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Abstract— Time-varying optimization problems arise in a va-
riety of engineering applications. The available information
about how the problem changes in time dictates the types
of algorithms that are applicable to a particular problem
as well as the types of convergence guarantees that may be
proven. In this paper, we study dynamic gradient-feedback
algorithms for time-varying optimization in discrete time. By
casting the design of such algorithms as an output regulation
problem for dynamical systems, we provide necessary and
sufficient conditions for the existence of a gradient-feedback
algorithm that asymptotically tracks a critical trajectory of
the optimization problem. When these conditions hold, we
provide a design procedure to construct such an algorithm.
As a fundamental limitation, we show that any algorithm that
asymptotically tracks a critical trajectory needs to contain an
internal model of the temporal variation, which we refer to as
the internal model principle of time-varying optimization.

I. INTRODUCTION

Optimization problems throughout engineering often contain
parameters that vary in time, leading to the setting of
time-varying optimization [1]. Applications of time-varying
optimization include optimal power flow in power grids with
renewable energy sources, obstacle avoidance in robotics
using barrier functions [2], model predictive control [3],
feature extraction in videos, magnetic resonance imaging
(MRI) with high-definition video, real-time optimization
for chemical and industrial processes, and others; see [1,
Sections IV and V] and the references therein.

The algorithms available to solve a time-varying optimization
problem depend on the available information about how the
problem changes in time. For instance, suppose one has
access to the optimization problem at each point in time, but
has no foreknowledge as to how the problem will change
at the next iteration. In this case, any method from static
optimization (e.g., [1], [4]–[9]) may be applied directly to
the problem at each point in time, but such algorithms can
only achieve convergence to a neighborhood of a critical
trajectory, where the size of the neighborhood depends on
the convergence properties of the algorithm as well as how
quickly the problem varies in time [10], [11].

The optimization problem, however, is not always known at
each point in time (see, e.g., [12], [13]). Instead, suppose
one has access to an oracle for the optimization problem
(such as the gradient of the objective function) along with
a model for how the optimization problem varies in time.
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In this case, the algorithm may exploit this information to
asymptotically track a critical trajectory. This is the approach
proposed in [14] for discrete-time problems and [15] for
continuous-time ones. In [14], the algorithm has access to
the gradient of the objective function along with knowledge
of the poles of the z-transform of the time-varying parameter.
Based on the internal model principle, this model of the time
variation is then incorporated in the algorithm to achieve
exact asymptotic tracking of the optimal trajectory. These
results, however, are limited to quadratic objective functions
with linear temporal variabilities.

Departing from these early works, in this paper we study
discrete-time time-varying optimization problems, and we
pose the following questions:

1) What is the minimal amount of information needed to
design an algorithm that asymptotically tracks a critical
trajectory of a time-varying optimization problem?

2) When these conditions hold, how does one design such
an algorithm?

To address these questions, we cast the analysis and design of
a time-varying optimization algorithm as a nonlinear output
regulation problem [16], which can be studied using tools
from center manifold theory for maps [17]–[19]. Our main
contributions are as follows:

1) We provide necessary and sufficient conditions for
a discrete-time gradient-based algorithm to asymp-
totically track a critical trajectory of a time-varying
optimization problem (Theorems 2 and 3).

2) When these conditions hold, we provide a design pro-
cedure to construct such an algorithm (Algorithm 1).
The algorithm consists of an observer combined with
a function that zeros the gradient of the objective
function (see Definition 2).

As a fundamental result, we show that, to achieve asymptotic
tracking of a critical trajectory, it is necessary to have some
knowledge of the temporal variability in the optimization
and for this variability to be “observable” by the algorithm
(see Thm. 2). In turn, this requires the algorithm to contain
an internal model of the temporal variation; we refer to this
as the discrete-time internal model principle of time-varying
optimization, akin to its counterpart in control [20].

The rest of the paper is organized as follows. We begin by
formulating the problem in §II. We consider the special case
of parameter feedback optimization in §III, followed by the
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general case of dynamic feedback in §IV. Simulation results
are presented in §V, and §VI summarizes our conclusions.

II. PROBLEM SETTING

We consider the time-varying optimization problem:

min
x∈Rn

f(x, θk), (1)

where k ∈ N≥0 denotes time or iteration, and f : Rn×Θ→
R, with Θ ⊆ Rp, is a loss function that is parametrized by
the time-varying parameter vector θ : N≥0 → Θ.

