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Abstract—Time-varying optimization problems are central to
many engineering applications where performance metrics and
system constraints evolve dynamically with time. A number of
algorithms have been proposed in recent years to solve such
problems; a common feature of all these methods is that they
implicitly require precise knowledge of the temporal variability
of the solutions in order to exactly track the optimizers. In this
paper, we seek to lift these stringent assumptions. Our main result
is a fundamental characterization showing that an algorithm can
track an optimal trajectory if and only if it contains a model of
the temporal variability of the problem. We refer to this concept
to as the internal model principle of time-varying optimization.
By recasting the optimization objective as a nonlinear regulation
problem and using tools from center manifold theory, we provide
necessary and sufficient conditions both for an optimization
algorithm to achieve exact asymptotic tracking and for such an
algorithm to exist. We illustrate the applicability of the approach
numerically on both synthetic problems as well as practical
problems in transportation.

I. INTRODUCTION

Time-varying optimization problems play a central role in
several scientific domains, as they underpin many important
contemporary engineering problems. Examples include train-
ing in Machine Learning [1], [2], dynamic signal estimation
in Signal Processing [3], trajectory tracking in Robotics [4],
system optimization in Industrial Control [5], and much more.
Historically, discrete-time algorithms for time-varying opti-
mization have been proposed and studied first since they
emerge as a natural extension of their time-invariant coun-
terparts, allowing for cost functions and constraints that may
change over time [6]. These approaches build on the classical
perspective on mathematical optimization, which seeks to
construct methods to determine optimizers and consist of
iterative procedures implemented on digital devices. Recently,
there has been a renewed interest in the use and development
of continuous-time dynamics for optimization purposes, due to
the possibility of utilizing tools from dynamical systems for
their analysis [7], [8] and motivated by practice, where opti-
mization is increasingly used to control physical systems [9].

Motivated by these recent developments, in this paper we
study time-varying convex optimization problems and focus on
the use of continuous-time dynamics to track exactly optimal
solutions. Although, by now, several approaches have been
developed for this purpose [10]–[13], all these techniques
implicitly require full knowledge of the temporal variabil-
ity of the problem [13]. Unfortunately, in most practical
applications, having such knowledge is impractical, either
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Fig. 1: Architecture of the gradient-feedback design scheme studied in this
work. An optimization algorithm is to be designed (bottom block), having
access only to gradient evaluations of the loss function to be minimized (top
right block), and generating a sequence of exploration points x(t) at which
the gradient shall be evaluated. The loss function to be optimized varies with
time, where the temporal variability θ(t) is assumed to be unmeasurable and
generated by an exosystem (top left block). Shaded blocks emphasize the
presence of dynamics.

because the temporal variability enters the optimization in the
form of exogenous disturbances that are unknown and cannot
be measured (see, e.g., [9], [14]), or simply because it is
unrealistic to ask for a noiseless model of how the problem
changes with time. Departing from this, in this paper we pose
the following question: is it possible to track (exactly and
asymptotically) a minimizer of a time-varying optimization
problem without any knowledge of the temporal variability
of the optimization? Interestingly, we prove a fundamental
result showing that tracking can be achieved if and only if the
temporal variability of the problem can be ‘observed’ by the
algorithm, and the latter incorporates a suitably reduplicated
model of such a variability. We refer to this conclusion as
the internal model principle of time-varying optimization, akin
to its control-theoretic counterpart [15], [16]. Our approach
relies on reinterpreting the optimization algorithm design as
a nonlinear, multivariable regulation problem [17], and our
analysis uses tools from center manifold theory [16], [18].
Figure 1 illustrates the architecture of the gradient-feedback
design scheme studied in this paper.

Related works. The literature on methods for time-varying
optimization is mainly divided into two classes of solutions.
The first class consists of methods that do not utilize any
model of the temporal variability of the problem [19]–[22];
instead, they seek to solve a sequence of static problems.
Several established approaches belong to this class, includ-
ing the online gradient descent method [23] and the online
Newton step algorithm [24] – see [25] and references therein.
Because the temporal variability of the problem is unknown
(or ignored), algorithms in this class can make a decision
only after each variation has been observed, thus incurring a
certain ‘regret.’ Mathematically, these techniques are capable
of reaching only a neighborhood of an optimizer [13], and
exact tracking is out of reach in general for these approaches.
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In contrast, the second class of methods uses a model of the
temporal evolution of the problem to seek to exactly track
optimal trajectories [2], [26]–[28]. Particularly celebrated is
the prediction-correction algorithm (see [10] and the recent
work [11]), whereby at each time a prediction step is used
to anticipate how the optimizer will evolve over time, and a
correction step is used to seek a solution to each instantaneous
optimization problem. We refer to [13] for a recent overview
of the topic. Recent years have witnessed a growing interest
in this problem: [4] uses contraction to study these meth-
ods; [29] uses sampling to estimate the temporal variability
of the problem; a recent survey on analyzing optimization
algorithms using tools from control has appeared in [30];
constrained optimization problems are studied in [31]. Despite
these efforts, the fundamental question of what is the basic
algorithm structure that enables exact asymptotic tracking
remains unanswered.

