are
proportional to the number of vehicles in the road, that is,
wri = w̄ri x

σi
i , w̄ri ∈ [0, 1]. By combining Equations (1),

Fig. 3. Network model associated with a traffic network composed of nI = 4
intersections and nr = 12 roads. Each road is associated with a set of states
that represent the density of the cells within the roads.

(2) and (3), we obtain
⎡
⎢⎢⎢⎣

ẋ1
ẋ2
...

ẋnr

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ẋ

=

⎡
⎢⎢⎢⎢⎣

A11 A12 · · · A1nr

A21 A22
. . . A2nr

...
. . .

. . .
...

Anr1 Anr2 · · · Anrnr

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎣

x1
x2
...

xnr

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
x

+

+

⎡
⎢⎢⎢⎢⎣

In1 0 · · · 0

0 In2

. . . 0
...

. . .
. . .

...
0 0 · · · Inr

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎢⎣

u1
u2
...

unr

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
u

, (4)

where A ∈ R
n×n , n =∑nr

i=1 σi is the overall number of states,
u derives from (2), and

Aik =
{

s(ri , rk, t)c(ri , rk)e1eT
σk

, if i 
= k,

Di −
(∑

� s(r�, ri , t)c(r�, ri )+ w̄ri

)
eσi e

T
σi

, if i = k,

where ei = [0 . . . 1 . . . 0]T is a vector with a single nonzero
entry with value 1 in position i and of appropriate dimension.

We note that the matrix A in (4) is typically sparse because
not all roads are adjacent in the interconnection, and its
sparsity pattern varies over time as determined by the splits
s(ri , rk, t). Thus, the network model (4) is a linear switching
system, where the switching signals are the split functions.

Example 2 (Traffic Network Interconnection): Consider the
network illustrated in Fig. 3, with R = {r1, . . . , r12} and I =
{I1, . . . ,I4}. The network comprises four destination roads
D = {r2, r5, r8, r11} (w̄ri = 1 for all ri ∈ D, and w̄ri = 0
otherwise), and four source roads (S = {r1, r3, r10, r12}, with
uri 
= 0 only if ri ∈ S). Let �i/h = 3 and γi/h = 3 for all
i ∈ {1, . . . , nr }. Then, the matrices in (4) read as

Aii =
⎡
⎣
−1
1 −1

1 − (∑
� s(r�, ri , t)c(r�, ri )+ w̄ri

)

⎤
⎦ ,

Aij =
⎡
⎣

0 0 s(ri , r j , t)c(ri , r j )
0 0 0
0 0 0

⎤
⎦ ,
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for all i, j ∈ {1, . . . , nr}. Notice that s(ri , r j , t) = 0 for all
times if (r j , rk) 
∈ Ik for all k ∈ {1, . . . , nI}. �

Next, we make the classical assumption that scheduling
functions are periodic, with period T ∈ R>0. That is, for all
(ri , rk) ∈ I j , j ∈ {1, . . . , nI }, and for all times t:

s(ri , rk , t) = s(ri , rk, t + T ).

Let T = {τ1, . . . , τm} denote the set of time instants when a
scheduling function changes its value, that is,

T = {τ ∈ [0, T ] : ∃(ri , rk) ∈ I,

lim
t→τ−

s(ri , rk, t) 
= lim
t→τ+

s(ri , rk, t)}.
Notice that the matrix A in (4) remains constant between
consecutive time instants τi−1 and τi . We denote each constant
matrix by Ai , and refer to it as to the i -th network mode.
Further, let di = τi − τi−1, with i ∈ {1, . . . , m} and τ0 = 0,
denote the duration of the i -th network mode. We employ a
state-space averaging technique [22] and define a linear, time-
invariant, approximation of the switching network model (4):

ẋav = Aavxav + Buav, (5)

where Aav = 1
T

∑m
i=1 di Ai , and uav = [uav,1 . . . uav,nr], uav,i =

(1/T )
∫ T

0 ui (τ ) dτ . We note that the averaging technique pre-
serves the sparsity pattern of the network, that is, Aav(i, j) 
= 0
if and only if Ak(i, j) 
= 0 for some k.

In general, the approximation of the behavior of the switch-
ing system (4) with the average dynamics (5) is accurate if
the operating period T is short in comparison to the under-
lying system dynamics. Under suitable technical assumptions,
a bound on the deviation of average models with respect to
the network instantaneous state has been characterized in [22].
In particular, the bound becomes tighter for decreasing values
of T and increasing values of road lengths. A numerical
validation of the averaging technique and its validity in relation
to T is discussed in Section V (see Fig. 5).