A. Standing assumptions

We list hereafter the basic assumptions on which our ap-
proach to gradient-feedback theory is based.

Assumption 1 (Properties of the objective function). The
map x 7→ f(x, θ) is convex and x 7→ ∇xf(x, θ) is Lipschitz
continuous in Rn, for each θ ∈ Θ. □

Assumption 2 (Existence of an exosystem). There exists
a smooth (i.e., C∞) vector field s : Θ → Θ and initial
condition θ0 ∈ Θ such that the parameter vector satisfies

θk+1 = s(θk), (2)

for all k ∈ N≥0. □

Assumption 3 (Stability of the exosystem). The equilibrium
θ = 0 of the exosystem (2) is locally Lyapunov stable. □

Convexity and smoothness are standard assumptions in op-
timization [21]. Assumption 2 ensures the existence of an
autonomous system, called exosystem, describing the class
of temporal variabilities of the cost taken into consideration.
Notice that the vector field s(θ) may or may not be known
in the applications, and that our goal hereafter is to study to
what resolution (1) can be solved in relation to the available
knowledge on s(θ). The class of exosystems satisfying
Assumption 3 includes the (important in practice) set of
systems in which every solution is periodic.

In this work, we study the problem of designing an optimiza-
tion algorithm that computes and tracks a critical trajectory
of (1), which is a map x⋆ : N≥0 → Rn that satisfies1

0 = ∇xf(x
⋆
k, θk), ∀k ∈ N≥0. (3)

Remark 1. The time variation in (1) is captured implicitly
through the parameter vector θk. A related, yet slightly more
general, problem makes the time dependency explicit:

min
x∈Rn

f0(x, k). (4)

While Problem (1) can be cast uniquely as in (4) (by letting
f0(x, k) = f(x, θk) for all x and k), in general, there exists
an infinite number of ways to parametrize (4) as in (1), thus
leading to possible ambiguities. For instance, any f0(x, k)
may be parametrized by θk = k (so that f0 ≡ f ), although
this is not compatible with Assumption 3. □

1Existence of a critical trajectory is implied by Assumption 1.

B. Algorithm structure

Our objective is to seek an optimization algorithm that
assumes no access to θk. Instead, as is common in first-
order optimization approaches [21], we will assume only the
availability of functional evaluations of the gradient function
∇xf(x, θk) at points x ∈ Rn, selected by the algorithm. For-
mally, the optimization algorithm is described by an internal
state zk, which takes values on an open set Z ⊆ Rnc with
nc ∈ N>0. The optimization algorithm generates a sequence
of points xk ∈ Rn (called exploration signal) at which the
gradient shall be evaluated, and processes functional evalua-
tions of the gradient at these points yk = ∇xf(xk, θk) (called
gradient feedback signal). Mathematically, the optimization
algorithm is described by:

zk+1 = Fc(zk, yk), xk = Gc(zk), (5a)

together with the gradient-feedback signal:

yk = ∇xf(xk, θk), (5b)

where Fc : Z ×Rn → Z and Gc : Z → Rn are functions to
be designed. In the remainder, we refer to (5) as a dynamic
gradient-feedback optimization algorithm. Notice that the
dynamics of the optimization algorithm (5), coupled with the
time-variability generator (2), have the form of a nonlinear
autonomous system:

zk+1 = Fc(zk, yk), (6a)
yk = ∇xf(Gc(zk), θk), (6b)

θk+1 = s(θk). (6c)

Our objective is to design Fc(z, y), Gc(z), and nc so that
yk → 0 as k →∞, which ensures that xk tracks, with zero
asymptotic error, a critical trajectory x⋆k of (1).

We will assume that θk takes values in a neighborhood of the
origin, and thus let Θ be some neighborhood of the origin
of Rp. Note that there is no loss of generality in doing so,
because if θk takes values in the neighborhood of any other
point, the former can be shifted to the origin via a change of
variables without altering the critical points of (1). In what
follows, we denote by x⋆◦ ∈ Rn a point such that

0 = ∇xf(x
⋆
◦, 0), (7)

and assume that x⋆◦ ∈ Rn is locally unique. Moreover, we
will assume that the functions Fc(z, y) and Gc(z) to be
designed are such that

Fc(z
⋆
◦ , 0) = z⋆◦ , x⋆◦ = Gc(z

⋆
◦), (8)

for some locally unique z∗◦ ∈ Z. This ensures that the
optimization algorithm (5) has an equilibrium at z = z⋆◦ , and
that the corresponding gradient feedback signal is identically
zero at this point: yk = ∇xf(Gc(z

⋆
◦), 0) = 0.