Contributions. This paper makes four main contributions. First,
we recast the problem of designing a time-varying optimiza-
tion algorithm as a nonlinear multivariable regulation problem,
whereby an algorithm is to be designed to regulate the gradient
of a certain function to zero. We leverage this formulation
to characterize the class of optimization algorithms that can
achieve tracking. In a net departure from existing approaches
(e.g., [11]–[13], [23]), our characterization is general and
allows us to study not only a single optimization method, but
an entire class, which enables us to derive fundamental results
for all algorithms in the class. Second, by harnessing tools
from center manifold theory [16], [18], we provide necessary
and sufficient conditions for an optimization algorithm to
ensure tracking. Interestingly, these conditions depend on the
properties of the loss function (through a gradient invertibility-
type condition) and on the inner model describing the temporal
variability of the problem. This property allows us to prove the
internal model principle of time-varying optimization, which
states that for an optimization algorithm to achieve asymptotic
tracking, it must incorporate a reduplicated model of the
temporal variability of the problem. This feature is implicit
in all existing approaches for time-varying optimization [13]
but, to the best of the authors’ knowledge, lacked a formal
proof until now. Third, we derive necessary and sufficient
conditions for the existence of a tracking algorithm. Fourth,
we use our characterizations to design algorithms for time-
varying optimization. With respect to the existing literature,
our algorithm does not require one to know or measure exactly
the temporal variability of the problem, and thus uses less
stringent assumptions. Finally, we illustrate the applicability
of the approach numerically on both synthetic problems as
well as practical problems in transportation.

Organization. Section II presents the problem of interest, Sec-
tion III studies the simpler problem of parameter-feedback op-
timization, which allows us to derive the necessary framework,
and Section IV tackles the time-varying optimization design
problem in its full generality and contains our main results.
Section V discusses the tracking accuracy in relationship to

the fidelity of the internal model, Section VI presents some
extensions to constrained optimization, Section VII validates
numerically the results, and Section VIII illustrates our con-
clusions. Finally, in the Appendix we summarize basic facts
on center manifold theory that are used extensively throughout
the paper.

Notation. We denote by Sn the space of n × n symmetric
real matrices. Given an open set U, we say that f : U → R
is of differentiability class Ck if it has a kth derivative that
is continuous in U. The gradient of f(x, θ) : Rn × Θ →
R,Θ ⊆ Rp, with respect to x ∈ Rn is denoted by ∇xf(x, θ) :
Rn × Θ → Rn. The partial derivatives of ∇xf(x, θ) with
respect to x and θ are denoted by ∇xxf(x, θ) : Rn×Θ→ Sn
and ∇xθf(x, θ) : Rn ×Θ→ Rn×p, respectively.

II. PROBLEM SETTING

A. Problem statement

We consider the time-varying optimization problem:

min
x∈Rn

f(x, θ(t)), (1)

where t ∈ R≥0 denotes time and f : Rn ×Θ→ R, Θ ⊆ Rp,
is a loss function that is parametrized by the time-varying
parameter vector θ : R≥0 → Θ. We make the following
assumptions throughout.

Assumption 1 (Properties of the objective function). The map
x 7→ f(x, θ) is convex and x 7→ ∇xf(x, θ) is Lipschitz
continuous in Rn, for each θ ∈ Θ. □

Assumption 2 (Existence of an exosystem). There exists a
smooth (i.e., C∞) vector field s : Θ→ Rp and θ(0) ∈ Θ such
that the parameter vector θ(t) satisfies

θ̇(t) = s(θ(t)) (2)

for all t ∈ R≥0. □

Convexity and smoothness are standard assumptions in op-
timization [25]. Assumption 2 ensures the existence of an
autonomous system, called exosystem, describing the class of
temporal variabilities of the cost taken into consideration.

In what follows, we will say that x⋆ : R≥0 → Rn is a critical
trajectory of (1) if it satisfies:

0 = ∇xf(x
⋆(t), θ(t)), ∀t ∈ R≥0.

We will assume existence of a critical trajectory and that any
critical trajectory is continuous.

Remark 1. The time variation in (1) is captured implicitly
through the parameter vector θ(t). A related, yet slightly more
general, problem is as follows:

min
x∈Rn

f0(x, t), (3)

where the dependency on time is explicit. Problem (1) can
be recast uniquely as in (3) by letting f0(x, t) = f(x, θ(t))
for all x and t. On the other hand, in general, there exists
an infinite number of ways to parametrize (3) as in (1), thus
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leading to possible ambiguities. For instance, any function
f0(x, t) may be parametrized by θ(t) = t (so that f0 ≡ f ),
although this is not always compatible with our assumptions
(see Assumption 3 and Remark 2 below). □

In this work, we are interested in the problem of designing
an optimization algorithm that is capable of determining and
tracking a critical trajectory of (1). We are interested in doing
so with as little knowledge as possible on θ(t) and its temporal
variability. From an optimization perspective, three types of
assumptions may be considered (presented in increasing order
of restrictiveness):

(A1) The parameter signal θ(t) is known or measurable at
each t ∈ R≥0, but no knowledge of s(θ) is available.

(A2) The vector field s(θ) is known, but θ(0) (and hence also
θ(t)) is unknown.

(A3) The vector field s(θ) as well as θ(0) are known.

Under these assumptions, different methods have been devel-
oped in the literature, each with corresponding guarantees:

(M1) Under (A1), all methods from static optimization (e.g.,
[13], [19]–[24]) can be applied directly. All these meth-
ods can achieve convergence only to a neighborhood of
a critical trajectory.

(M2) The approach of [12] is applicable in this case, which is
however limited to strongly convex quadratic optimiza-
tion problems with linear temporal variablities.

(M3) The class of prediction correction methods [10] and their
variations [11] take advantage of this knowledge and
ensures asymptotic tracking of x⋆(t).

