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Abstract— This paper proposes a simplified version of clas-
sical models for urban transportation networks, and studies
the problem of controlling intersections with the goal of
optimizing network-wide congestion. Differently from tradi-
tional approaches to control traffic signaling, our simplified
framework allows a more tractable analysis of the network
dynamics and, yet, accurately captures the behavior of traffic
flows along roads and in proximity of intersections in regimes
of free flow. We cast an optimization problem to describe
the goal of optimally controlling automated intersections, and
relate congestion objectives with the problem of optimizing a
metric of controllability of the associated dynamical system. We
characterize the system performance in relation to (sub)optimal
configurations, and identify conditions that guarantee network
stability. Lastly, we assess the benefits of the proposed modeling
and optimization framework through a microscopic simulator.

I. INTRODUCTION

Effective control of transportation systems is at the core
of the smart city paradigm, and has the potential for im-
proving efficiency and reliability of urban mobility. Modern
urban transportation architectures comprise two fundamental
components: traffic intersections and interconnecting roads.
Intersections connect and regulate conflicting traffic flows
among adjacent roads, and their effective control can prevent
congestion and sensibly improve travel time. Congestion is
the result of limits in the capacity of the network, and often
leads to degraded network throughput and user travel time.

In this paper, we propose a simplified modeling paradigm
that captures the space-time relations between adjacent in-
tersections, and sets out as a tractable framework to study
efficiency and reliability of this class of dynamical systems.
The proposed framework is employed in this work for the
control of green split times at intersections.

Related Work: The design of feedback policies for the
control of urban infrastructures is an intensively studied
topic. The proposed techniques can mainly be divided into
two categories: routing policies and intersections control.
Routing policies use a combination of turning preferences
and speed limits in order to optimize congestion objectives,
and have been studied both in a centralized and distributed
framework [1], [2]. Conversely, intersections control refers to
the design of the scheduling of the (automated) intersections
so that the intersection capacity is maximized, and can be
achieved: i) by controlling the signaling sequence and offset,
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and/or ii) by designing the signaling durations. The control of
signal offsets typically aims at tuning the synchronization of
adjacent intersections in order to produce green-wave effects
[3]. In contrast, the duration of green times at intersections
impacts the network overall traffic flows, and plays a signif-
icant role in the efficiency of large-scale networks [4].

Widely-used distributed signaling control methods include
SCOOT [5], RHODES [6], OPAC [7], and emerge as the
most common methods currently employed in major cities.
The sub-optimal performance of the above methods [8]
has motivated the development of max-pressure techniques
[9]. Max-pressure methods use a store-and-forward model
where queues at intersections have unlimited queue lengths.
Under this assumption, max pressure is proven to maximize
the throughput by stabilizing the network. Centralized poli-
cies require higher modeling efforts, but in general have
better performance guarantees [10]. Among the centralized
policies, the Traffic-Responsive Urban Control framework
[4] has received considerable interest for its simplicity and
performance. The high complexity of traffic networks has
recently motivated the development of simplified (averaged)
models to deal with the switching nature of the traffic
signals [11]. However, the highly-nonlinear behavior of this
class of dynamical systems still limits our capability to
consider adequate optimization and prediction horizons, and
the development of tractable models capable of capturing all
the relevant network dynamics is still an open problem.

Contribution: This paper proposes a simplified modeling
paradigm that describes the spatial and temporal behavior of
the overall network traffic flows. With respect to established
models, our framework relies on a continuous time and
discrete space characterization of the flows, and allows for
a more tractable network analysis. We employ this model
to formalize the goal of optimally designing green split
durations, and provide a relation to the optimization of a met-
ric of controllability of a dynamical system associated with
the network. We employ the concept of smoothed spectral
abscissa [12] to numerically solve this optimization problem,
and we demonstrate the benefits of the method through a
microscopic simulator. Our results show that the increment
in complexity deriving from a global model description is
justified by the increased system performance.