Definition 1. We say that (6) asymptotically tracks a critical
trajectory of (1) with respect to initializations in the set
Θ◦ ⊆ Θ if, for each initial condition (z0, θ0) with z0 in
some neighborhood of z⋆◦ and θ0 ∈ Θ◦, the solution of (6)
satisfies yk → 0 as k →∞. □
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In practice, the initial condition θ0 to the exosystem (2) may
not be known; Definition 1 accounts for such uncertainty
by allowing θ0 to be anywhere in the set Θ0. Observe
also that, when an algorithm asymptotically tracks a critical
trajectory, we have xk → x⋆k for some x⋆k as in (3). Namely,
the exploration signal converges asymptotically to a critical
trajectory. We now make our objective formal.

Problem 1 (Dynamic gradient-feedback problem). Find nec-
essary and sufficient conditions (in terms of the loss function
f ) for the existence of a gradient-feedback optimization
algorithm as in (5) that asymptotically tracks a critical
trajectory of (1) with respect to initializations in some Θ0.
When these conditions hold, derive a method to design such
an algorithm. □

It is important to note that existence conditions for Fc(z, y)
and Gc(z) shall not depend on the temporal variability of the
optimization (namely, s(θ)), but only on the properties of the
loss function. Conversely, if such conditions were to depend
on s(θ), a more general class of optimization algorithms
than (5) could be constructed, implying that the algorithm
formulation would not be sufficiently general.

III. THE PARAMETER-FEEDBACK PROBLEM

To address Problem 1, we first study a simpler problem that
allows us to derive the necessary framework to tackle our
objectives in their generality. To this end, in place of the
dynamic optimization algorithm (5), we begin by considering
an algebraic optimization algorithm of the form:

xk = Hc(θk), (9)

where Hc : Θ → Rn is a mapping to be designed; we
will require that Hc is of class C0 and satisfies the fixed-
point condition x⋆◦ = Hc(0) (cf. (8)). Because of the explicit
dependence on θk, we will refer to (9) as a static parameter-
feedback optimization algorithm. Our objective is to design
the map Hc so that the composition of (2), (5b), and (9):

yk = ∇xf(Hc(θk), θk),

θk+1 = s(θk), (10)

tracks, with zero asymptotic error, a critical trajectory of (1).
For this framework, we reformulate Problem 1 as follows.

Problem 2 (Static parameter-feedback problem). Find neces-
sary and sufficient conditions (in terms of the loss function
f ) for the existence of a parameter-feedback optimization
algorithm as in (9) that asymptotically tracks a critical
trajectory of (1) with respect to initializations in some Θ0.
When these conditions hold, derive a method to design such
an algorithm. □

Solvability of the static parameter-feedback problem will
depend on the existence of a function that zeros the gradient.

Definition 2 (Mapping zeroing the gradient). A mapping
Hc : Θ→ Rn zeros the gradient at the point θ ∈ Θ if

0 = ∇xf(Hc(θ), θ). (11)

Moreover, Hc zeros the gradient on a set Θ◦ ⊆ Θ if (11)
holds for all θ ∈ Θ◦. □

The following definition is instrumental.

Definition 3 (Limit point and limit set). A point θω ∈ Θ
is said a limit point with respect to the initialization θ◦ ∈
Θ if there exists a sequence {ki}i∈N≥0

, with ki → ∞ as
i→∞, such that the trajectory of (2) with θ0 = θ◦ satisfies
θki → θω as i→∞. For θ◦ ∈ Θ, let Ω(θ◦) denote the set
of all limit points (i.e., for all sequences {ki}i∈N≥0

) of (2)
with respect to the initialization θ◦. Given Θ◦ ⊆ θ, the set
Ω(Θ◦) := ∪θ◦∈Θ◦Ω(θ◦) is called the limit set with respect
to initializations in Θ◦ [22]. □

Intuitively, Ω(Θ◦) denotes the set of all limit points (equilib-
ria, limit cycles, etc.) that can be reached by the exosystem
when initialized at points in Θ◦. Notice also that, by As-
sumption 3, Ω(Θ◦) is contained in some neighborhood of
the origin of Rp. For example, if the exosystem (2) is linear
and the origin is a Lyapunov stable equilibrium, then Ω(Θ◦)
is some neighborhood of the origin, whose radius depends
on the radius of the initialization set Θ◦. The following result
characterizes all parameter-feedback optimization algorithms
that achieve asymptotic tracking of a critical trajectory.