A natural question emerges directly from the above discussion:
is (A3) necessary to ensure exact tracking and, if not, can it
be relaxed (e.g., to (A1) or (A2))? With this motivation, in
this paper we are driven by the following question.

Problem 0 (Minimal knowledge for exact tracking). What is
the least-restrictive set of assumptions (cf. (A1)–(A3)) under
which there exists an optimization algorithm that achieves
exact asymptotic tracking of the critical points of (1)? □

Our objective is to seek an optimization algorithm that assumes
no access to θ(t); instead, as common in first-order optimiza-
tion approaches [25], we will assume only the availability of
functional evaluations of the gradient function ∇xf(x, θ(t)) at
points x ∈ Rn, selected by the algorithm. Formally, the opti-
mization algorithm will be described by an internal state z(t),
which takes values on an open subset Z ⊆ Rnc , nc ∈ N>0;
the optimization algorithm generates a sequence of points
x(t) ∈ Rn (called exploration signal) at which the gradient
shall be evaluated, and processes functional evaluations of
the gradient at these points, y(t) = ∇xf(x(t), θ(t)) (called
gradient feedback signal). Mathematically, the optimization
algorithm is:

ż(t) = Fc(z(t), y(t)), x(t) = Gc(z(t)), (4a)

together with the gradient-feedback signal:

y(t) = ∇xf(x(t), θ(t)), (4b)

where Fc : Z × Rn → Rnc and Gc : Z → Rn are
functions to be designed. In the remainder, we refer to (4)
as a dynamic gradient-feedback optimization algorithm. The
architecture of the studied gradient-feedback algorithm is illus-
trated in Figure 1. Notice that the dynamics of the optimization
algorithm (4), coupled with the time-variability generator (2),
have the form of a nonlinear autonomous system:

ż(t) = Fc(z(t), y(t)),

y(t) = ∇xf(Gc(z(t)), θ(t)),

θ̇(t) = s(θ(t)). (5)

Our objective is to design Fc(z, y), Gc(z), and nc, so that
y(t)→ 0 as t→∞, which ensures that x(t) tracks, with zero
asymptotic error, a critical trajectory x⋆(t) of (1).

We will assume that θ(t) takes values in a neighborhood of
the origin, and thus let Θ be some neighborhood of the origin
of Rp. Note that there is no loss of generality in doing so,
because if θ(t) takes values in the neighborhood of any other
point, the former can be shifted to the origin via a change of
variables without altering the critical points of (1). In what
follows, we will denote by x⋆◦ ∈ Rn a point such that

0 = ∇xf(x
⋆
◦, 0), (6)

and assume that x⋆◦ ∈ Rn is locally unique. Moreover, we will
let z∗◦ be such that x⋆◦ = Gc(z

⋆
◦), and assume that z∗◦ exists

and is locally unique.

Definition 1. We say that (4) asymptotically tracks a critical
trajectory of (1) if, for each initial condition (z(0), θ(0)) in
some neighborhood of (z∗◦ , 0) ∈ Z × Θ, the solution of (5)
satisfies y(t)→ 0 as t→∞. □

Notice that, when an algorithm asymptotically tracks a critical
trajectory, x(t) → x⋆(t) for some critical trajectory x⋆(t);
namely, critical point is readily given by the exploration signal.
We make the objective of this work formal as follows.

Problem 1 (Dynamic gradient-feedback problem). Find nec-
essary and sufficient conditions (in terms of the loss function
f ) for the existence of a gradient-feedback optimization algo-
rithm that asymptotically tracks a critical trajectory of (1).
Derive a method to design such an algorithm when these
conditions hold. □

It is important to note that existence conditions for Fc(z, y)
and Gc(z) shall not depend on the temporal variability of
the optimization (namely, s(θ)), but only on the properties
of the optimization problem. Conversely, if such conditions
were to depend on s(θ), a more general class of optimiza-
tion algorithms than (4) could be constructed, implying the
formulation (4) would not be sufficiently general.
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B. Standing assumptions

We list hereafter the basic assumptions on which our approach
to gradient-feedback theory is based.

Assumption 3 (Stability of the exosystem). The point θ = 0
is a stable equilibrium of (2), and there exists a neighborhood
Θ◦ ⊂ Θ of 0 with the property that each initial condition
θ(0) ∈ Θ◦ is Poisson stable1. □

Intuitively, θ(0) is Poisson stable if the corresponding tra-
jectory returns to an arbitrarily small neighborhood of each
of its points an infinite number of times. More explicitly,
Assumption 3 implies that the matrix S :=

[
∂s
∂θ

]
θ=0

, which
characterizes the linear approximation of the exosystem, has
all eigenvalues on the imaginary axis. In fact, no eigenvalue of
S can have positive real part because otherwise the equilib-
rium would be unstable. Moreover, no eigenvalue can have
negative real part, otherwise the exosystem would admit a
stable invariant manifold near the equilibrium, and trajectories
originating on this manifold would converge to zero as time
tends to infinity, thus violating Poisson stability. The class of
exosystems satisfying Assumption 3 includes the (important in
practice) class of systems in which every solution is periodic.
Moreover, any stable modes of θ(t) that converge to the
origin asymptotically may be disregarded without changing
the asymptotic behavior of the algorithm. Assumption 3 is
instrumental for proving that certain conditions are necessary
for the existence of a gradient-feedback algorithm, and can
be dispensed if one is interested only in sufficient conditions;
moreover, the assumption may be relaxed when the exosystem
is linear (see Remark 2 below).

