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Abstract

Feedback optimization is an increasingly utilized control paradigm to regulate dynamical systems to solutions of optimization
problems. Existing methods for feedback optimization heavily rely on the availability of continuous sensing, communication,
and actuation resources, which may be impractical in a number of real-world systems. In this context, this paper proposes a
framework for event-triggered feedback optimization, where discrete events are used to decide when to update control inputs
and feedback signals in a resource-efficient fashion; in particular, triggering events are governed by values of internal state
variables. We provide a systematic method to design the optimization-based controllers as well as explicit triggering laws
that lessen the communication burden, while preserving the asymptotic stability properties of the interconnection between
system and controllers. As an application example, we consider the problem of controlling the intensity of non-pharmaceutical
interventions in epidemic control. Here, the proposed framework is especially relevant since an infrequent testing of the
population against the disease can reduce the economic cost related to testing, while resource-efficient control updates lead to
less frequent updates of the active pandemic mitigation measures.

1 Introduction

In this paper, we study the problem of designing a feed-
back controller for a linear dynamical system, to steer its
inputs and outputs to the solution of a convex optimiza-
tion problem. In particular, the problem is parametrized
by an unknown disturbances affecting the system. The
controller features an even-based mechanism that auto-
matically selects – based on the value of internal state
variables, control inputs, and outputs – the instants at
which the system outputs are sampled and the control
inputs are updated, to bypass the need for continuous
communication and sensing.

The need for event-based controllers and event-based
sensing is central to many engineering and scientific ap-
plications where actuation, sensing, and communication
must be accomplished in a resource-aware fashion. As
an example, limited sensing and actuation emerges in
epidemiological applications, where policymakers seek
to mitigate the outbreak of a certain disease by repeat-
edly intensifying or lifting pandemic mitigation mea-
sures, such as social distancing, mask-wearingmandates,
and short lockdowns [1]. In the case of the COVID-19
pandemic, policymakers worldwide have faced the fol-
lowing central questions such as: when should mitiga-
tion measures be intensified or lifted based on hospital-
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izations or treatments capacities? And, how frequently
should the population be tested to estimate the epidemic
state? While frequent policy updates allow policymakers
to quickly respond to dynamically-changing conditions,
it is practically unfeasible to enforcemitigationmeasures
that are updated too frequently (e.g. daily). Similarly,
frequent testing allows to accurately estimate the epi-
demic state and to keep track of daily cases while, on the
other hand, frequent testing is economically impractical.
Along the same vein, event-trigger mechanisms allows
for communication-efficient sensing and control frame-
works in, e.g., power grids [2] and transportation [3].

Related works.

The use of optimization algorithms as feedback con-
trollers for dynamical systems has received significant at-
tention during the last decade. A necessarily incomplete
list of recent works includes [4,5] for linear systems, [6,7]
for nonlinear systems, [8] for simultaneous system stabi-
lization and optimization, [9] for constrained optimiza-
tion, [7,10] for the use of accelerated optimization algo-
rithms, and [11] for stochastic optimization and a data-
enabled implementation of the controller. Especially rel-
evant to this paper is the recent work [12], where the
authors study a general framework to optimize dynam-
ical systems where communication is sampled in a peri-
odic fashion. Yet, the aforementioned work employs pe-
riodic transmission protocols, which may be resource-
inefficient for many real-world systems; differently, in
this work we focus on cases where the controller must
automatically select the time instants at which commu-
nication is needed based on the state of internal vari-
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ables. Such departure is tackled here by adopting the
framework of Hybrid Dynamical Systems to model and
design the even-based logics, and our analysis is accom-
plished by leveraging a hibrid version of the invariance
principle [13]. Because of this, the vast body of litera-
ture on event-based control is also related to this work.
Generally, there are two event-based approaches that are
commonly adopted in practice [14]: event-triggered con-
trol and self-triggered control. In the former, an event –
such as a controller update or a data transmission – is
triggered only when certain internal state variables meet
a certain condition. This condition should be tested at
each state or output, thus requiring continuous monitor-
ing of the system or controller [15]. Self-triggered con-
trol, on the other hand, determines the next sampling
time and transmission once a sampled measurement is
received, and thus does not require to continuously sam-
ple the states [16] and can be implemented by leveraging
model-free representations [17].