Theorem 1 (Parameter-feedback algorithm characterization).
Let Assumptions 1, 2, and 3 hold, and let Θ◦ ⊆ Θ. The
parameter-feedback algorithm (10) asymptotically tracks a
critical trajectory of (1) with respect to initializations in Θ◦
if and only if the mapping Hc zeros the gradient on Ω(Θ◦).

□

Proof. We show that, for each initialization θ0 ∈ Θ◦, the
parameter-feedback algorithm asymptotically tracks a critical
trajectory of (1) with respect to θ0 if and only Hc zeros the
gradient on Ω(θ0), from which the result follows.

Lyapunov stability of the exosystem (Assumption 3) implies
that the trajectory is bounded and therefore has a subse-
quence that converges to some limit point θω ∈ Ω(θ0). Then
by definition, there exists an increasing sequence ki such that
the trajectory θki converges to θω as i→∞. By continuity
of the gradient (Assumption 1) and that of Hc,

lim
i→∞

yki = lim
i→∞

∇xf(Hc(θki), θki) = ∇xf(Hc(θω), θω).

When yk → 0 as k → ∞, the left-hand side is zero, which
implies that Hc zeros the gradient on θω . Since this holds
for any limit point, Hc zeros the gradient on Ω(θ0).

Now suppose Hc zeros the gradient on Ω(θ0). The right-
hand side of the above equation is then zero, which implies
the existence of a sequence ki such that yki → 0 as i→∞.
Since this holds for any limit point θω ∈ Ω(θ0), any conver-
gent subsequence of yk converges to zero. Moreover, yk is
bounded due to Lipschitz continuity of the gradient, so yk
also converges to zero as k →∞.
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Intuitively, the theorem states that the parameter-feedback
algorithm asymptotically tracks a critical trajectory if and
only if the mapping Hc is chosen so that it zeros the gradient
on the limit set of the exosystem, Ω(Θ◦). Once a mapping
Hc(θ) zeroing the gradient is known, a parameter-feedback
optimization algorithm solving Problem 2 is given by (9).

Remark 2 (Knowledge of Ω(Θ◦)). Notice that, when our
goal is to design a parameter-feedback algorithm as in (9),
such goal can be accomplished without an exact knowledge
of the limit set Ω(Θ◦). Indeed, it follows from the Lyapunov
stability assumption (cf. Assumption 3) and the sufficiency
part of the proof of Theorem 1 that if Hc zeros the gradient
on some subset of the origin of Rp containing Ω(Θ◦), then
the choice (9) ensures that yk → 0 as k →∞. □

We conclude this section by illustrating the design procedure
for parameter-feedback algorithms on a quadratic problem.

Example 1. Consider an instance of (1) with quadratic cost
and time-variability that depends linearly on θk:

f(x, θk) =
1
2x

TRx+ xTQθk, (12)

with R ∈ Sn and Q ∈ Rn×p. Notice that (12) admits a
critical point for arbitrary θk if and only if ImQ ⊆ ImR,
in which case x⋆k is unique. In this case, designing an
optimization algorithm amounts to finding xk such that we
regulate to zero the signal:

yk = ∇xf(xk, θk) = Rxk +Qθk.

Applying Theorem 1 requires finding a linear transformation
Hc(θ) = Hcθ,Hc ∈ Rn×p, such that 0 = (RHc+Q)θ for all
θ in some neighborhood of the origin. Using ImQ ⊆ ImR,
we can choose Hc = −R†Q, where R† is the pseudo-inverse
of R; observe that this choice for Hc(θ) zeros the gradient
globally in Rp. By substituting into (10), we have

yk = RHcθk +Qθk = 0, ∀k ∈ N≥0.