D. Problem Formulation
In this paper, we consider the average model (5) and

focus on the problem of designing the durations of the green
split functions so that a measure of network efficiency is
optimized. Motivated by the relationship Aav = 1

T

∑m
i=1 di Ai

(see (5)), the average model allows us to design the durations
of the network modes, rather than their exact sequence. This
approach motivates the adoption of a two-stage optimization
process. First, the durations of the modes is optimized by
considering a global model that captures the dynamics of the
entire interconnection. Second, offset optimization techniques
(e.g. [7]) can be employed to decide the specific sequence
of phases given the durations of the splits, and by consid-
ering reduced or local interconnection models. This paper is
devoted to the former. To formalize our optimization problem,
we denote by yav the vector of the queue lengths originated
by the signalized intersections, and model yav as the density
of vehicles “waiting” at the downstream section of each road:

yav = Cavxav, Cav =
⎡
⎢⎣

eT
σ1

. . . 0
...

. . .

0 . . . eT
σnr

⎤
⎥⎦ . (6)

We assume the network is initially at a certain initial
state x0, and focus on the problem of optimally designing the
mode durations {d1, . . . dm} that minimize the H2-norm of the
vector of queue lengths yav, formalized as follows

min
d1,...,dm

∫ ∞
0
‖yav‖22 dt,

subject to ẋav = Aavxav, (7a)

yav = Cavxav, (7b)

xav(0) = x0, (7c)

Aav = 1

T
(d1 A1 + · · · + dm Am) , (7d)

T = d1 + · · · + dm, (7e)

di ≥ 0 i ∈ {1, . . . , m}. (7f)

Loosely speaking, the optimization problem (7) seeks for an
optimal set of split durations that minimize the L2-norm of
the impulse-response of the system to the initial conditions.
Thus, similarly to [6], our framework considers the “cool
down” period, where exogenous inflows and outflows are not
known a priori, and the goal is to evacuate the network as
fast as possible where the final condition is an empty system.
In order to take into account for the model inaccuracies due to
linearization and time-averaging, the matrix Aav and the initial
state x0 shall be updated when the network conditions have
significantly changed, and the solution to (7) shall be recom-
puted with the updated parameters. In particular, we denote
by Tupdate the time interval between two updates, and note
that Tupdate is a fundamental design parameter that should be
accurately chosen. Finally, we note that constraint (7e) implies
that for any solution to (7) there exists a set of split with the
selected green durations, and thus ensures feasibility of the
solutions.

III. DESIGN OF OPTIMAL NETWORK MODE DURATIONS

In this section we propose a method to determine solutions
to the optimization problem (7). The approach we discuss is
centralized, namely, it requires full knowledge of the network
dynamics and initial state. An extension of the framework to fit
a distributed implementations is proposed in Section IV. Our
approach consists in rewriting the cost function in (7) in terms
of the controllability Gramian of the associated dynamical
system, and is formalized next.

Lemma 1 (Controllability Gramian Cost Function): Let

W(Aav, x0) =
∫ ∞

0
eAavt x0xT

0 eAT
avt dt .

The following minimization problem is equivalent to (7):

min
d1,...,dm

Trace
(

Cav W(Aav, x0)C
T
av

)
,

subject to Aav = 1

T
(d1 A1 + · · · + dm Am) ,

T = d1 + · · · + dm,

di ≥ 0, i ∈ {1, . . . , m}. (8)
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Proof: By incorporating (7a), (7b), and (7c) into the cost
function of optimization problem (7), we can rewrite:

∫ ∞
0
‖yav‖22 dt =

∫ ∞
0

xT
0 eAT

avt CT
avCaveAavt x0dt

= Trace

(∫ ∞
0

xT
0 eAT

avt CT
avCaveAavt x0 dt

)

=
∫ ∞

0
Trace

(
CaveAavt x0xT

0 eAT
avt CT

av

)
dt

= Trace

(
Cav

∫ ∞
0

eAavt x0xT
0 eAT

avt dtCT
av

)
,

from which the claimed statement follows. �
We now use the above result to characterize the stability

of the proposed control policy. To this aim, we note that the
cost function in (7) is finite only if the choice of parameters
{d1, . . . , dm} leads to a matrix Aav that is Hurwitz-stable.
Requiring Hurwitz stability of Aav corresponds to imposing
that all real parts of the eigenvalues of Aav are strictly negative.
Formally, we require α(Aav) < 0, where α(Aav) := sup{�(s) :
s ∈ C, det(s I − Aav) = 0} denotes the spectral abscissa
of Aav. The following result proves stability of the system
under optimal green time durations.