For convenience, we will require that Fc(z
⋆
◦ , 0) = 0. This

ensures that the optimization algorithm (4) has an equilibrium
at z = z⋆◦ , and the corresponding gradient feedback signal
is identically zero: y(t) = ∇xf(x

⋆
◦, 0) = 0. Since θ(t) is

unmeasurable, the temporal variability of the cost can only be
evaluated through measurements of y(t); hence, we make the
following assumption.

Assumption 4 (Detectability of the exosystem). Let

Q :=

[
∂∇xf

∂θ

]
(x,θ)=(x⋆

◦,0)

, S :=

[
∂s

∂θ

]
θ=0

. (7)

The pair (Q,S) is detectable. □

Detectability ensures that all the modes of the exosystem (2)
can be reconstructed from the available measurements y(t).
Undetectability of (Q,S) corresponds to a redundant descrip-
tion of the exogenous signal: indeed, if some modes of the
exosystem do not influence the gradient, then y(t) would be
independent of those modes and they can thus be removed
without altering the problem.

1Recall that, for a nonlinear system of the form (2), an initial condition
θ◦ is said to be Poisson stable if the solution starting from θ◦ at time t
of (2) (here denoted by θt (θ◦))) is defined for all t ∈ R≥0 and, for every
neighborhood U of θ◦ and each T ∈ R>0, there exists a time t1 > T such
that θt1 (θ

◦) ∈ U , and a time t2 < −T such that θt2 (θ
◦) ∈ U .

Example 1 (Detectability). Suppose the objective function
admits the decomposition f(x, θ(t)) = f̂(x)+xTθ1(t), where
θ1(t) = α cos(ωt) for some α and ω. The parameter signal
can be generated by (2) with initial condition θ(0) = (α, 0)
and vector field:

s(θ) =

[
0 1
−ω2 0

]
θ.

Notice that, although the gradient signal y(t) = ∇xf̂(x) +
θ1(t) is independent of θ2(t), both modes of the exosystem
affect the gradient (indeed, θ1(t) = α cos(ωt) cannot be
generated by a linear system with a single mode). Notice also
that the pair (Q,S) is detectable. □

III. THE PARAMETER-FEEDBACK PROBLEM

To address Problem 1, we first study a simpler problem that
allows us to derive the necessary framework to tackle our
objectives in their generality. To this end, in place of the
dynamic optimization algorithm (4), we begin by considering
an algebraic optimization algorithm of the form:

x(t) = Hc(θ(t)), (8)

where Hc : Θ → Rn is a mapping to be designed; we will
require that Hc is of class C0 and satisfies the fixed-point
condition x⋆◦ = Hc(0). Because of the explicit dependence
on θ(t), we will refer to (8) to as a parameter-feedback
optimization algorithm. Our objective is to design the map
Hc so that the composition of (2), (4b), and (8):

y(t) = ∇xf(Hc(θ(t)), θ(t)),

θ̇(t) = s(θ(t)), (9)

tracks, with zero asymptotic error, the critical trajectories
of (1). For the framework considered in this section, Problem 1
is reformulated as follows.

Problem 2 (Static parameter-feedback problem). Find neces-
sary and sufficient conditions (in terms of the loss function
f ) for the existence of a parameter-feedback optimization
algorithm that asymptotically tracks a critical trajectory of (1).
Derive a method to design such an algorithm when these
conditions hold. □

Solvability of the static parameter-feedback problem will de-
pend on the existence of a function that zeros the gradient.

Definition 2 (Mapping zeroing the gradient). We say that a
mapping Hc : Θ→ Rn zeros the gradient at the point θ ∈ Θ if

0 = ∇xf(Hc(θ), θ). (10)

Moreover, we say that Hc zeros the gradient globally if (10)
holds for all θ ∈ Θ, and locally if (10) holds for all θ ∈ Θ◦,
where Θ◦ ⊆ Rp is some neighborhood of the origin2. □

The following result characterizes all parameter-feedback op-
timization algorithms that achieve asymptotic tracking of a
critical trajectory.

2The neighborhoods in Defn. 2 and Assumption 3 need not be the same.
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Theorem 1 (Parameter-feedback algorithm characterization).
Let Assumptions 1, 2, and 3 hold. The parameter-feedback
algorithm (9) asymptotically tracks a critical trajectory of (1)
if and only if the mapping Hc zeros the gradient locally.

Proof. (Only if) Suppose y(t) → 0 as t → ∞. We will show
that Hc zeros the gradient locally. By Poisson stability of the
exosystem (cf. Assumption 3), there exists a neighborhood
Θ◦ ⊂ Θ of the origin such that, for every θ◦ ∈ Θ◦, every
ε > 0, and every T > 0, the trajectory of (9) satisfies

∥θ(t)− θ◦∥ < ε,

at some t > T . Then, limt→∞ y(t) = 0 can hold only if (10)
holds for all θ ∈ Θ◦.

(If) Suppose Hc zeros the gradient on some neighborhood
Θ0 ⊂ Θ of the origin, i.e., (10) holds for all θ ∈ Θ0. By
Assumption 3, the point θ = 0 is a stable equilibrium of the
exosystem, so there exists some other neighborhood Θ1 ⊂ Θ
of the origin and time T > 0 such that θ(t) ∈ Θ0 for all
t > T when θ(0) ∈ Θ1. Since Hc zeros the gradient on Θ0,
this implies that y(t)→∞ as t→∞.