Namely, the gradient is identically zero at all times. In-
terestingly, this behavior originates for two reasons: (i) θk
is measurable at each k, and (ii) Hc(θ) obtained for this
particular problem zeros the gradient on the entire Rp (not
just some limit set of the trajectories of θ). When one of
these two properties fails (as in Section IV, shortly below),
this behavior can no longer be expected. □

IV. THE DYNAMIC GRADIENT-FEEDBACK PROBLEM

In this section, we tackle the dynamic gradient-feedback
problem (Problem 1).

A. Fundamental results

We begin with the following instrumental characterization.

Theorem 2 (Gradient-feedback algorithm characterization).
Suppose Assumptions 1, 2, and 3 hold, assume that Fc(z, y)
and Gc(z) are such that the equilibrium z = z⋆◦ of

zk+1 = Fc(zk,∇xf(Gc(zk), 0)),

is locally exponentially stable. The gradient-feedback opti-
mization algorithm (6) asymptotically tracks a critical trajec-
tory of (1) with respect initializations in Θ◦ if and only if
there exists a C2 mapping z = σ(θ) with σ(0) = z⋆◦ , defined
on Ω(Θ◦), which satisfies:

σ(s(θω)) = Fc(σ(θω), 0), (13a)
0 = ∇xf(Gc(σ(θω)), θω). (13b)

for all limit points θω ∈ Ω(Θ◦). □

Proof. The coupled dynamics (6) have the form:

zk+1 = (Ac +BcRM)zk +BcQθk + χ(zk, θk),

θk+1 = Sθk + ψ(θk), (14)

for some mappings χ(z, θ) and ψ(θ) that vanish at the
fixed point along with their first-order derivatives, where the
following matrices are Jacobians evaluated at the fixed point:

Ac =

[
∂Fc

∂z

]
(z,y)=(z⋆

◦ ,0)

, Bc =

[
∂Fc

∂y

]
(z,y)=(z⋆

◦ ,0)

,

R =

[
∂∇xf

∂x

]
(x,θ)=(x⋆

◦,0)

, M =

[
∂Gc

∂z

]
z=z⋆

◦

,

Q =

[
∂∇xf

∂θ

]
(x,θ)=(x⋆

◦,0)

, S =

[
∂s

∂θ

]
θ=0

. (15)

By assumption, the eigenvalues of the matrix Ac + BcRM
are located on the open unit disc. Then by [17, Theorem 6],
(14) has a center manifold at (z⋆◦ , 0), which is the graph of a
mapping z = σ(θ) with σ(θ) satisfying (see [17, Eq. (2.8.4)]

σ(s(θ)) = Fc(σ(θ),∇xf(Gc(σ(θ)), θ)). (16)

Similar to the parameter-feedback case (Thm. 1), we show
that, for each initialization θ0 ∈ Θ0, the gradient-feedback
algorithm asymptotically tracks a critical trajectory of (1)
with respect to θ0 if and only the mapping σ satisfies (13)
for all limit points θω ∈ Ω(θ0), from which the result follows.

Lyapunov stability of the exosystem (Assumption 3) implies
that the exosystem trajectory θk is bounded and therefore has
a convergent subsequence. Then by definition, there exists an
increasing sequence ki such that the trajectory θki

converges
to some limit point θω ∈ Ω(θ0) as i → ∞. Furthermore,
the closed-loop system is locally exponentially stable (by
assumption), so zk → z∗◦ as k → ∞. By continuity of Gc,
we then also have that xk → x∗◦ as k → ∞. Then using
continuity of the gradient (Assumption 1), we have that

lim
i→∞

yki
= lim

i→∞
∇xf(xki

, θki
) = ∇xf(x

∗
◦, θω). (17)

When yk → 0 as k → ∞, the left-hand side is zero, which
implies that (13b) holds on θω . Since this holds for any limit
point, (13b) holds on Ω(θ0). Equation (13a) then follows
from the center manifold (16).

Now suppose the conditions (13) hold for all θω ∈ Ω(θ0).
The right-hand side of (17) is then zero, which implies
the existence of a sequence ki such that yki

→ 0 as
i→∞. Since this holds for any limit point, any convergent
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subsequence of yk also converges to zero. Moreover, yk is
bounded due to Lipschitz continuity of the gradient, so yk
also converges to zero as k →∞.