Theorem 1 (Stability of Optimal Solutions): Let Assump-
tion 1 be satisfied and let s(ri , rk , t̄) 
= 0 for all (ri , rk) ∈ I,
and for some t̄ ∈ [0, T ]. Then,

α(Aav) < 0.
Proof: From the structure of (4) and from the assumption

s(ri , rk, t̄) 
= 0 follows that Aav(i, i) < 0 for all i ∈
{1, . . . , n}, while Aav(i, j) ≥ 0 for all j ∈ {1, . . . , n},
j 
= i . Moreover, all columns of Aav have nonpositive sum.
In particular, the columns corresponding to destination cells
have strictly negative sum, that is,

∑n
i=1 Aav(i, j) ≤ 0 for all

j ∈ {1, . . . , n}, and
∑n

i=1 Aav(i, j) < 0 for all j such that
r j ∈ D. To show α(Aav) < 0, we use the fact that destination
cells in D have no departing edges, and re-order the states so
that

Aav =
[

A11 0
A21 A22

]
,

where A22 ∈ R
nd×nd , nd = |D|, is the submatrix that

describes the dynamics of the destination cells, A11 ∈
R

(n−nd )×(n−nd), and A21 ∈ R
nd×(n−nd). The fact α(A22) < 0

immediately follows from (2). The stability of A11 follows
from the connectivity assumption in the original network,
and from the analysis of grounded Laplacian matrices (see
e.g. [23, Theorem 1]). �

Next, we discuss a method to determine solutions to the
optimization problem (8). Our technique relies on constructing
a new optimization problem that constitutes a relaxation of (8),
and that builds upon the concept of smoothed spectral abscissa.
The smoothed spectral abscissa is a generalization of the
spectral abscissa [17] and, for a dynamical system of the form
(5)-(6), it is defined as the root α̃ ∈ R of the implicit equation

Trace
(

Cav W(Aav − α̃ I, B) CT
av

)
= ε−1, (9)

where ε ∈ R≥0. It is worth noting that the root α̃ is
unique [17], and for fixed B and Cav it is a function of both
ε and Aav. Formally, we shall denote α̃ = α̃(ε, Aav).

Remark 3 (Properties of the Smoothed Spectral Abscissa):
For any ε > 0, the smoothed spectral abscissa is an
upper bound to α(A), and this bound becomes exact as
ε → 0. To see this, we first observe that the integral∫∞

0 e(Aav−α̃I )t B BTe(Aav−α̃I )T t dt exists and is finite for any
α̃ > α(Aav), as the function e(Aav−α̃ I )t is bounded and con-
vergent as t →+∞. On the other hand, for any α̃ < α(Aav)
the function e(Aav−α̃ I )t becomes unbounded for t →+∞ and
the above integral is infinite. It follows that, the left-hand side
of (9) is finite only if α̃ > α(A) or, in other words, for any
finite ε, α̃ satisfies α̃ > α(A). �

By letting α̃ = 0 in (9), we recast the optimization problem
(8) in terms of the smoothed spectral abscissa as follows:

min
d1,...,dm,ε

ε−1,

subject to Aav = 1

T
(d1 A1 + · · · + dm Am) ,

T = d1 + · · · + dm,

di ≥ 0, i ∈ {1, . . . , m},
α̃(ε, Aav) = 0, (10)

where the parameter ε is now an optimization variable. In what
follows, we denote by {d∗1 , . . . , d∗m, ε∗} the value of the opti-
mization parameters at optimality of (10). Problem (10) is a
nonlinear optimization problem [17], because the optimization
variables {d1, . . . , dm} and ε are related by means of the
nonlinear equation (9).

For the solution of (10), we propose an iterative two-
stages numerical optimization process. In the first stage, we fix
the value of ε and seek for a choice of {d1, . . . dm} that
leads to a smoothed spectral abscissa that is identically zero.
In other words, we let ε = ε̄ (fixed), and solve the following
minimization problem:

min
d1,...,dm

|α̃(ε̄, Aav)|

subject to Aav = 1

T
(d1 A1 + · · · + dm Am) ,

T = d1 + · · · + dm,

di ≥ 0, i ∈ {1, . . . , m}. (11)

We note that every a solution to (11), namely Āav, which
satisfies α̃(ε̄, Āav) = 0, is a point in the feasible set of (10)
that corresponds to a cost of congestion

∫∞
0 ‖yav‖22 dt = 1/ε̄.

In the second stage of the optimization, we perform a line-
search over the parameter ε. In particular, the value of ε is
iteratively increased until the minimizer ε∗ is achieved. This
approach is motivated by the fact that the optimizer of (11)
with ε set to ε = ε∗ is {d∗1 , . . . , d∗m}, that is, the optimal
solution to (10). Finally, the iterative process is concluded
when α̃(ε̄, Aav) = 0 is no longer achievable in (11).