Remark 2. Poisson stability of the exosystem is needed for
the gradient zeroing condition to be necessary for asymptotic
tracking of a critical trajectory (but is not needed for suffi-
ciency). This is because Poisson stability implies that all points
sufficiently close to the origin are revisited infinitely often, so
Hc must zero the gradient on a neighborhood of the origin.
More generally, Hc must zero the gradient on all limit points
of θ(t). □

The result provides a full characterization of all parameter-
feedback algorithms that ensure exact asymptotic tracking. In
words, x = Hc(θ) is a parameter-feedback algorithm if and
only if it zeros the gradient everywhere in a neighborhood
of the critical point. As a byproduct, the result also provides
a necessary and sufficient condition for the solvability of
the parameter-feedback problem: the problem is solvable if
and only if the set of solutions to the system of equations
0 = ∇xf(x, θ) can be expressed, everywhere in a neigh-
borhood of the origin of Θ, as the graph of a function
x = Hc(θ). Finally, the theorem provides an explicit form
for the desired parameter-feedback algorithm (8): this is given
by x(t) = Hc(θ(t)); this algorithm ensures that, for all initial
states θ(0) sufficiently close to the origin, y(t)→ 0 as t→∞.
In this sense, Theorem 1 provides a complete answer to
Problem 2. We illustrate the applicability of the result and the
necessity of the provided condition in the following example.

Example 2. Consider an instance of (1) with n = p = 1,

f(x, θ) = (x− 1)2(x+ 1)2 +
8

3
√
3
x+ θx. (11)

See Fig. 2(a) for an illustration of this function. For θ = 0, the
optimization problem associated with (11) admits two critical
points: x⋆◦,1 = 1√

3
and x⋆◦,2 = − 2√

3
; indeed, it follows from
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Fig. 2: Investigation of the condition (10). (Left) Loss function f(x, θ) studied
in Example 2, plotted for θ = 0. (Right) Gradient ∇f(x, θ). The function
f(x, 0) admits two critical points: x⋆

◦,1 = 1√
3

and x⋆
◦,2 = − 2√

3
. At x⋆

◦,1,

condition (10) is not satisfied, since with an an upward shift of the graph of
∇xf(x, 0), x⋆

◦,1 is no longer a critical point of f(x, 0). On the other hand,
(10) holds for x⋆

◦,2, since x⋆
◦,2 varies continuously as θ is perturbed. See

Example 2 for a discussion.

direct inspection that ∇xf(x
⋆
◦,1, 0) = 0 and ∇xf(x

⋆
◦,2, 0) = 0.

At the critical point x⋆◦,1, a function Hc(θ) as in (10) does not
exist. This can be visualized with the aid of Fig. 2(b): if θ = 0
is perturbed to θ+ϵ, ϵ > 0, the graph of ∇xf(x, 0) (illustrated
in Fig. 2(b)) shifts upward and the equation ∇xf(x, ϵ) = 0
no longer admits a solution in a neighborhood of x⋆◦,1.

On the other hand, for the critical point x⋆◦,2, any arbitrarily-
small upward or downward shift of the graph of ∇xf(x, 0)
results in a continuous perturbation of x⋆◦,2 (see Fig. 2(b)),
thus suggesting existence of x = Hc(θ) as in (10). This
graphical observation can be formalized with the aid of the
implicit function theorem [32], as described next. Define
F (x, θ) := ∇xf(x, θ) and notice that F is continuously
differentiable with F (x⋆◦,2, 0) = 0. By the implicit function
theorem, there exists a neighborhood Θ◦ of x⋆◦,2 and a function
Hc : Θ◦ → Rn such that F (Hc(θ), θ) = 0 in Θ◦, provided
that ∂F

∂x

∣∣
(x,θ)=(x⋆

◦,2,0)
̸= 0. By inspection, it is immediate to

see that the latter condition is satisfied. □

Existence of a map x = Hc(θ) as in (10) can be ensured
for general problems with the aid of the implicit function
theorem [32], as illustrated next.

Proposition 2 (Existence of local parameter-feedback algo-
rithms). Let Assumptions 1, 2, and 3 hold, and let X◦ × Θ◦
be some neighborhood of (x⋆◦, 0). Further, assume that:

(i) the loss function f is C1 on X◦ ×Θ◦,
(ii) x 7→ f(x, θ) is C2 on X◦ for each θ ∈ Θ◦, and

(iii) the Hessian ∇2
xxf(x, θ)

∣∣
x=x⋆

◦,θ=0
is positive definite.

Then, there exits a C0 mapping Hc : Θ→ Rn that zeros the
gradient locally. □

Proof. Define F (x, θ) = ∇xf(x, θ) and note that, under the
stated assumptions, F is C0 on X◦ × Θ◦, the mapping x 7→
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F (x, θ) is C1 on X◦ for all θ ∈ Θ◦, and

det

[
∂F (x, θ)

∂x

]
(x,θ)=(x⋆

◦,0)

̸= 0.

Then, the result follows from the implicit function theorem
(see, e.g., [33, Thm. 1]) applied to the first-order optimality
conditions 0 = F (x, θ) at the point (x, θ) = (x⋆◦, 0).

Intuitively, when the loss function is twice continuously dif-
ferentiable in the decision variable with a positive definite
Hessian, every critical point is a local isolated minimum and
existence of Hc(θ(t)) is guaranteed by the implicit function
theorem. Notice that, differently from the characterization
in Theorem 1, the conditions offered by Proposition 2 are
sufficient but not necessary.