Organization: Section II describes the problem setup,
relates our modeling framework to previously-established
traffic models, and formulates the problem of minimizing
network congestion by selecting the duration of the green
times at intersections. Section III illustrates the proposed
numerical approach to solve the optimization. Section IV is
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Fig. 1. Road discretization and corresponding network model. The
portion of road comprised between spatial coordinates sk−1 and sk , k ∈
{1, . . . , σi} is referred to as cell k, and variable xki denotes the cell density.

devoted to numerical simulations that validate our assump-
tions and the solution method. Section V concludes the paper.

II. DYNAMICAL MODEL OF TRAFFIC NETWORKS AND
PROBLEM FORMULATION

We model urban traffic networks as a set of one-way roads
interconnected through signalized intersections. Within each
road, vehicles move at the free-flow velocity, while traffic
flows are exchanged between adjacent roads by means of
the signalized intersection connecting them. In this section,
we discuss a concise dynamical model for traffic networks.

A. Model of Road and Traffic Flow

Let N = (R, I) denote a traffic network with roads R =
{r1, . . . , rnr} and intersections I = {I1, . . . , InI}. Each
element in the set R models a one way (multi-lane) road,
whereas intersections regulate conflicting flows of traffic
among adjacent roads (see Section II-B). We assume that
exogenous inflows enter the network at (source) roads S ⊆ R
and, similarly, outflows exit the network at (destination)
roads D ⊆ R, with S ∩ D = ∅. To avoid trivial cases,
we assume that there exists a path in N from every road in
R to at least one destination in D. We let `i ∈ R denote the
length of road ri, and we discretize each ri into σi = d`i/he
cells [13], where the parameter h ∈ R>0 is a constant
discretization step (see Fig. 1). We denote by xki ∈ R the
traffic density within the k-th cell of road ri, k ∈ {1, . . . , σi}.
We assume that the flow of vehicles f in

ri enters road ri in
correspondence of cell k = 1; accordingly, the flow f out

ri
leaves the road in correspondence of cell k = σi. We
model the relation between traffic flows and cell densities by
assuming that vehicles move along the road with constants
velocity γi, the average (free-flow) speed along the link. We
model the dynamics of the road state xi = [x1

i · · · xσii ]T as
ẋ1
i

ẋ2
i
...
ẋσii

 =
γi
h


−1
1 −1

. . . . . .
1 0


︸ ︷︷ ︸

Di


x1
i

x2
i
...
xσii

+


f in
ri
0
...

−f out
ri

 . (1)

Remark 1: (Equivalence between (1) and hydrodynamic
models) The dynamical model (1) can be derived from the
mass-conservation continuity equation [13], in certain traffic
regimes. Let the function ρi = ρi(s, t) ≥ 0 denote the
(continuous) density of vehicles within road ri at the spatial
coordinate s ∈ [0, `i] and time t ∈ R≥0, and fi = fi(s, t) ≥
0 the (continuous) flow of vehicles along the road. Traffic

densities and flows follow the hydrodynamic relation

∂ρi
∂t

+
∂fi
∂s

= 0.

We first complement the above continuity equation with the
Lighthill-Whitham-Richards static relation, fi = fi(ρi), in
which traffic flows instantaneously change with the density.
Then, we include the speed-density fundamental relation
fi = ρiv(ρi), where v : R≥0 → R≥0 represents the speed of
the traffic flow, to obtain

∂ρi
∂t

+

(
v(ρi) + ρi

d v(ρi)

dρi

)
∂ρi
∂s

= 0.

Solutions to the above relation are kinematic waves [13]
moving at speed γ(ρi) = v(ρi) + ρi

dv(ρi)
dρi

. We consider
scenarios where the speed of the kinematic wave can be
approximated as γ(ρi) ≈ γi, where γi is a constant. As
discussed in [13], this approximation is accurate in regimes
of free flow, characterized by dv(ρi)

dρi
≈ 0. Therefore, we let

γi denote the average speed of the flow along the link, and
consider the approximated continuity equation

∂ρi
∂t

+ γi
∂ρi
∂s

= 0.

We then discretize in space the the above relation by: (i)
considering the discrete spatial coordinate

sk = kh, k ∈ {0, . . . , σi},
and by (ii) replacing the partial derivative with respect to s
with the difference term

∂ρi(sk, t)

∂t
= −γi

ρi(sk, t)− ρi(sk−1, t)

h
.