The benefit of considering a two-stage optimization process
and of solving (11) as opposed to (10) is that we can derive
an expression for the gradient of the cost function α̃(ε̄, Aav)
with respect to the parameters {d1, . . . , dm}. The derivation
of the descent direction is the focus of the remaining part of
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Algorithm 1: Centralized Solution to (7).
Input: Matrix Cav, vector x0, scalars ξ , μ
Output: {d∗1 , . . . d∗m, ε∗} solution to (7)

1 Initialize: d(0), ε̄ = 0, k = 1
while α̃

(k)
ε̄ = 0 do

2 repeat
3 Compute α̃

(k)
ε̄ by solving (9);

4 Solve for P and Q: (A(k)
av −α(k)

ε̄ I )P+ P(A(k)
av −α(k)

ε̄ I )T+
x0xT

0 = 0; (A(k)
av −α(k)

ε̄ I )T Q+Q(A(k)
av −α(k)

ε̄ I )+CavCT
av =

0;

5 ∇ ← K T
(

Q P
Trace(Q P)

)vec
;

6 Compute projection matrix P (k);
7 d(k)← d(k) − μ P (k)∇;
8 A(k)

av ← 1
T (d1 A1 + · · · + dm Am);

9 k← k + 1;
10 until P (k)∇ = 0;
11 ε̄ ← ε̄ + ξ ;
12 end
13 return d;

this section. In the remainder, with a slight abuse of notation,
we use the compact form α̃(ε̄, Aav) = α̃ε̄ and,for a matrix
M = [mij ] ∈ R

m×n , we denote its vectorization by Mvec =
[m11 . . . mm1, m12 . . . mmn]T.

Lemma 2 (Descent Direction): Let α̃ε̄ denote the unique
root of (9) with ε̄ ∈ R>0. Let d = [d1, . . . , dm ]T, and let
K = 1

T [Avec
1 Avec

2 . . . Avec
m ]. Then,

∂α̃ε̄

∂d
= K T

(
Q P

Trace (Q P)

)vec

where P ∈ R
n×n and Q ∈ R

n×n are the unique solution to
the two Lyapunov equations

(Aav − α̃ε̄ I ) P + P(Aav − α̃ε̄ I )T + x0xT
0 = 0,

(Aav − α̃ε̄ I )T Q + Q(Aav − α̃ε̄ I )+ CavCT
av = 0, (12)

and I ∈ R
n×n denotes the identity matrix.

Proof: The expression for the partial derivative of the
smoothed spectral abscissa with respect to d can be obtained
from the composite function

∂α̃ε̄

∂d
= ∂ Aav

∂d

∂α̃ε̄

∂ Aav
,

where ∂ Aav
∂d follows immediately from (7d), and the expression

for the derivative of α̃ε̄ with respect to Aav is given in
[17, Theorem 3.2]. �

We remark that the equations (12) always admit a unique
solution. To see this, we use the fact that α̃ is an upper bound
to α(Aav), and observe that (Aav− α̃ε̄ I ) is Hurwitz-stable for
every Aav. A gradient descent method based on Lemma 2
is illustrated in Algorithm 1. Each iteration of the algorithm
comprises the following steps. First, (lines 4− 6) a (possibly
non feasible) descent direction ∇ is derived as illustrated in
Lemma 2. Second, (line 7 − 8) a gradient-projection tech-
nique [24] is used to enforce constraints (7d)-(7f). The update-
step follows (line 9). Algorithm 1 employs a fixed stepsize

TABLE I

EXECUTION TIME OF ALGORITHM 1 ON A 2.7 GHZ INTEL CORE I5

μ ∈ (0, 1), and a terminating criterion (line 11) based on the
Karush-Kuhn-Tucker conditions for projection methods [24].
The ε-update step, which constitutes the outer while-loop
(line 2 − 13), is then performed at each iteration of the
gradient descent phase, and the line-search is terminated when
|α̃ε | = 0 cannot be achieved. To prevent the algorithm
from stopping at local minima, the gradient descent algorithm
can be repeated over multiple feasible initial conditions d(0).
Finally, we illustrate in Table I typical execution times of
Algorithm 1 on a commercial (laptop) processor.

Remark 4 (Complexity of Algorithm 1): The computational
complexity of Algorithm 1 can be derived as follows. First,
solving (9) to determine the value of the smoothed spectral
abscissa can be performed via a root-finding algorithm (such
as the bisection algorithm), whose complexity is a logarithmic
function of the desired accuracy. Since computing the trace of
a matrix has linear complexity in the matrix size, for given
accuracy the complexity of this operation is O(n). Second,
modern methods to solve Lyapunov equations (i.e., (12)) rely
on the Schur decomposition of the matrix Aav [25], whose
complexity is O(n3). It is worth noting that, given the Schur
decomposition Aav = U T UT, where T is upper triangular
and U is unitary, a decomposition for (Aav − α̃ I ) follows
immediately by shifting T to (T − α̃ I ). Therefore, a single
decomposition is required at each iteration of the gradient
descent and the complexity of Algorithm 1 is therefore O(n3).

The space complexity of the algorithm can be derived as
follows. Storing each matrix A(k)

av , Q, P requires n2 units of
space, while each vector  and d require m units of space.
Thus, the space complexity of Algorithm 1 is O(n2 + m).