Contributions. In this work, we propose control frame-
work that combines techniques from feedback optimiza-
tion and event-triggered control. The contribution of this
paper is threefold. First, we formulate a steady-state op-
timal control problem where communication from the
controller to the plant and from the plant to the con-
troller can occur only at discrete time instants. We fo-
cus on two cases: optimization where the control inputs
are transmitted only at discrete time instants and op-
timization where the feedback signals are sensed only
at discrete time instants. Second, by using the powerful
framework of Hybrid Dynamical Systems [18], we de-
rive explicit, state-dependent, triggering conditions that
ensure that the controller asymptotically regulates the
plant to a first-order optimizers of the control objec-
tive. Third, we study the applicability of the framework
on a network Susceptible-Infected-Susceptible epidemic
model tailored for the state of Colorado, USA. Overall,
our numerical results suggest that, in order to regulate
the infectious state to a desired threshold with arbitrary
precision, it is sufficient to update restrictions and sam-
ple test the population, on average, every 9 days.

Organization. Section 2 provides relevant definitions,
Section 3 formalizes the studied problem, Sections 4
and 5 contain the main technical contributions, and Sec-
tion 6 applies the framework to an epidemic control prob-
lem. Finally, Section 7 concludes the paper.

2 Preliminaries

In this section, we introduce here some basic terminol-
ogy and notions. Given a symmetric matrix M ∈ Rn×n,
λ(M) and λ̄(M) denote its smallest and largest eigen-
value, respectively; M ≻ 0 indicates that M is positive
definite. For u ∈ Rn, w ∈ Rm, (x, u) ∈ Rn+m denotes
vector concatenation. We denote by ∥u∥ the Euclidean
norm of u and by u⊤ its transposition. Given a nonempty

compact set A ⊂ Rn, |u|A := infz∈A ∥z−u∥ denotes the
point-to-set distance. A function γ : R≥0 → R≥0 is of
class K if it is continuous, γ(0) = 0, and strictly increas-
ing; it is of class K∞ if in addition it is unbounded.

We will use the framework of Hybrid Dynamical Systems
(HDS) to analyze event-based logics. A HDS with state
ξ ∈ Rn is described by

ξ ∈ C, ξ̇ ∈ F (ξ), ξ ∈ D, ξ+ ∈ G(ξ), (1)

where F : Rn → Rn and G : Rn → Rn are the flow
and jump maps, respectively, whereas C ⊂ Rn and D ⊂
Rn are closed sets denoting, respectively, the flow and
jump sets. The vector fields F and G are assumed to be
continuous on C and D, respectively. The continuity of
F andG, together with the closedness ofC andD ensure
that the system is well-posed [18, Ch. 6]. Solutions to
(1) are parametrized by two time indices: a continuous
index t ∈ R≥0 that increases continuously whenever the

system flows in C as ξ̇(t, j) := d
dtξ(t, j) ∈ F (ξ(t, j)); and

a discrete index j ∈ Z≥0 that increases by one whenever
the system jumps in D as ξ+ := ξ(t, j + 1) ∈ G(ξ(t, j)).
Solutions to (1) are defined on hybrid time-domains [18,
Def. 2.3], namely, subsets of R≥0 × Z≥0 defined as the
union of intervals [tj , tj+1]×{j}, with 0 = t0 ≤ t1 ≤ . . .,
and where the last interval can be closed or open on the
right. We denote by dom(ξ) the domain of ξ. We say
that the solutions to (1) have a uniform semiglobal dwell-
time outside A, where A ⊆ Rn is strongly forward pre-
invariant for (1), if for any ∆ ≥ 0 there exists τ(∆) > 0
such that for any solution ξ to (1) with |ξ(0, 0)|A ≤ ∆
and any (s, i), (t, j) ∈ dom(ξ) with s+ i ≤ t+ j:

ξ(t, j) ̸∈ A ⇒ j − 1 ≤ (t− s)/τ(∆) + 1.

We will use the following standard notions [18, Def. 3.6].

Definition 2.1 The closed set A ⊂ Rn is uniformly
globally pre-asymptotically stable (UGpAS) for (1) if:

(i) [Uniform global stability] There exists α ∈ K∞ such
that for any solution ξ to (1), |ξ(t, j)|A ≤ α(|ξ(0, 0)|A)
for all (t, j) ∈ dom(ξ).

(ii) [Uniform global pre-attractivity] For each ε, r > 0,
there exists T > 0 such that for any solution ξ to (1)
with |ξ(0, 0)|A ≤ r, (t, j) ∈ dom(ξ) and t+ j ≥ T im-
ply |ξ(t, j)|A ≤ ε.

SetA is uniformly globally asymptotically stable (UGAS)
when, in addition, the maximal solutions to (1) are com-
plete.

3 Problem Formulation

We consider continuous-time systems with dynamics:

ẋ(t) = Ax(t) +Bu(t) + Ew, (2)

2



where t ∈ R≥0 denotes time, x : R≥0 → Rn is the state,
u : R≥0 → Rm is the control decision, and w ∈ Rq (con-
stant) describes disturbances affecting the state dynam-
ics. In the remainder, we will drop time indices for no-
tational simplicity. We make the following assumptions
on the plant (2).