Under classical conditions on the discretization step h [13],
this discretization leads to the dynamical model (1), after
introducing the boundaries conditions f in

ri and f out
ri , and by

replacing ρi(sk, t) with the compact notation xki . �

B. Model of Intersection and Interconnection Flow

Signalized intersections alternate the right-of-way of ve-
hicles to coordinate and secure conflicting flows between
adjacent roads. Every signalized intersection Ij ∈ I, j ∈
{1, . . . , nI}, is modeled as a set Ij ⊆ R×R, consisting of
all allowed movements between intersecting roads. For road
ri ∈ R, let Iriin denote the (unique) intersection at the road
upstream. Similarly, let Iriout denote the (unique) intersection
at the road downstream. Then, road inflows and outflows can
be modeled as

f in
ri =

∑
(ri,rk)∈Iriin

s(ri, rk, t) f(ri, rk) + uri ,

f out
ri =

∑
(rk,ri)∈I

ri
out

s(rk, ri, t) f(rk, ri) + wri ,
(2)

where f : R × R → R≥0 denotes the intersection trans-
mission rate, which is controlled over time by the green
split function s : R × R × R≥0 → {0, 1}. We incorporate
exogenous inflows and outflows to the road (flows that are
not originated or merge to modeled intersections or roads)
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Fig. 2. Typical set of phases at a four-ways intersection.
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Fig. 3. Green splits for the four ways intersection in Fig. 2.

into f in
ri and f out

ri respectively, by defining the input term
uri : R≥0 → R≥0 and output term wri : R≥0 → R≥0. For
all ri ∈ R, uri 6= 0 if and only if ri ∈ S, while wri 6= 0
if and only if ri ∈ D. The notation f(ri, rk) represents the
transmission rate from road rk to ri.

Example 1: (Green split functions) Consider the four-
ways intersection in Fig. 2. The intersection is modeled as

Ĩ = {(r1, r6), (r1, r8), (r5, r2), (r5, r4), (r7, r2), (r3, r6),

(r3, r8), (r3, r2), (r7, r4), (r7, r6), (r5, r8), (r1, r4)}.

It is common to associate to Ĩ a set of four phases
P1 = {(r1, r6), (r1, r8), (r5, r2), (r5, r4)}, P2 = {(r7, r2),
(r3, r6)},P3 = {(r3, r8), (r3, r2), (r7, r4), (r7, r6)},P4 =
{(r5, r8), (r1, r4)}. The green split function for the inter-
section is defined by alternating the set of available phases
within a cycle time T ∈ R≥0, that is, for all j ∈ {1, . . . , 4},

s(ri, rk, t) =

{
1 if (ri, rk) ∈ Pj and t ∈ [tj , tj+1),

0 otherwise,

and it is commonly graphically represented as in Fig. 3. �
We assume that road outflows are functions proportional

to the density of the downstream cell, and let

f(ri, rk) = c(ri, rk)xσkk , (3)

where c : R×R → R is a parameter that models the speed of
the outflow, captures the fact that queues may have different
departing rates, and includes the (constant) average routing
ratio of vehicles wishing to enter road ri from rk.

Remark 2: (Transmission rates) In the transportation lit-
erature, the traffic flow through an intersection often includes
a saturation term of the form:

f(ri, rk) = min{f̄ , c(ri, rk)xσkk },

where f̄ ∈ R>0 denotes the intersection saturation flow. In
this work we consider regimes of free-flow where (3) is a
valid approximation of the above nonlinear relation. �

C. Switching and Time-Invariant Traffic Network Dynamics

We combine individual roads dynamics into a joint model
that describes the overall network interconnection. By sub-

stituting (2) and (3) into (1), we obtain
ẋ1

ẋ2

...
ẋnr


︸ ︷︷ ︸

ẋ

=


A11 A12 · · · A1nr

A21 A22
. . . A2nr

...
. . . . . .

...
Anr1 Anr2 · · · Anrnr


︸ ︷︷ ︸

A


x1

x2

...
xnr


︸ ︷︷ ︸

x

+

+


In1

0 · · · 0

0 In2

. . . 0
...