The two conditions in (13) fully characterize the class of
optimization algorithms that achieve asymptotic tracking of a
critical trajectory. In words, a gradient-feedback optimization
algorithm (5) tracks a critical trajectory if and only if, for
some mapping σ, the composite function Gc ◦ σ zeros the
gradient on the limit set of the exosystem (see (13b)), and the
controller Fc(z, y) is algebraically related to the exosystem
s(θ) as given by (13a). Notice that, by Theorem 1, the former
condition implies that

xk = Gc(σ(θk)) (18)

is a parameter-feedback optimization algorithm for (1). We
remark that (13) constitute the discrete-time counterpart of
the continuous-time setting [15, Thm. 4].

Remark 3 (The internal model principle). We interpret (13a)
as the (discrete-time) internal model principle of time-
varying optimization, as it expresses the requirement that
any optimization algorithm that achieves asymptotic tracking
must include an internal model of the exosystem. □

It is important to note that, by Theorem 2, the exosystem
state θ and that of the optimization z must be related, in the
limit set of the exosystem, by the relationship:

zk = σ(θk). (19)

Intuitively, (19) is interpreted as the existence of a change
of coordinates between the state of the exosystem and that
of the optimization algorithm; see [15] for a discussion.

Remark 4 (Special cases). An important special case is
obtained when both σ and Gc are the identity operators;
in this case, the internal model condition (13a) simplifies to

s(θ) = Fc(θ, 0),

which states that the controller vector field Fc(z, y) must
coincide with that of the exosystem s(θ) on the limit set
of the exosystem. In this case, (19) gives zk = θk, meaning
that the controller state zk and that of the exosystem θk must
coincide on the limit set. □

While Theorem 2 provides a full characterization of all
gradient-feedback algorithms that achieve tracking, it re-
mains to address under what conditions on the loss function
f(x, θ) such an algorithm is guaranteed to exist. To address
this question, we first require the following definition.

Definition 4 (Exponential detectability [23]). A Lyapunov
stable dynamical system

θk+1 = f(θk, xk), yk = h(θk, xk),

where f and h are smooth mappings such that f(0, 0) = 0
and h(0, 0) = 0, is exponentially detectable from y if there
exists a dynamical system

θ̂k+1 = g(θ̂k, yk, xk), (20)

where g is a smooth mapping with g(0, 0, 0) = 0 such that:
(i) if θ0 = θ̂0, then θk = θ̂k for all k ∈ N≥0, and (ii)
there exists an open neighborhood Θ1 of the origin such that
∥θ̂k−θk∥ ≤Mak∥θ̂0−θ0∥ for all k ∈ N≥0, ∥θ̂0−θ0∥ ∈ Θ1,
and for some positive constants M and 0 < a < 1. In this
case, (20) is called a local exponential observer [23]. □

Although we impose no restriction on how θ influences the
loss f(x, θ), we require the following.

Assumption 4 (Detectability of the exosystem). The ex-
osystem (2) is exponentially detectable from the gradient-
feedback signal (5b). □

Intuitively, since θk is unmeasurable, the temporal variability
of the cost can only be evaluated through measurements of
yk. Contrarily, undetectability of the exosystem corresponds
to a redundant description of the exogenous signal: if some
modes of the exosystem did not influence the gradient, then
yk would be independent of those modes and they can thus
be removed without altering the problem.

We are now equipped to address the conditions on f under
which a gradient-feedback algorithm is guaranteed to exist.

Theorem 3 (Existence of gradient-feedback algorithms).
Suppose Assumptions 1, 2, 3, and 4 hold. There exists a
gradient-feedback optimization algorithm that solves Prob-
lem 1 if and only if there exists a mapping Hc : Θ → Rn

that zeros the gradient on the limit set of (2) with respect to
its initialization. □

Proof. (Only if) By Theorem 2, there exists a mapping z =
σ(θ) such that (13b) holds. Then, the gradient condition (11)
holds with Hc(θ) = Gc(σ(θ)).

(If) We will prove this claim by constructing a gradient-
feedback algorithm that achieves yk → 0 as k →∞.

By Assumption 4, there exists a neighborhood N of the
origin and a dynamical system

θ̂k+1 = g(θ̂k, yk), (21)

such that θ̂k → θk exponentially, for any ∥θ̂0 − θ0∥ ∈ N.
Consider then the optimization algorithm

Fc(z, y) = g(z, y), Gc(z) = Hc(z), (22)

where Hc(z) is as in (11). The claim then follows by
application of Theorem 2 with σ the identity operator.