Finally, we note that a constant-step discretization technique
(1) implies that the system size n scales linearly with 1/h. �

IV. DISTRIBUTED GRADIENT DESCENT

The centralized computation of {d∗1 , . . . , d∗m, ε∗} assumes
the complete knowledge of matrices A1, . . . Am , and requires
to numerically solve the Lyapunov equations (12). For large-
scale traffic networks, such computation imposes a limitation
in the dimension of the matrix Aav and, consequently, on the
number of signalized intersections that can be optimized
simultaneously. Since the performance of the proposed opti-
mization technique depends upon the possibility of modeling
and optimizing large network interconnections, a limitation
on the number of modeled roads and intersections consti-
tutes a bottleneck toward the development of more efficient
infrastructures. A possible solution to address this issue is
to distribute the computation of the descent direction in
Algorithm 1 among a group of agents, in a way that each
agent is responsible for a subpart of the computation (e.g. see
Fig. 4). In addition, certain model parameters describing the
instantaneous state of network components (e.g. the current
speed of flow in a certain road or the instantaneous value of
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Fig. 4. (a) Manhattan-like traffic interconnection. In this example, agents are
signalized intersections that have local knowledge of the road interconnection
(attached black arrows) and can communicate with neighbors (dashed red
lines). Colored circles illustrate the information available to each agent.
(b) Error between distributed and centralized solution vs iterations. Internal
agents experience faster convergence due to shorter longest paths in the graph.

the transmission rate at a certain intersection), may be readily
measurable by an agent that is located in the proximity of that
component, while they may be unknown to other agents that
are remotely located in the network. In this case, the benefit
of a distributed implementation is that it allows local agents
to directly include these model parameters into the optimal
solution, thus avoiding unnecessary overheads due to trans-
mission. In particular, agents may represent geographically-
distributed control centers or clusters in parallel computing,
each responsible for the control of a subset of the network.

In order to distribute the computation of solutions to (12),
we focus on distributively solving equations of the form

�X + X�T + D = 0, (13)

where X = XT ∈ R
n×n is unknown, D = DT ∈ R

n×n is a
given matrix, and � ∈ R

n×n . Let � be partitioned as

� = �1 + · · · +�ν, (14)

where �i ∈ R
n×n , i ∈ {1, . . . , ν}. We assume that each agent

i knows �i only. Note that �i are sparse matrices, and their
sparsity pattern depends upon the subpart of infrastructure
associated with that agent. In addition, we assume that neigh-
boring agents are allowed to exchange information by means
of a communication interconnection. Let G = (V, E) be the
communication graph, where each vertex i ∈ {1, . . . , ν} repre-
sents one agent, and E ⊆ V×V represents the communication
lines. The method we propose to distributively compute X
relies on an equivalent decomposition of equation (13) as a
set of ν independent linear equations, as discussed next.

Lemma 3 (Distributed Solutions to (13)): Let � be Hurwitz-
stable. The following statements are equivalent:

(i) X∗ solves (13);
(ii) For all i ∈ {1, . . . , ν}, there exists Di ∈ R

n×n s.t.

�i X∗ + X∗�T
i + Di = 0, and

ν∑
i=1

Di = D.

Proof: In order to prove the claim, we first observe that
under the assumption of Hurwitz-stability for �, the solution
X∗ to (13) is unique.

(i) ⇒ (i i). Let X∗ denote the unique solution to (13).
By expanding � = �1 + · · · +�ν , we obtain

ν∑
i=1

(�i X∗ + X∗AT
i )+ D = 0.

Thus, by letting Di = −(�i X∗ + X∗AT
i ), (i i) immediately

follows.
(i i)⇒ (i). Let (X̃ , D̃1, . . . , D̃ν) satisfy (i i), that is, for all

i ∈ {1, . . . , ν}

�i X̃ + X̃�T
i + D̃i = 0,

ν∑
i=1

D̃i = D̃.

Notice that the existence of the solution to (13) guarantees
the existence of (X̃ , D̃1, . . . , D̃ν). By substitution, we obtain
−∑ν

i+1(�i X̃ + X̃�T
i ) = D, or in other words, X̃ satisfies

�X̃ + X̃�T + D = 0. The uniqueness of the solution to (13)
implies X̃ = X∗ and concludes the proof. �

Next, we show that the unknown matrices X∗, D1, . . . , Dν

can be reconstructed by the set of agents by cooperatively
exchanging information. To this aim, for all i ∈ {1, . . . , ν},
we vectorize the set of Lyapunov equations in Lemma 3, and
let �̄i = �i ⊗ I + I ⊗ �i . Then, from Lemma 3, we can
restate (13) as a system of linear equations of the form

⎡
⎢⎢⎢⎢⎣

�̄1 I 0 · · · 0

�̄2 0 I
...

...
...

. . .
. . .

0 I · · · I I

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H

⎡
⎢⎢⎢⎣

Xvec

Dvec
1
...

Dvec
ν

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
w

=

⎡
⎢⎢⎢⎣

0
0
...