. . . . . .
...

0 0 · · · Inr


︸ ︷︷ ︸

B


u1

u2

...
unr


︸ ︷︷ ︸

u

,

(4)

where A ∈ Rn×n, n =
∑nr
i=1 σi,

Aik=

{
s(ri, rk, t)c(ri, rk)e1e

T
σk
, if i 6= k,

Di−(
∑
` s(r`, ri, t)c(r`, ri) + w̄ri) eσie

T
σi , if i = k,

and ei ∈ Rσi denotes the i-th canonical vector of length
σi. We adopt an approach similar to [14], and assume
that exogenous outflows are proportional to the number of
vehicles in the road, that is, wri = w̄rix

σi
i , w̄ri ∈ [0, 1].

The network model (4) represents a linear switching sys-
tem, where the switching signals are the green split functions
s(ri, rk, t) at the intersections. It is worth noting that the
matrix A in (4) is typically sparse, because not all roads
are adjacent, and its sparsity pattern varies over time as
determined by the green splits s(ri, rk, t).

Example 2: (Example of traffic network) Consider the
network illustrated in Fig. 4, with R = {r1, . . . , r12} and
I = {I1, . . . , I4}. The network comprises four destination
roads D = {r2, r5, r8, r11}, with w̄ri = 1 for all ri ∈ D, and
four source roads S = {r1, r3, r10, r12}, with uri 6= 0 for all
ri ∈ S . Let `i/h = 3 and γi/h = 3 for all i ∈ {1, . . . , nr}.
Then, (4) reads as

Aii =

−1
1 −1

1 − (
∑
` s(r`, ri, t)c(r`, ri) + w̄ri)

 ,
Aij =

0 0 s(ri, rj , t)c(ri, rj)
0 0 0
0 0 0

 ,
r1

r3 r4

r2
r5

r6 r7

r8

r11

r9

r12

r10

(a) (b)

Fig. 4. Network model associated with a traffic network composed of
nI = 4 intersections and nr = 12 roads. Each road is associated with a
set of states that represent the density of the cells within the roads.
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for all i, j ∈ {1, . . . , nr}. Notice that we let s(ri, rj , t) = 0
for all times if (rj , rk) 6∈ Ik for all k ∈ {1, . . . , nI}. �

We make the assumption that all scheduling functions are
periodic with period T . That is, for all (ri, rk) ∈ Ij , j ∈
{1, . . . , nI}, and for all times t ∈ R≥0,

s(ri, rk, t) = s(ri, rk, t+ T ).

Let T = {τ1, . . . , τm} denote the set of time instants in the
interval [0, T ] when a scheduling function changes its value:

T = {τ ∈ [0, T ] : ∃(ri, rk) ∈ I,
lim
t→τ−

s(ri, rk, t) 6= lim
t→τ+

s(ri, rk, t)}.

Notice that the matrix A in (4) remains constant between
any consecutive time instants τi−1 and τi. We denote such
matrix with Ai, and refer to it as to the i-th network mode.
Let di = τi − τi−1, with i ∈ {1, . . . ,m} and τ0 = 0, denote
the duration of the i-th network mode. We define a linear-
time invariant approximation of the switching dynamics (4):

ẋav = Aavxav +Bu, (5)

where Aav = 1
T

∑m
i=1 diAi, xav describes the average traffic

densities along the roads over the period T . We observe
that the average dynamics are obtained by considering the
average durations of the split signals over the period T , and
that the averaging technique preserves the sparsity pattern of
the network in the average dynamics (5). That is, Aav(i, j) 6=
0 if and only if Ak(i, j) 6= 0 for some k ∈ {1, . . . ,m}.

Remark 3: (Assumptions leading to average dynamics)
The average network dynamics (5) can be obtained from the
state-space averaging technique [15]. The approximation of
the behavior of the switched system (4) with the average
dynamics (5) is valid if the following approximation holds:

eA1d1eA2d2 · · · eAmdm ≈ eA1d1+···+Amdm .