Interestingly, the theorem shows that existence of a dynamic
gradient-feedback algorithm is equivalent to that of a static
parameter-feedback one. Although this may seem surprising
(since a parameter-feedback algorithm has access to more
information: θk can be measured, while this is not the case
in the gradient-feedback case), it is worth noting that in
the gradient-feedback construction, the dynamic state of the
controller zk acts as an alternative representation (i.e., in
different coordinates) of the exosystem state θk (see (19))
and the exploration signal xk acts as a parameter-feedback
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algorithm (see (18)). With this interpretation, it is evident
that the two problems shall be equivalent, provided that θk
can be estimated from the available measurements yk (as
done in the construction (22)).

Remark 5 (Algorithm design). Once the mapping Hc(θ) as
in (11) and a local exponential observer g(θ, y) as in (21)
are available, algorithm (22) solves the gradient-feedback
problem. □

We illustrate the applicability of the results in this section in
the following example.

Example 2. Consider the quadratic problem studied in
Example 1, and assume that the exosystem follows the linear
model θ̇ = Sθ for some S ∈ Rp×p. According to Theorem 3,
an optimization algorithm given by

zk+1 = Aczk +Bcyk, xk = Gczk, yk = Rxk +Qθ,
(23)

where A ∈ Rnc×nc , Bc ∈ Rnc×n, Gc ∈ Rn×nc , achieves
asymptotic tracking if and only if there exists a linear
transformation Σ ∈ Rnc×p such that:

0 = (ΣS −AcΣ)θ, (24a)
0 = (RGcΣ+Q)θ, (24b)

for all θ in the limit set of the exosystem. □

B. Design of gradient-feedback optimization algorithms

Theorem 3 provides an explicit technique to synthesize
gradient-feedback algorithms (see Remark 5). Yet, its ap-
plication remains challenging as one needs to design an
exponential observer for the state of the exosystem. We next
show that this process can be accomplished by having access
only to first-order information on the exosystem. We begin
by presenting an instrumental lemma; its statement hinges
on the following notation (which we recall from (15)):

Q =

[
∂∇xf

∂θ

]
(x,θ)=(x⋆

◦,0)

, S =

[
∂s

∂θ

]
θ=0

.

Lemma 4 (First-order detectability of exosystem). There is
an exponential observer for (4) if and only if the pair (Q,S)
is detectable. □

Proof. The claim follows directly from [23, Cor. 3.4].

Harnessing this tool, a technique to design an exponential
observer of the exosystem is presented in Algorithm 1.
Here, a linear Luenberger observer is used to estimate the
exosystem state (see line 4), and a parameter feedback
algorithm is then applied to the estimated state to regulate
the gradient to zero (precisely, Gc(z) is designed following
the approach of Theorem 1 (see line 3).

Remark 6 (Alternative observer structures). Instead of a
Luenberger observer, alternative dynamic observers could be
considered in Line 4 of the algorithm to achieve different

Algorithm 1: Gradient-feedback algorithm design
Data: s(θ), ∇xf(x, θ), Hc(θ) satisfying (13),

Jacobian matrices Q and S in (15)
1 nc ← n;
2 L← any matrix such that S − LQ is Schur stable;
3 Gc(z)← Hc(z);
4 Fc(z, y)← s(z) + L(y −∇xf(Hc(z), z));

Result: Fc(z, y), Gc(z), and nc that solve Problem 1

asymptotic or transient properties of the resulting gradient-
feedback optimization algorithm. □

We illustrate the applicability of (13) on a quadratic problem
in the following example.

Example 3. Consider the quadratic problem from Exam-
ple 2. A direct application of Algorithm 1 gives:

Ac = S, Bc = L, Gc = −R†Q,

where L is any matrix such that S − LQ is Schur stable;
notice that this choice satisfies (24) with Σ = I. □

Remark 7 (Tracking accuracy vs internal model fidelity). In
general, the tracking accuracy of the optimization algorithm
will depend on the fidelity of the internal model as well as
the asymptotic behavior of the exosystem. This property is
discussed in detail in [15, Sec. 5] for quadratic problems.
We stress that this is not only a limitation of our approach,
but of any algorithm seeking exact tracking of a critical
trajectory. In this sense, the internal model principle proved
in Theorem 2 (see also Remark 3) provides a fundamental
limitation that should be carefully considered when designing
optimization algorithms for time-varying problems. □