Dvec

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
z

, (15)

where H is a given (known) matrix and w is an unknown
parameter. In order to distribute the computation of vector w
(and thus of X∗) among the ν distributed agents, we let

Hi =
[
�̄i 0 · · · I · · · 0
0 I · · · · · · I

]
, zi =

[
0

Dvec

]
,

for all i ∈ {1, . . . , ν}. At every iteration k, each agent i
constructs a local estimate ŵ

(k+1)
i by performing the following

operations in order for all its neighbors:
(i) Receive ŵ

(k)
j and K (k)

j from neighbor j ;

(ii) ŵ
(k+1)
i = ŵ

(k)
i + [K (k)

i 0][K (k)
i K (k)

j ]†(ŵ(k)
i − ŵ

(k)
j );

(iii) K (k+1)
i = Basis(Im(K (k)

i ) ∩ Im(K (k)
i ));

(iv) Transmit ŵ
(k+1)
i and K (k+1)

i to neighbor j ;

where,

ŵ
(0)
i = H †

i zi , K (0)
i = Basis(Ker(Hi)).

The convergence of the procedure (i)-(iv) can be ensured
by adopting an approach similar to the one discussed in [26].

Remark 5 (Communication Complexity): To characterize
the communication complexity of the distributed algorithm,
we observe that at every iteration each agent is required to
transmit a set of packets describing the vector ŵ

(k+1)
i and

the subspace K (k+1)
i . From (15), we note that each vector

ŵ
(k+1)
i has length νn2, while the dimension of the subspace

K (k+1)
i is variable at each iteration. In particular, the size of
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the subspace decreases at each iteration when the index i
increases, with dim(K (k+1)

i ) = 2 n2ν when i = 0, and
dim(K (k+1)

i ) = 0 at the final iteration. Thus, at each step
(iv) of the algorithm a set of packets describing (at most)
n2ν variables is transmitted. Finally, we note that the number
of iterations that each agent is required to perform depends
on the cardinality of its neighbors and on the diameter
of the network. We also note that, in order to reduce the
communication burden of the algorithm, each agent can first
perform operations (i)-(iii) sequentially for all its neighbors,
and then re-transmit (i.e., perform step (iv)). �

Next, we numerically validate the algorithm for a
test-case traffic interconnection. To this aim, we con-
sider the Manhattan-like network interconnection depicted
in Fig. 4 [27], and assume that each signalized intersection
is equipped with a computational unit that is responsible for a
subpart of the computation of (12), and is allowed to exchange
information with the neighboring intersections by means of a
set of communication channels (dashed-red lines in Fig. 4).
To decompose the system as in (14), we assume that each
agent has the sole knowledge of: (i) the local structure of the
traffic interconnection, that is, the layout of interconnection
between roads that are adjacent to that intersection (colored
areas in Fig. 4(a)), and (ii) the current values of the intersection
outflow parameters c(ri , rk), and of the speed of the flow γi in
the adjacent roads. We illustrate in Fig.4(b) the convergence of
the distributed procedure (i)-(iv), by comparing the accuracy
of the local estimate X̂ (k)

i with respect to the centralized
solution X∗ as a function of the iteration step k. As discussed
in [26], this class of procedures will compute X̂ (k)

i = X∗ in at
most diam(G) steps, where diam(G) denotes the diameter of G.

V. SIMULATIONS

This section provides numerical simulations in support to
the methods presented in this paper. We generate test cases
using real-world traffic networks from the OpenStreet Map
database and validate the techniques on a microscopic simu-
lator based on Sumo [28]. A demo of the experimental setup
adopted in this section is available online [29].

A. Averaging Technique
In order to validate our averaging technique, we first focus

on a single road connected at downstream to a signalized
intersection. To illustrate the discharging pattern emerging
from the switching behavior of the signalized intersection,
we assume the road has initially xσ (0) = 65 vehicles in its
downstream section, and zero inflows at all times. In all our
simulations, we assume that each green phase is followed by a
yellow phase, and we incorporate the durations of each yellow
phase (clearance time) into the green times. We illustrate
in Fig. 5(a) a comparison between the road discharging pat-
terns in the microscopic simulation and in the average model
(5) for different choices of the cycle time T . The precision of
the model is quantified in Fig. 5(b), where we illustrate the
approximation error for different T , where

Error% = 1

H

∫ H

0

‖x − xav‖
‖xav‖ dt,

Fig. 5. Accuracy of average dynamical model (5) with respect to microscopic
simulations for a single signalized road. (a) Time evolution of the density
at downstream for different intersection cycle time T . (b) Accuracy of the
average dynamics in relation to the intersection cycle time T .

captures the deviation between the microscopic simulation and
the average model, normalized over the time horizon [0, H ].
As illustrated in the figure, inaccuracies due to linearization
and time-averaging are lower than 5% for common cycle
times.