Although the conditions are immediate to verify, the conver-
gence claims of Theorem 1 and Proposition 2 are of local
nature, namely, y(t) → 0 is ensured provided that θ(0) is
sufficiently close to the origin. The following result provides
a sufficient condition for global convergence.

Theorem 3 (Existence of global parameter-feedback algo-
rithms). Let Assumptions 1, 2, and 3 hold. Further, assume:

(i) the loss function f is C1 on Rn ×Θ,
(ii) x 7→ f(x, θ) is C3 on Rn for each θ ∈ Θ,

(iii) the Hessian ∇2
xxf(x, θ) is positive definite on Rn ×Θ,

(iv) the mappings ∇2
xxf and ∂∇2

xxf
∂x are C0 on Rn ×Θ.

Then, there exits a C0 mapping Hc : Θ→ Rn that zeros the
gradient globally. □

Proof. Define F (x, θ) = ∇xf(x, θ) and note that, under the
stated assumptions, F is C0 on Rn × Θ, the mapping x 7→
F (x, θ) is C2 on Rn for all θ ∈ Θ,

det

[
∂F (x, θ)

∂x

]
̸= 0, ∀(x, θ) ∈ Rn ×Θ,

and the mappings ∂F
∂x and ∂2F

∂x2 are C0 in Rn × Θ. Hence,
assumptions (B1)–(B5) of a global version of the implicit
function theorem [33, Thm. 2] (see also [34, Thm. 6]) are
satisfied for the first-order optimality conditions 0 = F (x, θ),
and the claim follows.

Theorem 3 shows that, under additional continuity assump-
tions on the loss function (cf. conditions (i), (ii), and (iv)) and
when the Hessian of the loss is positive definite everywhere,
convergence of (9) is ensured globally. More formally, under
the assumptions of Theorem 3, the parameter-feedback algo-
rithm x(t) = Hc(θ(t)) ensures that y(t)→ 0 as t→∞ for all
initial conditions θ(0) ∈ Θ. This result is particularly relevant,
as it ensures the existence of parameter-feedback algorithms
for the (very important in practice) class of strictly convex loss
functions (studied in, e.g., [11], [12]).

We conclude this section by illustrating the design procedure
for parameter-feedback algorithms on a quadratic problem.

Example 3. Consider an instance of (1) with quadratic cost
and time-variability that depends linearly on θ(t) (which has
been investigated in [12]):

f(x(t), θ(t)) = 1
2x(t)

TRx(t) + x(t)TQθ(t), (12)

with matrices R ∈ Sn and Q ∈ Rn×p. In this case, the signal
we wish to regulate to zero is: y(t) = ∇xf(x(t), θ(t)) =
Rx(t) +Qθ(t). For arbitrary θ, this problem admits a critical
point if and only if ImQ ⊆ ImR, in which case x⋆◦ is
unique. Applying Theorem 1 amounts to finding a linear
transformation Hc ∈ Rn×p such that 0 = (RHc +Q)θ for all
θ in a neighborhood of the origin. Assuming ImQ ⊆ ImR,
we can choose Hc = −R†Q, where R† is the pseudo-inverse
of R. Note that, by substituting into (9), we have

y(t) = RHcθ(t) +Qθ(t) = 0, ∀t ∈ R≥0.

Namely, the gradient is identically zero at all times. We also
note that this is a particular feature of the parameter feedback
problem, which can be achieved because θ(t) is assumed to be
known when implementing (8). As we will see shortly below
(cf. Section IV), y(t) = 0 can be achieved only as t→∞ for
the gradient-feedback problem.

We conclude by noting that y(t) = 0 for all t ∈ R≥0 holds
for all initial conditions θ(0) because the mapping Hc(θ)
derived here zeros the gradient globally (and not only in some
neighborhood of the origin). See also Theorem 3. □

IV. THE DYNAMIC GRADIENT-FEEDBACK PROBLEM

In this section, we will build on the framework derived for the
parameter-feedback problem to address the main objectives of
this work: Problem 1.

A. Fundamental results

We begin with the following instrumental characterization.

Theorem 4 (Gradient-feedback algorithm characterization).
Suppose Assumptions 1, 2, and 3 hold, and assume that
Fc(z, y) and Gc(z) are such that the equilibrium z = z⋆◦ of

ż(t) = Fc(z(t),∇xf(Gc(z(t)), θ(t))),

is exponentially stable. Then, the gradient-feedback optimiza-
tion algorithm (5) asymptotically tracks a critical trajectory
of (1) if and only if there exists a C2 mapping z = σ(θ) with
σ(0) = z⋆◦ , defined in a neighborhood Θ◦ ⊂ Θ of the origin,
that satisfies the following for all θ ∈ Θ◦:

∂σ(θ)

∂θ
s(θ) = Fc(σ(θ), 0), (13a)

0 = ∇xf(Gc(σ(θ)), θ). (13b)

Proof. (Only if). We first prove that limt→∞ y(t) = 0 im-
plies (13). The coupled dynamics (5) have the form:

ż = (Ac +BcRM)z +BcQθ + χ(x, θ),

θ̇ = Sθ + ψ(θ). (14)
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for some mappings χ(x, θ) and ψ(θ) that vanish at the origin
along with their first-order derivatives, and where Q and S are
defined in (7) and

Ac =

[
∂Fc

∂z

]
(z,y)=(z⋆

◦ ,0)

, Bc =

[
∂Fc

∂y

]
(z,y)=(z⋆

◦ ,0)

,

R =

[
∂∇xf

∂x

]
(x,θ)=(x⋆

◦,0)

, M =

[
∂Gc

∂z

]
z=z⋆

◦

.