Assumption 1 The system (2) is controllable. More-
over, the matrix A is Hurwitz stable, i.e., there exists
P ≻ 0 such that ATP + PAT = −I. □

Assumption 1 guarantees asymptotic stability of the
unique equilibrium point of (2), which is given by:

x = −A−1B︸ ︷︷ ︸
:=G

u+−A−1E︸ ︷︷ ︸
:=H

w, (3)

for any given u ∈ Rm, w ∈ Rq. In cases where the under-
lying plant does not satisfy the above stability property,
it can be first stabilized using standard feedback control
techniques; in these case, (2) models the pre-stabilized
system.

We are interested in driving the input and the state of (2)
to the solutions of the following optimization problem:

(u∗, x∗) ∈ arg min
ud,xd

Φ(ud, xd),

s.t. xd = Gud +Hw, (4)

where Φ : Rm × Rn → R is a loss function that models
costs associated with the inputs and states, and w is a
parameter of the optimization problem describing the
disturbances in (2).

Remark 1 Problem (4) is an equilibrium-selection
problem, where the objective is to control (2) to an
equilibrium point (u∗, x∗) that minimizes the cost Φ.
Notice that, even though we assume that the equilibria
of (2) are stable, the plant has equilibrium points that
are parametrized by the system inputs (see (3)). Hence,
the goal of (4) is to regulate the plant to an equilibrium
point that is optimal (in the sense that it minimizes Φ),
despite not being able to measure w. □

One challenge associated with the control objective (4)
is that solutions to the optimization problem cannot be
computed explicitly because w is unknown, and thus
the control problem can be interpreted as a regulation
problem to unknown (but optimal) equilibrium point.

In what follows, we define the set

A := {(u∗, x∗) : (u∗, x∗) is a first-order optimizer of (4)},

and we define the matrix ΠT :=
[
Im GT

]
.

We make the following assumption on the set A and on
the cost Φ.

Assumption 2 The set A is nonempty and closed.
Moreover, the function Φ(·, ·) is convex and there exists
ℓ ∈ R>0:

∥ΠT(∇Φ(u, x)−∇Φ(u, x′))∥ ≤ ℓ∥x− x′∥, (5)

for all x, x′ ∈ Rn and u ∈ Rm. □

The control objective (4), has been studied in e.g. [7, 9,
10]. In these works, the authors have proposed low-gain
gradient-type controllers of the form:

u̇ = −ηΠT∇Φ(u, x), (6)

where η > 0 is a scalar gradient gain to be tuned. The
controller (6) is of the form of a gradient-flow algorithm
– which is the natural approach to solve optimization
problems of the form (4) – yet modified by replacing
the true gradient ΠT∇Φ(u,Gu +Hw) with an approx-
imate gradient evaluated at the instantaneous system
state ΠT∇Φ(u, x), thus making the iteration (6) inde-
pendent of the unknown disturbance w.

Remark 2 As shown in [9], the dynamics (6) can be
adapted to account for convex constraints on the input
of the form u ∈ U , where U ⊂ Rm is a closed and
convex set. In these cases, (6) shall be modified to u̇ =
PU (u− ηΠT∇Φ(u, x))− u, where PU (·) denotes the Eu-
clidean projection. Notice that the above projected dy-
namics admit solutions that are continuously differen-
tiable [9]. □

Departing from these works, the focus of this paper is
to solve the control task (4) where the control inputs
and system states are, respectively, applied and sensed
only when needed. We will consider two scenarios for
this problem. First, (see Fig. 1(a)) we consider cases
where the control signals are computed in a continuous
fashion but they are released only at (non-necessarily
periodic) discrete time instants 0 ≤ t0 < t1 < · · · <
∞. Between two transmissions, the plant no longer has
access to u, instead, it has access to a sampled version
of it, denoted by û. Here, û is generated by an arbitrary
holding function implemented locally (at the plant):

˙̂u = Fu(û, x). (7)

Second, (see Fig. 1(b)) we consider cases where the feed-
back signal x is released only at discrete time instants
0 ≤ t0 < t1 < · · · < ∞. Between two transmissions, the
controller no longer has access to x, instead, it has access
only to its sampled version x̂, generated by an arbitrary
holding function implemented locally (at the controller):

˙̂x = Fx(u, x̂) (8)

In both cases, we will study the following problem.
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x̂

(b)

Fig. 1. (a) Feedback optimization with event-triggered input:
control signals u are released only at discrete time-instants
and between transmissions the plant has access to a sam-
pled version û generated by a holding function. (b) Feedback
optimization with event-triggered state measures: feedback
signals x are released only at discrete time-instants and be-
tween transmissions the controller has access to a sampled
version x̂ generated by a plant emulator.