B. Macroscopic Simulations
To validate our modeling assumptions and optimization

techniques, we initially perform a set of macroscopic sim-
ulations based on the well-established Cell Transmission
Model (CTM) [18]. We consider its averaged version dis-
cussed in [16], [22], with piecewise affine demand and sup-
ply functions, and adopt a proportional allocation rule to
model congestion at the intersections [3]. The averaged Cell
Transmission Model builds upon the traditional (non-averaged)
version of the model by replacing the switching behavior
of the signalized intersections with the average flow through
the junction (see [16]). We stress that the Cell Transmission
Model is adopted here to simulate the actual dynamics of the
network, while model (5) is the system description used in the
optimization.

We consider the Manhattan-like traffic network intercon-
nection sketched in Fig. 4(a), with nr = 24 roads of length
� = 0.1mi. We construct the CTM by associating a state (cell)
to each section of road interconnecting two signalized intersec-
tions. For all cells, we let the free-flow speed be vff = 30mi/h,
the speed of backward propagation be vbp = −30mi/h, the jam
density be xmax = 20veh, and use maximum flows fs

max =
fd

max = 30veh/min. Turning ratios at each intersections are
chosen so that vehicles are split equally among all outgoing
links, and the cycle time is T = 100sec.

In order to generate comparable results between the CTM
and our model, we construct (4) by letting σi = �i for all
ri ∈ R (i.e. we model each road by means of a single state
variable). In all simulations, source roads S and destination
roads D are the roads at the boundaries of the network,
network inflows are identical uri = ur for all ri ∈ S, and
x0 = 10veh in all roads.

We evaluate the benefits of our intersection-control method
by comparing its performance with: (i) a fixed-time control
policy, and (ii) the control technique proposed in [16], that
we briefly illustrate in the following. The fixed-time con-
trol policy consists in assigning constant split times at all
the intersections, where green times are divided uniformly
among all links connected at downstream to that intersection.
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Fig. 6. Performance of the method evaluated on the cell transmission model.
(a)-(b) constant network inflows. (c)-(d) time-varying network inflows.

The method discussed in [16] consists in performing network-
wide design of the green split times by implementing a Model
Predictive Control (MPC) optimization technique that relies on
the averaged Cell Transmission Model for state prediction. We
remark that the latter technique is adopted here for comparison
because of its similarity with our framework in the adoption
of a time-averaging method. In particular, MPC is performed
by discretizing the averaged Cell Transmission Model and by
considering a one-step ahead prediction horizon (representing
a full cycle of the intersections, with T = 100sec), where the
instantaneous values of the network state (density) are sensed
from the network at each time step. In particular, we dis-
cretized the system using the Euler discretization with sample
time Ts = 10sec, which satisfies the stability assumption
vffTs/� < 1 that guarantees convergence of the model [18].

We report in Fig. 6 a comparison between the time-
evolution of the cost of congestion obtained by simulating the
averaged Cell Transmission Model for the three controllers
under consideration. In particular, we consider two scenarios.
First, we let the inflows be constant ur = 15 veh/min for
all source roads (Fig. 6(a)-(b)). Second, we let the inflows
be time-varying ur = 15(1 + sin(t))veh/min (Fig. 6(c)-(d)).
We observe that in both cases our controller outperforms the
two control policies considered in the comparison. In partic-
ular, for constant network inflows our controller achieves an
improvement of over 80% with respect to fixed-time control,
and of about 40% with respect to the MPC-based control tech-
nique. We interpret these results by observing that, although
our approach is based on a simplified model description of
the system, it allows us to take into account larger control
horizons with respect to (tractable) MPC control policies, thus
resulting in increased network performance in the long term.
This observation is further supported by the transient phase
of the cost function in Fig. 6(b). In fact, we can observe
that during the time interval 0− 3min the MPC-based control
method reacts more effectively to changes in inflows thanks
to (i) the availability of a more precise model that can capture

Fig. 7. Urban interconnection of Manhattan, NY, USA. (a) Red dots denote
the set of signalized intersections considered in the study. (b) Commute zones.

TABLE II

MANHATTAN NETWORK INFLOW RATES

quickly-varying regimes, and (ii) the shorter update interval.
However, the benefits of a faster response degrade over time
(see time interval 3 − 12min) due to the lack in adequate
prediction horizons that can capture all the relevant system
dynamics. We conclude by observing that in the presence of
quickly-varying inflow rates, both methods suffer from the lack
of appropriate knowledge in the unknown network inflow rates
and, in this case, the performance of the two techniques is
comparable.

C. Microscopic Simulations

We consider a test case scenario inspired by the area of
Manhattan, NY (Fig. 7), which features nr = 958 roads
and nI = 332 signalized intersections. We replicate a daily-
commute scenario, where sources of traffic S are uniformly
distributed in the central area of the island (Area 1), and rout-
ing is chosen so that traffic flows are departing from the city,
that is, destinations D are uniformly distributed within Area 2.
Inflow rates used in the simulations are illustrated in Table II.
To estimate the network turning rates, we set the simulator so
that each vehicle follows the shortest path between its source
and destination, and derive the turning rates ϕ(ri , rk) for every
pair of roads by computing the fraction of traffic flow on every
route. Although in our simulations we make the assumption
that the traffic patterns are known, in many practical scenarios
the turning preferences are typically inferred from measured
or historical traffic data [15].