By assumption, the eigenvalues of the matrix Ac+BcRM are
in C− and those of S on the imaginary axis. By Theorem 8,
the system (14) has a center manifold at (0,0): the graph of a
mapping z = σ(θ), with σ(θ) satisfying (see (31))

∂σ(θ)

∂θ
s(θ) = Fc(σ(θ),∇xf(Gc(σ(θ)), θ)).

By Assumption 3, no trajectory on this manifold converges
to zero, so limt→∞ y(t) = 0 can hold only if (13b) holds, in
which case the above equation reduces to (13a).

(If). We now prove that (13) implies limt→∞ y(t) = 0. By
Theorem 9, the center manifold z = σ(θ) is locally attractive;
namely, z(t) → σ(θ(t)) as t → ∞. Then, the fulfillment
of (13b) guarantees that y(t)→ 0.

The two conditions in (13) fully characterize the class of
optimization algorithms that achieve asymptotic tracking of
a critical trajectory. In words, (4) tracks a critical trajectory
if and only if, for some mapping σ, the composite function
Gc◦σ zeros the gradient locally (see (13b)), and the controller
Fc(z, y) is algebraically related to the exosystem s(θ) as given
by (13a). Notice that, by Theorem 1, the former condition
implies that

x(t) = Gc(σ(θ)), (15)

is a parameter-feedback optimization algorithm for (1).

Remark 3 (The internal model principle). We interpret condi-
tion (13a) as the internal model principle of time-varying opti-
mization, as it expresses the requirement that any optimization
algorithm that achieves asymptotic tracking must include an
internal model of the exosystem. Note that the use of a copy of
the temporal variability of the optimization problem is explicit
in the prediction-correction algorithm [10] (precisely, through
the term ∇xtf0(x(t), t) – see Remark 1 for notation). □

It is important to note that, by Theorem 4, the exosystem state
θ and that of the optimization z must be related, everywhere
in Θ◦, by the relationship:

z(t) = σ(θ(t)). (16)

Intuitively, (16) is interpreted as the existence of a change of
coordinates between the state of the exosystem and that of the
optimization (we discuss the invertibility properties of σ(θ)
shortly below; see Section IV-B and Remark 4).

Remark 4. An important special case is obtained when σ is
the identity operator on Θ; in this case, (13) simplifies to:

s(θ) = Fc(θ, 0),

which states that the controller vector field Fc(z, y) must
coincide with that of the exosystem s(θ) in Θ◦. In this case,
(16) gives z(t) = θ(t); namely, the controller state z(t) and
that of the exosystem θ(t) coincide in Θ◦. □

While Theorem 4 provides a full characterization of all
gradient-feedback algorithms that achieve tracking, it remains
to address under what conditions on the loss f(x, θ) such an
algorithm is guaranteed to exist. This question is addressed by
the following result.

Theorem 5 (Existence of gradient-feedback algorithms). Sup-
pose Assumptions 1, 2, 3, and 4 hold. There exists a gradient-
feedback optimization algorithm that solves Problem 1 if and
only if there exists a mapping Hc : Θ → Rn that zeros the
gradient locally. □

Proof. (Only if) By Theorem 4, there exists a mapping z =
σ(θ) such that (13b) holds. Then, (10) holds immediately by
letting Hc(θ) = Gc(σ(θ)).

(If) We will prove this claim by constructing a gradient-
feedback algorithm that achieves y(t)→ 0 as t→∞.

First, notice that by Assumption 4, there exists a matrix L such
that S−LQ has eigenvalues in C−. Consider the algorithm (4)
with nc = p and3

Fc(z, y) = s(z) + L(y −∇xf(Hc(z), z)),

Gc(z) = Hc(z),

where Hc(z) is as in (10). The Jacobian of ż(t) =
Fc(z(t), y(t)) with respect to z is given by S − LQ (notice
that two terms of the form LRM with opposite sign cancel
out in forming the Jacobian: one from the gradient term
∇xf(Hc(z), z) and the other one from y). The claim thus
follows by application of Theorem 4 with σ the identity
operator on Θ.

Interestingly, the conditions for existence of a gradient-
feedback algorithm and those for existence of a parameter-
feedback algorithm are identical. This is not surprising, since
a parameter-feedback algorithm is assumed to have access to
θ(t) while a gradient-feedback algorithm needs to measure
θ(t) indirectly through y(t). More precisely, as stated by (16),
the dynamic state of the controller z(t) acts as alternative
representation (i.e., in different coordinates) of the exosys-
tem state θ(t), while the exploration signal x(t) acts as a
parameter-feedback algorithm (see (15)).

The proof of Theorem 5 is constructive, as it provides a design
procedure to construct Fc(z, y) and Gc(z) that constitute a

3Note that the second argument of the gradient is evaluated at the algorithm
state z instead of the parameter vector θ as the latter is unknown.
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gradient-feedback optimization algorithm. Such a procedure
is presented in Algorithm 1, where a Luenberger observer is
used to estimate the exosystem state θ(t) (see line 4), and a
parameter feedback algorithm is then applied to the estimated
exosystem state to regulate the gradient to zero (precisely,
Gc(z) is designed following the approach of Theorem 1 –
see line 3).