Problem 1 Design a logic that selects the time instants
{t0, t1, . . . } as well as the parameter η to guarantee that
any solution of (2) converges asymptotically to the set of
first-order optimizers A. □

4 Feedback optimization with event-triggered
control input

In this section, we study Problem 1 in cases where the
control signal u is transmitted only at discrete time in-
stants (cf. Fig. 1(a)). To this end, we will rewrite the
control system (2), (6), and (7) as a HDS with state
ξ = (x, u, e) and

ξ ∈ C,


ẋ = Ax+B(u+ e) + Ew,

u̇ = −ηΠT∇Φ(u, x),

ė = Fe(u, x, e),

ξ ∈ D,


x+ = x,

u+ = u,

e+ = 0,

(9)

where e = û − u ∈ Rm models the sampling-induced
error, which is reset to e = 0 at each jump and has con-
tinuous dynamics Fe(u, x, e) = Fu(e + u, x) − u̇, and
C ⊆ Rn×Rm×Rm andD ⊆ Rn×Rm×Rm are, respec-
tively, the flow and jump sets, which are parameters to
be designed.

In the following result, we provide a choice for C and D

that guarantees uniform global asymptotic stability of
A.

Theorem 4.1 Consider the dynamics (9), and let the
flow and jump sets be, respectively,

C = {ξ : ∥e∥ ≤ σ

2∥PB∥∥A
−1ẋ∥},

D = {ξ : ∥e∥ ≥ σ

2∥PB∥∥A
−1ẋ∥}, (10)

where σ ∈ (0, 1) is a free parameter. Then, there exists
η̄ ∈ R>0 such that for all η ∈ (0, η̄) the set A is UGAS
for (9). Moreover, the solutions to (9) have a uniform
semiglobal dwell-time outside A. □

PROOF. The proof of UGAS relies on showing that (9)
with flow and jump sets (10) satisfies the assumptions
of the Hybrid Invariance Principle [13], and is inspired
from [18, Thm. 5.19]. First, we notice that because the
sets C and D are closed and the flow and jump maps
F (ξ) and G(ξ) are continuous, the system (9) satisfies
the hybrid basic conditions [13]. Next, we consider the
change of variables x̃ := x − Gu − Hw, which shifts
the equilibrium point of (2) to the origin. In the new
variables, flow and jump sets of (9) read, respectively, as

F (ξ̃) =


Ax̃+Be+A−1Bu̇

−ηΠT∇Φ(u, x̃+Gu+Hw)

Fe(u, x̃+Gu+Hw, e)

 , G(ξ̃) =


x̃

u

0

 ,

where ξ̃ = (x̃, u, e). In what follows, we will denote by

Ã = {0} × {u∗} × Rm. Inspired by singular perturba-
tion reasonings [19], consider the Lyapunov function

candidate on Rn×Rm×Rm with respect to Ã given by:

U(x̃, u) =:=
1

η
V (u) +

1

η
W (x̃), (11)

for each ξ̃ ∈ Rn × Rm × Rm, where

V (u) = Φ(u,Gu+Hw)− Φ(u∗, Gu∗ +Hw),

W (x̃) = x̃TPx̃. (12)

We next bound the time-derivative of V (u):

d

dt
V (u) = [ΠT∇Φ(u,Gu+Hw)−ΠT∇Φ(u∗, Gu∗ +Hw)︸ ︷︷ ︸

=0

]Tu̇

≤ −η∥ΠT∇Φ(u, x̃+Gu+Hw)∥2

+ ηℓ∥ΠT∇Φ(u, x̃+Gu+Hw)∥∥x̃∥, (13)

where the inequality follows from Assumption 2. Next,
we bound the time-derivative of W (x̃):
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d

dt
W (x̃) = x̃(ATP + PA)x̃+ 2x̃TPBe+ 2x̃TPA−1Bu̇

(14)

≤ −∥x̃∥2 + 2∥PB∥∥x̃∥∥e∥
+ 2η∥PA−1B∥∥x̃∥∥ΠT∇Φ(u, x̃+Gu+Hw)∥

≤ −(1− σ)∥x̃∥2

+ 2η∥PA−1B∥∥x̃∥∥ΠT∇Φ(u, x̃+Gu+Hw)∥,

where σ ∈ (0, 1) is as in the assumptions and the last
inequality holds when −σ∥x̃∥2 + 2∥PB∥∥x̃∥∥e∥ ≤ 0 or,
equivalently, ∥e∥ ≤ σ

2∥PB∥∥x̃∥, which is guaranteed by

the choice of flow set (10) (notice that x̃ = A−1ẋ). By
combining (13)-(14), we have d

dtU(x̃, u) ≤ −zTΛz with

z = (∥ΠT∇Φ(u, x̃+Gu+Hw)∥, ∥x̃∥), (15)

and

Λ =

[
1 − 1

2 (ℓ+ 2∥PA−1B∥)
− 1

2 (ℓ+ 2∥PA−1B∥) 1−σ
η

]
.