We consider three control policies, described next.
1) Gramian-Optimization Settings: We model the network

by means of the technique discussed in Section II, where we
let h = 0.1mi and associate σi = ��i/h� ≥ 1 states to each
section of road interconnecting two signalized intersections.
We observe that, for the Manhattan interconnection shown
in Fig. 7, we obtain n = ∑nr

i=1 σi = 3091, which corre-
sponds to an average of approximately 3 states associated with
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each link. We solve the optimization (11) with cycle time
T = 100sec (corresponding to Error% ≈ 3%, see Fig. 5).
Moreover, the solution to (10) is re-computed with updated
network conditions Aav and x0 every Tupdate = 500sec by
sensing these parameters from the microscopic simulation.
The implementation of the gradient-descent algorithm was
performed in Python, and the computation of the descent
direction (Lemma 2) was performed using tools from the
NumPy library. Finally, in order to emphasize the benefits of
our optimization method and to make the results independent
on the offset optimization algorithm adopted, we performed no
offset optimization to decide the specific sequence of phases
at the intersections. Thus, our simulation results represent a
lower bound on the performance that can be achieved when
offset optimization is applied to the output of our optimization.

2) Max-Pressure Settings: The Max-Pressure [1] is a con-
troller that can be distributively implemented at the single-
intersection level, and that requires only local information
concerning the instantaneous traffic densities in the roads
that are adjacent to that intersection. In particular, at each
intersection and at each time step, the controller computes the
difference between the number of vehicles waiting (on each
road) and the number of vehicles at their downstream road,
and activates the phase associated to the road with the largest
difference value (“pressure”) for a fixed time interval. In
the simulation, the Max-Pressure is implemented through the
Sumo TraCI tool, by associating a set of four phases to
each intersection, where the activation time of each phase
is set to T/4 = 25sec (thus, similarly to the Gramian-based
optimization settings, the cycle time is T = 100sec).

D. Fixed-Time Settings
Fixed-time control is widely-adopted policy in practice

thanks to its simplicity [12]. In this policy, the activation time
of each phase is constant and proportional to the average traffic
flow in the upstream roads, which are inferred from historical
data. To implement this policy we estimated the average traffic
flows by combining the network demand with the vehicles
routing policy, and used T = 100sec.

Fig. 8(a) shows a comparison between the cost functions
resulting from the three policies considered, while Fig. 8(b)
shows the time evolution of the total number of vehicles in
the network (network occupancy). The plots demonstrate the
benefits of using the optimization (7): the improvement in cost
function is of almost 60% with respect to fixed-time control,
and of about 46% with respect to Max-Pressure. Moreover,
Fig. 8(b) demonstrate the effectiveness of the cost function
in (7) to capture the network congestion. In fact, control
policies that minimize the cost (7) result in networks with
reduced overall congestion (i.e. total number of vehicles in
the network), and thus in increased network throughput.

The benefits of more efficient control policies on the net-
work overall congestion can be further visualized by means
of the illustration in Fig. 9. The figure illustrates the time
evolution of the network congestion (measured as [veh/mi])
in the simulation for two control policies: Gramian-Based
and Max-Pressure. The graphic shows that in the absence of
external inflows, the network is evacuated faster when the

Fig. 8. Network performance of the Manhattan interconnection assessed via
a microscopic simulator for three control policies. Blue triangles denote the
instants when the optimal solution is recomputed with updated Aav and x0.

Fig. 9. Time evolution of the network state [×10veh/mi] for two control
policies. (a) Solution to (7). (b) Max-Pressure policies. Simulation time from
left to right is 1000sec, 2000sec, 3000sec, and 4000sec.

former control technique is adopted, supporting our claim
that a global model description results in increased network
performance as compared to distributed techniques that rely
on local knowledge of the traffic dynamics.

VI. CONCLUSION

This paper describes a simplified model to capture the
overall dynamics of urban traffic networks. We formalize the
goal of optimizing network congestion as an optimization
problem that aims at minimizing a metric of controllability
of the associated dynamical system. We adapt our technique
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to fit distributed and/or parallel implementations, and provide
an efficient way to optimize large groups of intersections
under the practical assumption that each agent has only local
knowledge on the infrastructure. Our results show that the
availability of an global, although approximate, model of the
system interconnection can considerably improve the network
efficiency, and allows for a more efficient and tractable analy-
sis compared to traditional models. We envision that our model
of traffic network and the proposed optimization framework
will be useful in future research targeting design of traffic
networks, control, and security analysis. Interesting topics for
future works include a performance evaluation with respect to
emerging machine learning intersection control techniques.
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