State-space averaging is appealing because of its mathemati-
cal simplicity, and it gives satisfactory results if the operating
period T is short in comparison to the system dynamics.
Fig. 5 presents a comparison of the time-evolution of road
densities between a microscopic simulation (continuous line),
and the average dynamics (5) (dashed lines), for the network
discussed in Example 2. As (qualitatively) illustrated in the
figure, a precise choice for the outflow rates c(ri, rk) allows
the time evolution of (5) (dashed lines) to approximate the
microscopic queues behavior (continuous lines). �

D. Problem Formulation

In this paper, we consider the dynamical model (5) and
focus on the problem of designing the durations of the green
split functions so that a measure of network congestion is
minimized. The average model (5) allows us to design the
durations of the modes rather than their exact sequence.
Thus, similarly to e.g. [3], we adopt a two-stage optimization
process. First, we design the optimal durations of the modes
by taking into account the overall network dynamics. Second,
a (possibly distributed) optimization technique such as offset
control [3] decides for the specific sequence of phases. We

0 100 200 300 400 500

0

10

20

30

40

Fig. 5. Time evolution of the densities of downstream cells for the
network discussed in Example 2. Comparison between a microscopic
(Sumo) simulation (continuous lines), and average dynamics (dashed lines).

devote the remainder of this paper to the first stage. To
formalize our optimization problem, we employ the density
of the cells at roads downstream as a measure of the network
congestion originated by the signalized intersections, and
define the joint vector of queue lengths as

yav = Cavxav, Cav = Diag
{
eTσ1

, . . . , eTσnr

}
. (6)

We denote by x0 the network initial state, and focus on the
problem of designing the mode durations {d1, . . . dm} that
minimize the energy (L2-norm) of the queue lengths yav:

min
d1,...,dm

∫ ∞
0

‖yav‖22 dt

subject to ẋav = Aavxav, (7a)
yav = Cavxav, (7b)
xav(0) = x0, (7c)

Aav =
1

T
(d1A1 + · · ·+ dmAm) , (7d)

T = d1 + · · ·+ dm, (7e)
di ≥ 0 i ∈ {1, . . . ,m}. (7f)

Similarly to [16], our framework focuses on the “cool down”
period, where the goal is to evacuate the network as fast
as possible, and where the final condition is an empty
system. Thus, (7) assumes that exogenous inputs and the
current network conditions enter the optimization by means
of equation (7c) and through the parameters of the matrix
Aav. Henceforth, Aav and the solution to (7) shall be re-
computed when the exogenous inflow rates or the network
traffic conditions significantly change.

III. OPTIMAL MODE DURATIONS DESIGN

In this section we illustrate a numerical method for the
solution of (7). The approach we introduce is centralized,
namely, it requires knowledge of the state x0 for all network
cells. At its core, this technique relies on rewriting the cost
function in (7) in relation to the controllability Gramian of
an opportunely defined linear system, as we explain next.

Lemma 3.1: (Controllability Gramian cost function) Let

W(Aav, x0) =

∫ ∞
0

eAavtx0x
T
0 e
AT

avt dt.
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The following minimization problem is equivalent to (7):

min
d1,...,dm

Trace
(
Cav W(Aav, x0) CT

av

)
subject to Aav =

1

T
(d1A1 + · · ·+ dmAm) ,

T = d1 + · · ·+ dm,

di ≥ 0, i ∈ {1, . . . ,m}. (8)

�

We recall that the trace of the controllability Gramian
represents the energy (L2-norm) of the impulse response of
the system to exogenous inputs [17]. Therefore, the optimal
set of mode durations also minimizes the energy of the
impulse response of the system with input matrix B = x0.

We observe that the optimization problem (7) is feasible
when there exists a choice of {d1, . . . , dm} that leads to a
matrix Aav that is Hurwitz-stable, which in turns guarantees
that the cost function in (8) is finite. Recall that Aav is
Hurwitz if α(Aav) < 0, where α(Aav) := sup{<(s) : s ∈
C,det(sI − Aav) = 0} denotes the spectral abscissa of
Aav. We next illustrate that network stability is related to
a topological property of the underlying interconnection.