By noting that Λ ≻ 0 when 1−σ
η > 1

4 (ℓ + 2∥PA−1B∥),
we conclude that for any η ∈ (0, η̄), η̄ = 4(1−σ)

ℓ+2∥PA−1B∥ ,

the function U(x̃, u) satisfies

d

dt
U(x̃, u) ≤ −λ(Λ)∥z∥2, ∀ ξ̃ = (x̃, u, e) ∈ C. (16)

Hence, since z is positive definite with respect to the op-
timal points, we conclude that U(x̃, u) strictly decreases

during flows away from Ã. At jumps, since G(·) does not
change the state components (x̃, u), it follows that

U(G(ξ̃)) = U(ξ̃), ∀ ξ̃ = (x̃, u, e) ∈ D.

Thus, by the above two conclusions and because (10)
satisfies the basic hybrid conditions, the Hybrid Lya-
punov Theorem [13, Thm. 3.19, item 1] guarantees that

the set Ã is stable. To show pre-attractivity, notice that
U−1({0, u∗}) ⊂ Ã and ∆U−1({0, u∗}) = D. Thus, since
(9) satisfies the hybrid basic conditions, the Hybrid In-
variance Principle [13, Thm. 3.23, item 1] guarantees
that every precompact solution to (9) converges to the
largest invariant subset of

U−1(r) ∩ (Ã ∪ (D ∩G(D))), (17)

for some r ≥ 0. To determine D ∩ G(D), notice that
ξ ∈ D implies d

dtU(x̃, u) ≥ −λ(Λ)∥z∥2 and, by combina-

tion with (16), this is only possible when ξ ∈ Ã. Then,
(17) can only hold when r = 0 or, equivalently, when

ξ ∈ Ã. To conclude pre-attractivity of Ã, we are left to
show that there exists δ > 0 such that every maximal

solution ξ̃ = (x̃, u, e) with ∥ξ̃(0, 0)∥Ã < δ is bounded,
i.e., ∥(x̃, u)∥ < ϵ for some ϵ > 0. Since U(x̃, u) is pos-
itive definite with respect to A, its level sets are com-
pact and thus stability of Ã implies that ∥(x̃, u)∥ < ϵ.
This concludes the proof of UGAS. Finally, existence of
a semiglobal dwell-time outsideA follows by application
of [13, Prop. 5.11] by noting that (9) satisfies the hybrid
basic conditions and from the fact that every maximal
solution is bounded.

Theorem 4.1 provides an explicit triggering logic and
an existence-type characterization for the gain η that
guarantee convergence of the plant and controller tra-
jectories to the critical points of the optimization prob-
lem (4). We notice that the triggering condition (10) re-
quires to evaluate the sampling error e with respect to
the time-derivative of the state x. The latter can be com-
puted robustly in practice by using, e.g., passive differ-
entiators. Moreover, the theorem guarantees that there
exists a positive lower bound on the time between con-
secutive events; this feature is critical to many physical
implementations of the controller as it guarantees the
existence of non-Zeno solutions, which would otherwise
require arbitrarily fast computations.

5 Feedback optimization with event-triggered
state measures

The focus of this section is on cases where the feedback
signal x is transmitted only at a sequence of discrete
time instants (cf. Fig. 1(b)). To this aim, we rewrite the
control system (2), (6), and (8) as a HDS with state
ξ = (x, u, e) and

ξ ∈ C,


ẋ = Ax+Bu+ Ew,

u̇ = −ηΠT∇Φ(u, x+ e),

ė = Fe(u, x, e),

ξ ∈ D,


x+ = x,

u+ = u,

e+ = 0,

(18)

where e = x̂− x ∈ Rn models the sampling-induced er-
ror, which is reset to e = 0 at each jump and has con-
tinuous dynamics Fe(u, x, e) = Fx(u, e + x) − ẋ, and
C ⊆ Rn×Rm×Rn and D ⊆ Rn×Rm×Rn are, respec-
tively, the flow and jump sets, which are to be designed.

In the following result, we provide a choice for the sets
C,D that guarantees uniform global asymptotic stability
of the set A in the presence of sampled state measures.