V. SIMULATION RESULTS

In this section, we illustrate our approach through numerical
simulations. We consider the following instance of (1):

min
x∈R

f(x, θk) :=
1

2
(x− θ(1)k )2 + κ log(1 + eµx), (25)

where f : R × Θ → R,Θ = R2, and we utilized the
vector notation θk = (θ

(1)
k , θ

(2)
k ) (the choice to use Θ = R2

instead of Θ = R1 will be discussed shortly below). (25)
models a logistic regression problem with a time-varying
regularization term. Intuitively, an optimizer of (25) is a
point that tracks the time-varying signal θ(1)k , while seeking
to avoid large values of x, which are penalized by the logistic
term. For our experiments, we choose µ = 0.5 and κ = 1.
The function f(x, θ) satisfies Assumption 1; in particular,
the cost is strongly convex in x (since ∇xxf(x, θ) = 1 +

κµ2 exp(µx)
[1+exp(µx)]2 ≥ 1), and thus the optimizer is unique for

each θ. We let θ(1)k = cos(ωk), which can be generated
by a two-dimensional linear exosystem θk+1 = Sθk (hence
the choice Θ = R2). For our simulations, we generate
matrix S by discretizing a continuous-time linear system
with state matrix Sct = [0, 1;ω2, 0] with ω = 0.2, yielding
S = [0.9801, 0.9933;−0.0397, 0.9801].
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Fig. 1: Simulation results illustrating the behavior of an algorithm syn-
thesized using Algorithm 1 for the problem (25). The proposed algorithm
successfully computes the time-varying optimizer of (25) with exponential
rate of convergence. In (b), absence of a line means that the value of the
timeseries is numerically zero. See Section V for a discussion.

In Fig. 1, we plot four relevant time series illustrating the
behavior of the optimization algorithm applied to this prob-
lem. We applied Algorithm 1 with Q = [−1, 0], where we
chose the observer gain L such that the spectral radius (the
maximum eigenvalue modulus) of S−LQ is 0.1. Moreover,
a mapping zeroing the gradient has been computed numeri-
cally, yielding Hc(θ) = (0.9819 ·θ(1)−0.2469, 0). From the
numerical simulations, we can conclude the following: (i)
from Fig. 1(b), we see that zk → θk exponentially, and thus
zk is a local exponential observer for θk; (ii) from Fig. 1 (c),
we see that ∥yk∥ → 0 exponentially, and thus the algorithm
converges to a critical point of (25); more precisely: (iii) in
Fig. 1(a) and (d), we see that ∥xk − x⋆k∥ → 0 , and thus the
algorithm converges to the time-varying optimizer of (25).

In Fig. 2, we plot the error ∥xk − x⋆k∥ of the algorithm
proposed here and compare it with the prediction-correction
algorithm proposed in [10]. For this simulation, we used
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Fig. 2: Comparison between the approach proposed here (labed IM for
Internal Model in the plot) and the Prediction Correction (labeled PM in the
plot) algorithm [10] for the problem (25). In the plot, ρ denotes the spectral
radius of the observer for θ, and τ the horizon of the prediction step [10].
Even by employing large prediction horizons, the approach proposed here
outperformed [10] for this problem.

ω = 0.02. The prediction-correction algorithm has been
implemented following [10, Algorithm 1] with stepsize γ =
0.2. Numerically, we are led to conclude that, for this
problem, our approach outperforms the prediction-correction
algorithm both in convergence rate and in asymptotic pre-
cision. The difference in performance can be further ap-
preciated by varying the spectral radius of S − LQ for
the exogenous signal observer in the set {0.1, 0.01} and
by varying the horizon of prediction τ ∈ {1, 5} in [10].
As expected, reducing the spectral radius of the observer
and increasing the prediction horizon improve both the rate
of convergence and the asymptotic precision of the two
algorithms. In both cases, however, the prediction-correction
method is outperformed by the approach in this work.

VI. CONCLUSIONS

The main result of this work is a fundamental result in time-
varying optimization which states that any algorithm that
asymptotically tracks a critical trajectory must embed an
internal model of the time variation. We exploited this result
to provide a design procedure to construct algorithms for
time-varying optimization. The proposed approach relies on
an exponential observer to estimate the temporal variability
of the problem, combined with an algorithm design that
zeros the gradient. Possible extensions include the use of
other observers to influence the properties of the resulting
algorithm, and application of the methodology to structured
time-varying problems arising from particular applications.
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