Theorem 3.2: (Stability of optimal solutions) Consider a
traffic network N = (R, I), with |D| 6= 0, and assume that
there exists a path from every node in N to at least one node
in D. Let s(ri, rk, t̄) 6= 0 for all (ri, rk) ∈ I, and for some
t̄ ∈ [0, T ]. Then,

α(Aav) < 0.
�

Our solution method relies on a generalization of the
concept of spectral abscissa, namely, the smoothed spectral
abscissa. For a linear time-invariant system (5)-(6), the
smoothed spectral abscissa [12] is defined as the root α̃ ∈ R
of the implicit equation

Trace
(
Cav W(Aav − α̃I, B) CT

av

)
= ε−1, (9)

where ε ∈ R≥0. We note that α̃ is unique [12], and, for given
B and Cav, it is a function of ε and Aav, namely α̃(ε, Aav).

We let α̃ = 0 in (9), then (8) can be reformulated in terms
of the smoothed spectral abscissa as follows:

min
d1,...,dm,ε

ε−1

subject to Aav =
1

T
(d1A1 + · · ·+ dmAm) ,

T = d1 + · · ·+ dm,

di ≥ 0, i ∈ {1, . . . ,m},
α̃(ε, Aav) = 0, (10)

where ε is now an optimization variable. In what follows,
we let {d∗1, . . . , d∗m, ε∗} be the value of the optimization
parameters at optimality of (10). Problem (10) is a non-
linear optimization problem [12], because the optimization
variables {d1, . . . , dm} and ε are related by means of the
nonlinear equation (9). For the solution of (10), we propose
an iterative two-stage numerical optimization process. In the
first stage, we fix the value of ε and look for a choice of

{d1, . . . dm} that leads to a smoothed spectral abscissa that
is identically zero. In other words, we let ε = ε̄, and solve
the following minimization problem:

min
d1,...,dm

|α̃(ε̄, Aav)|

subject to Aav =
1

T
(d1A1 + · · ·+ dmAm) ,

T = d1 + · · ·+ dm,

di ≥ 0, i ∈ {1, . . . ,m}. (11)

We observe that, for every {d̄1, . . . , d̄m} := min|α̃(ε̄, Aav)|,
solution to (11), the resulting Āav = 1/T (d̄1A1 + · · · +
d̄mAm) satisfies α̃(ε̄, Āav) = 0. Thus, Āav represents a point
in the feasible set of (10) that corresponds to a cost of
congestion

∫∞
0
‖yav‖22 dt = 1/ε̄. In the second stage, we

perform a line-search over the parameter ε, where the value
of ε is increased at every iteration until the minimizer ε∗ is
achieved. It is worth noting that the solution of (11) with
ε̄ = ε∗ is zero, and its optimizer is {d∗1, . . . , d∗m}. The
remainder of this section is devoted to solving (11). For ease
of notation, we let α̃(ε̄, Aav) = α̃ε̄.

The benefit of solving (11) as opposed to (10) is that we
can derive an expression for the gradient of α̃ε̄ with respect
to the mode durations {d1, . . . , dm}, as we explain next. In
what follows, for a matrix M = [mij ] ∈ Rm×n we denote
its vectorization as M v = [m11 . . .mm1,m12 . . .mmn]T.

Lemma 3.3: (Descent direction) Let α̃ε̄ denote the unique
root of (9) with ε̄ ∈ R>0. Let d = [d1, . . . , dm]T, and let
K = [Av

1 A
v
2 . . . Av

m]. Then,

∂α̃ε̄
∂d

= KT

(
QP

Trace (QP )

)v

,

where P ∈ Rn×n and Q ∈ Rn×n are the (unique) solutions
to the two Lyapunov equations

(Aav − α̃ε̄I)P + P (Aav − α̃ε̄I)T + x0x
T
0 = 0,

(Aav − α̃ε̄I)TQ+Q(Aav − α̃ε̄I) + CavC
T
av = 0, (12)

and I ∈ Rn×n denotes the identity matrix. �
We note that, by using the inequality α̃ε̄ ≥ α(Aav) (see

[12]), the matrix (Aav−α̃ε̄I) is Hurwitz-stable for every Aav.
It follows that (12) always admit unique solutions P and Q.