Theorem 5.1 Consider the dynamics (18), and let the
flow and jump sets be, respectively,

C = {ξ : ∥e∥ ≤ max{α∥ΠT∇Φ(u, x)∥, β∥A−1ẋ∥}},
D = {ξ : ∥e∥ ≥ max{α∥ΠT∇Φ(u, x)∥, β∥A−1ẋ∥}},

(19)
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where α = σ
ℓ , β = σ

ηℓ(ℓ+2∥PA−1B∥) , and σ ∈ (0, 1) is a

free parameter. Then, there exists η̄ ∈ R>0 such that for
all η ∈ (0, η̄) the set A is UGAS for (18). Moreover, the
solutions to (18) have a uniform semiglobal dwell-time
outside A. □

PROOF. The proof of this result follows similar steps
as the proof of Theorem 4.1, suitable modified to account
for errors in the output signal. More precisely, we will
show that (18) with flow and jump sets (19) satisfies
the assumptions of the Hybrid Invariance Principle [13].
Consider the change of variables x̃ = x − Gu − Hw,
which shifts the equilibrium point of (2) to the origin.
In the new variables, flow and jump sets of (9) read,
respectively, as

F (ξ̃) =


Ax̃+A−1Bu̇

−ηΠT∇Φ(u, x̃+Gu+Hw + e)

Fe(u, x̃+Gu+Hw + e, e)

 , G(ξ̃) =


x̃

u

0

 ,

where ξ̃ = (x̃, u, e). Next, we let Ã = {0}×{u∗}×Rm and
we consider the Lyapunov function candidate defined
in (11)-(12). The time-derivative of V (u) reads as:

d

dt
V (u) = [ΠT∇Φ(u,Gu+Hw)−ΠT∇Φ(u∗, Gu∗ +Hw)︸ ︷︷ ︸

=0

]Tu̇

= [ΠT∇Φ(u, x̃+Gu+Hw)]Tu̇

+ [ΠT∇Φ(u,Gu+Hw)−ΠT∇Φ(u, x̃+Gu+Hw)]Tu̇.

The first term satisfies:

[ΠT∇Φ(u, x̃+Gu+Hw)]Tu̇ ≤ −η∥ΠT∇Φ(u, x̃+Gu+Hw)∥2

+ ηℓ∥ΠT∇Φ(u, x̃+Gu+Hw)∥∥e∥,

and the second term satisfies:

[ΠT∇Φ(u,Gu+Hw)−ΠT∇Φ(u, x̃+Gu+Hw)]Tu̇

≤ ηℓ∥x̃∥(∥∇Φ(u, x̃+Gu+Hw)∥+ ℓ∥e∥),

where the inequality follows from Assumption 2. By
combining the above estimates, we conclude that:

d

dt
V (u) ≤ −η∥ΠT∇Φ(u, x̃+Gu+Hw)∥2 (20)

+ ηℓ∥ΠT∇Φ(u, x̃+Gu+Hw)∥∥e∥
+ ηℓ∥x̃∥∥∇Φ(u, x̃+Gu+Hw)∥+ ηℓ2∥x̃∥∥e∥.

Next, we bound the time-derivative of W (x̃):

d

dt
W (x̃) = x̃(ATP + PA)x̃+ 2x̃TPA−1Bu̇

≤ −∥x̃∥2 + 2∥PA−1B∥∥x̃∥∥ΠT∇Φ(u, x̃+Gu+Hw + e)∥
≤ −∥x̃∥2 + 2η∥PA−1B∥∥x̃∥∥ΠT∇Φ(u, x̃+Gu+Hw)∥
+ 2ηℓ∥PA−1B∥∥x̃∥∥e∥. (21)

By combining (20)-(21) and by denoting in compact
form g(u, x̃) = ΠT∇Φ(u, x̃+Gu+Hw):

d

dt
U(x̃, u) ≤ −∥g(u, x̃)∥2 + ℓ∥g(u, x̃)∥∥e∥+ ℓ∥x̃∥∥g(u, x̃)∥

+ ℓ2∥x̃∥∥e∥ − 1

η
∥x̃∥2 + 2∥PA−1B∥∥x̃∥∥g(u, x̃)∥

+ 2ℓ∥PA−1B∥∥x̃∥∥e∥
≤ −(1− σ)∥g(u, x̃)∥2 + ℓ∥x̃∥∥g(u, x̃)∥

− 1− σ

η
∥x̃∥2 + 2∥PA−1B∥∥x̃∥∥g(u, x̃)∥,

where σ ∈ (0, 1) is as in the assumptions and the second
inequality is guaranteed to hold when

−σ∥g(u, x̃)∥2 + ℓ∥g(u, x̃)∥∥e∥ ≤ 0,

−σ∥x̃∥2 + ηℓ2∥x̃∥∥e∥+ 2ηℓ∥PA−1B∥∥x̃∥∥e∥ ≤ 0,

which are satisfied by the choice of flow set (19). Hence,
by combining the above estimates and by adopting the
notation (15), we conclude thatU(x̃, u) strictly decreases

during flows away from Ã, namely

d

dt
U(x̃, u) ≤ −zTΛz < 0, ∀ξ = (x̃, u, e) ∈ C \ Ã,

where

Λ =

[
1− σ − 1

2 (ℓ+ 2∥PA−1B∥)
− 1

2 (ℓ+ 2∥PA−1B∥) 1−σ
η

]
.

By noting that Λ ≻ 0 if and only if (1−σ)2

η > 1
4 (ℓ +

2∥PA−1B∥), we conclude that for any η ∈ (0, η̄), where

η̄ = 4(1−σ)2

ℓ+2∥PA−1B∥ , the function U(x̃, u) strictly decreases

during flows. At jumps, since G(·) does not change the
state components (x̃, u), it follows that

U(G(ξ̃)) = U(ξ̃), ∀ ξ̃ = (x̃, u, e) ∈ D.

Thus, by the above two conclusions and because (10) sat-
isfies the basic hybrid conditions, the Hybrid Lyapunov
Theorem [13, Thm. 3.19, item 1] guarantees that the set

Ã is stable. Finally, the proof of pre-attractivity and of
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Fig. 2. (a) Geographical partitioning of the state of Colorado,
USA, according to its 11 LPHA regions. (b) Illustration of
the matrix of interactions between regions (corresponding to
matrix A in (23)).

existence of a semiglobal dwell-time follow directly by
iretaing the steps in the proof of Theorem 4.1.

Theorem 5.1 provides a triggering logic and an existence-
type characterization for η that guarantee convergence
of the plant-controller trajectories to the critical points
of the optimization problem (4) uner output sampling.
We notice that the triggering condition (10) requires to
evaluate the sampling error e with respect to two state-
dependent quantities: (i) the time-derivative of the state
x, and (ii) the norm of the gradient of the cost evaluated
at the instantaneous u and x. In comparison with Theo-
rem (4.1), condition (ii) is new and can be interpreted by
noting that errors in the feedback signal originate errors
in the computed control input, which is itself fed into
the plant thus originating a feedback-type error. More-
over, similarly to Theorem (4.1), Theorem (5.1) guaran-
tees that there exists a positive lower bound on the time
between consecutive events, thus guaranteeing existence
of Zeno solutions that are non-Zeno.

6 Applications to control of epidemics

In this section, we illustrate the applicability of the
framework in controlling the infectious state of an SIS
epidemic model. The adopted model is deliberately
simple to illustrate the control approach, however, we
remark that the techniques adopted in the sequel can be
easily generalized to account for more complicated mod-
els with several states (by leveraging similar feedback
linearization techniques).

6.1 Network SIS model

We consider a geographical region describing an isolated
state, country, or continent, and we organize it into n
sub-regions denoted by V = {1, . . . , n}. To every re-
gion k ∈ V, we associate two state variables to describe
the epidemic state in that region: ik : R≥0 → [0, 1]
(fraction of infected population) and 1 − ik := sk :

R≥0 → [0, 1] (fraction of susceptible population). We
adopt a susceptible-infected-susceptible (SIS) [20] model
with constant population:

d

dt
sk = −β(1− rk)sk

∑
ℓ∈V

akℓiℓ + γik, (22)

d

dt
ik = β(1− rk)sk

∑
ℓ∈V

akℓiℓ − γik + wk, k ∈ V,

where β > 0 is the transmission rate, γ > 0 is the recov-
ery rate, akℓ > 0 are parameters that model the inten-
sity of infection due to interactions between susceptible
individuals residing in region k and infected individuals
residing in region ℓ, wk ∈ R is a disturbance that mod-
els unknown inflows of individuals to the system, and
rk : R≥0 → [0, 1] is a decision variable that describes
the intensity of pandemic mitigation measures adopted
by policymakers to limit disease spread. More precisely,
rk = 0 is interpreted as “zero restrictions” and rk = 1 is
interpreted as “full lockdown.” In vector form, the sec-
ond equation of (22) reads as:

ẋ = β diag(1− r)(I − diag(x))Ax− diag(γ1)x+ w,
(23)

where r = (r1, . . . , rn) is the vector of decision variables,
x = (i1, . . . , in) is the vector of infected states, w =
(w1, . . . , wn) is the vector of disturbances, A = [akℓ] ∈
Rn×n is the matrix of interactions, 1 ∈ Rn is the vector
of all ones, and diag(v) ∈ Rn×n denotes the diagonal
matrix whose diagonal entries are defined by the vector
v ∈ Rn.