A gradient-descent optimization technique that relies on
the expressions in Lemma 3.3 is presented in Algorithm
1. Algorithm 1 employs a fixed stepsize µ ∈ (0, 1), and
a terminating criterion (line 13) based on the Karush-Kuhn-
Tucker conditions for projection methods. The ε-update step,
which constitutes the outer while-loop (line 2− 16), is then
performed at each iteration of the gradient descent phase,
and the line-search is terminated when |α̃ε| = 0 cannot be
achieved. To prevent the algorithm from stopping at local
minimas, the gradient descent algorithm (lines 3 − 13) is
repeated over multiple feasible initial conditions d(0).

IV. SIMULATION RESULTS

This section provides numerical simulations in support to
the assumptions made in this paper, and includes discussions
and demonstrations of the benefits of our methods. The
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Algorithm 1: Centralized solution to (7)
Input: Matrix Cav, vector x0, scalars ξ, µ
Output: {d∗1, . . . d∗m, ε∗} solution to (7)

1 Initialize: d(0), ε̄ = 0, k = 1

2 while α̃(k)
ε̄ = 0 do

3 repeat
4 Compute α̃(k)

ε̄ by solving (9);
5 Find P and Q that solve:

(A
(k)
av −α(k)

ε̄ I)P+P (A
(k)
av −α(k)

ε̄ I)T+x0x
T
0 = 0;

6 (A
(k)
av −α(k)

ε̄ I)TQ+Q(A
(k)
av −α(k)

ε̄ I)+CavC
T
av = 0;

7
∂α

(k)
ε̄

∂d ←
QP

Trace(QP ) ;

8 ∇ ← α̃ε̄
∂α

(k)
ε̄

∂d ;
9 Compute projection matrix P(k);

10 d(k) ← d(k) − µ P(k)∇;
11 A

(k)
av ← 1

T (d1A1 + · · ·+ dmAm);
12 k ← k + 1;
13 until P(k)∇ = 0;
14 ε̄← ε̄+ ξ;
15 end
16 return d;

proposed technique have been implemented for validation in
a simulator based on Sumo (Simulation of Urban MObility
[18]). We consider the network depicted in Fig. 4 and
discussed in Example 2, and we consider the congestion
cost associated with non-destination roads. We assume that
roads {r2, r5} represent destinations with higher interest,
and model the network routing as c(r4, r1) = c(r4, r3) =
c(r7, r10) = c(r7, r12) = 0.7, c(r6, r1) = c(r6, r3) =
c(r9, r10) = c(r9, r12) = 0.3, and c(ri, rj) = 0.5 otherwise.
We let the network be subject to constant exogenous inflows
uri = 100veh/h, for all ri ∈ S (see Example 2). Fig. 6 shows
a comparison between the trajectories of ‖y‖ = ‖Cavx‖ for
i) the solution to (7), ii) max-pressure distributed policies,
and iii) a uniform choice of mode durations with di = 0.5,
i ∈ {1, . . . ,m}. The comparison illustrates the benefits in the
overall network congestion when the proposed optimization
technique (7) is employed. The suboptimal performance of
distributed control policies can be attributed to the limited
(local) knowledge of the current traffic conditions, and to the
lack of availability of a global network model.

V. CONCLUSIONS

This paper describes a simplified model to capture the
dynamics of traffic flows in transportation systems. This
model allows us to reformulate the goal of optimizing
network congestion as the problem of minimizing a met-
ric of controllability of an opportunely-defined dynamical
system associated with the network. Our results show that
the availability of an approximate centralized model can
considerably improve the network efficiency, and allows for
a more tractable analysis compared to traditional models. We
show how the performance of distributed policies deteriorate
due to the lack of availability of a global network model,
capable of capturing the overall network dynamics. We
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Fig. 6. Simulated time evolution of ‖y‖ = ‖Cavx‖ for different
intersection control methods.

envision that our model of traffic network will be useful in
future research targeting design of traffic networks, control,
and security analysis.
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