Since (23) is a nonlinear model, we choose rk as follows:

rk = 1− uk

(1− ik)
∑

ℓ∈V akℓiℓ
, k ∈ V, (24)

where uk : R≥0 → R is a free control signal to be
designed. The control (24) is a feedback-linearizing
law [19, Ch. 13], which cancels the nonlinear term
(I − diag(x))Ax from (23). With the control (24), the
network dynamics (23) simplify to a linear model:

ẋ = −diag(γ1)︸ ︷︷ ︸
:=Ā

x+ diag(β1)︸ ︷︷ ︸
:=B̄

u+ w. (25)

Notice that Ā is Hurwitz stable (since γ > 0) and (25)
is controllable (since B is diagonal and β > 0), and
thus (25) is in a form that satisfies our assumptions.
Accordingly, in what follows we let Ḡ = −Ā−1B̄ and
H̄ = −Ā−1. Finally, we assume that the instantaneous
infections x is measurable.

6.2 Control objective

We formalize the objective of regulating the infectious
state x to a desired reference setpoint xref ∈ Rn as fol-
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Fig. 3. Time-evolution of the infectious state ik and pandemic mitigation measures rk for the network SIS model (22) for four,
representative, LPHA regions of the state of Colorado, USA. Model parameters: β = 4, γ = 1/9, and A as in Fig. 2. (Top
row) Control with intermittent restriction update (see (C2)); this controller is constructed by using feedback linearization (24)
and the gradient flow (9). (Bottom row) Control with intermittent testing (see (C2)); this controller is constructed using (24)
and (18). In all simulations, flow and jump sets are defined with σ = 1/2. As illustrated, the event-triggering mechanism allows
us to drastically reduce the frequency of updates of the restrictions and of testing, which occur, on average, every 9 days.

lows:

(u∗, x∗) := arg min
ud,xd

∥xd − xref∥2Qx
,

s.t. xd = Ḡud + H̄w, (26)

where Qx ≻ 0. In what follows, we account for two prac-
tical challenges related to the control objective (26):

(C1) Control with intermittent restriction up-
date: due to the practical challenges related to
enforcing quickly-changing social restriction mea-
sures, we first focus on cases where a policymaker
seeks to minimize the frequency of updates of
interventions (i.e., vector r).

(C2) Control with intermittent testing: due to the
economic costs of testing, we next focus on cases
where a policymaker seeks to minimize the fre-
quency at which the state (i.e., vector x) is sensed.

The control challenges outlines above can be translated
into two mathematically rigorous frameworks corre-
sponding, respectively, to the techniques studied in
Sections 4 and 5.

6.3 Simulation results for the state of Colorado, USA

We simulated the proposed feedback controller on an
instance of (22) where model parameters have been in-
terpolated from COVID-19 data for the state of Col-
orado, USA (model parameters have been fitted by using

regional hospitalization data from the period 1/1/21-
2/28/21 [21]). As illustrated in Fig. 2(a), we partitioned
the state according to its n = 11 Local Public health
Agency (LPHA) regions, and we usedmobility data from
cell-phone usage to estimate inter-regional couplings (see
Fig. 2(b) for a description of the matrix of inter-region
couplings A and [21] for data sources).

In Fig. 3 we show simulation results, over a time hori-
zon of 100 days, in which the feedback controller seeks
to regulate the infectious state to xref = 6 infected in-
dividuals every 100 inhabitants in all regions. The top
row corresponds to the case (C1) Control with intermit-
tent update of the restrictions, while the second row illus-
trates simulations results for the case (C2) Control with
intermittent testing. In the first case, an update of the
restrictions is required on average every 9 days (corre-
sponding to days 12, 21, 29, 39, 51, 61, 69, 78, 90); in the
second case, testing is required on average every 9 days
(corresponding to days 8, 16, 33, 44, 53, 65, 77, 86, 97). As
shown, all state trajectories converge (within less than 1
person/100K inhabitants accuracy) to the desired num-
ber of infections (6 infected individuals every 100 inhab-
itants) within 100 days. Overall, these simulations show
the applicability and benefits of framework in drastically
reducing the frequency of updates of the pandemic mit-
igation measures and of testing.
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7 Conclusions

We proposed a gradient-flow controller for steady-state
optimization, which incorporates an event-based mech-
anism that automatically selects the time instants at
which communication should occur based on the state of
internal state variables. By leveraging the framework of
Hybrid Dynamical Systems, we have derived sufficient
conditions that guarantee stability of the closed-loop
system under event-based sampling. We showed the ap-
plicability of the framework to limit infections in the con-
text of COVID-19; overall, our results suggest that the
frequency of testing and mitigation measures updates
can be reduced to once every nine days without deterio-
rating the performance of the controller. Future research
directions include extensions to more general plant mod-
els, the derivation of numerically more tractable trigger-
ing rules that overcome the need for differentiators, and
incorporating model learning.
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