Algorithm 1: Gradient-feedback algorithm design
Data: s(θ), ∇xf(x, θ), Hc(θ) satisfying (13),

Jacobian matrices Q and S in (7)
1 nc ← n;
2 L← any matrix such that S − LQ is Hurwitz;
3 Gc(z)← Hc(z);
4 Fc(z, y)← s(z) + L(y −∇xf(Hc(z), z));

Result: Fc(z, y), Gc(z), and nc that solve Problem 1

Remark 5. Instead of a Luenberger observer, alternative dy-
namic observers could be considered in Line 4 of the algorithm
to achieve different asymptotic or transient properties of the
resulting gradient-feedback optimization algorithm; we leave
the investigation of alternative state observer algorithms as the
scope of future works. □

We illustrate the applicability of (13) on a quadratic problem
in the following example.

Example 4. Consider the quadratic problem studied in Exam-
ple 3, and assume that the exosystem follows the linear model
θ̇ = Sθ for some matrix S ∈ Rp×p. According to Theorem 5,
an optimization algorithm given by

ż = Acz +Bcy, x = Gcz, y = Rx+Qθ, (17)

where A ∈ Rnc×nc , Bc ∈ Rnc×n, Gc ∈ Rn×nc , achieves
asymptotic tracking if and only if there exists a linear trans-
formation Σ ∈ Rnc×p such that:

ΣS = AcΣ, (18a)
0 = (RGcΣ+Q), (18b)

for all θ in a neighborhood of the origin. When this condition
holds, the application of Algorithm 1 gives

Ac = S, Bc = L, Gc = −R†Q,

where L is any matrix such that S − LQ is Hurwitz; notice
that this choice satisfies (18) with Σ = I. □

B. The optimization algorithm as a copy of the exosystem

As discussed after (16), the state of any optimization algorithm
that achieves asymptotic tracking and that of the exosystem
must be related by a change of coordinates. In the following,
we show that σ(θ) is indeed an injective map, and it can thus
be interpreted as a change of coordinates. We begin with the
following result.

Proposition 6. Let the assumptions of Theorem 5 hold and let
Fc(z, y) and Gc(z) be obtained by Algorithm 1. Then, there
exists an injective map σ(θ) such that (16) holds. □

Proof. The claim follows by noting that Fc(z, y) and Gc(z)
obtained by Algorithm 1 satisfy (13) with σ the identity
operator on Θ.

The interpretation of Proposition 6 is that, for any solution
returned by Algorithm 1, Fc(z, y) incorporates a copy of s(θ);
precisely,

Fc(σ(θ), 0) = s(θ). (19)

The above feature is not a result of using Algorithm 1. Indeed,
every gradient feedback algorithm has this feature, as shown
next.

Proposition 7. Let the assumptions of Theorem 5 hold and
assume that S(θ) is C∞. For any Fc(z, y) and Gc(z) that
achieve asymptotic tracking, there exists a neighborhood Θ◦ ⊂
Θ of the origin such that σ(θ) is injective in Θ◦. □

Proof. By contradiction, assume that Fc(z, y) and Gc(z) sat-
isfy (13), but σ(θ) is not injective at the origin; namely, there
exists nonzero θ′ ∈ Θ◦ such that σ(θ′) = z⋆0 . From (13b), we
have

0 = ∇xf(Gc(σ(θ
′)), θ′).

Moreover, from Theorem 4,

∂σ(θ′)

∂θ
s(θ′) = Fc(σ(θ

′), 0) = 0. (20)

For C∞ vector fields h1(x) and h2(x), we let

Lh1(h2)(x) =
∂h2(x)

∂x
h1(x).

By application of (20), we have

0 = Ls(∇xf)(x, θ
′) = Ls(Ls(∇xf))(x, θ

′) = . . . .

Hence, the matrix  Ls(∇xf)(x, θ)
Ls(Ls(∇xf))(x, θ)

...

 ,
is not invertible at θ = θ′. By [35, Thm. 3.13], the system (2)
is not weakly observable, thus violating Assumption 4.

V. FIDELITY OF THE INTERNAL MODEL AND TRACKING
ACCURACY

In this section, we illustrate through examples how an im-
precise knowledge of the internal model impacts the tracking
accuracy. For tractability, we will focus on the quadratic prob-
lem (12) (see Examples 3 and 4). Suppose that an imprecise
knowledge of the internal model is available; namely, there
exists ∆ ∈ Rnc×p such that (18) is modified to:

ΣS +∆ = AcΣ, (21a)
0 = (RGcΣ+Q). (21b)
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To analyze the asymptotic behavior of y(t), it is useful to
define the auxiliary variable z̃(t) = z(t)− Σθ(t). Using (21)
and (17), the dynamics of z̃ follow the model:

˙̃z = (Ac +BcRGc)z̃ +∆θ. (22a)

The corresponding gradient signal in terms of z̃ is:

y = RGcz̃. (22b)

Assuming that (Ac + BcRGc) is Hurwitz stable (see Theo-
rem 4), the Final Value Theorem gives:

y∞ := lim
t→∞

y(t) (23)

= lim
s→0

sRGc(sI −Ac −BcRGc)
−1∆(sI − S)−1θ(0).

As a first illustrative scenario, suppose S = 0; namely, that the
exosystem states are constants at all times. Notice that, since
S = 0, from (18a), Ac incorporates an internal model of S if
and only if AcΣ = 0; precisely, if and only if

dim(ker(Ac)) ≥ p.

In this case, assuming that the perturbed Ac is such that (Ac+
BcRGc) remains Hurwitz stable, from (23), we have:

y∞ = −RGc(Ac +BcRGc)
−1∆θ(0).

As expected, when ∆ = 0, Ac incorporates an exact internal
model, and y∞ = 0 for any θ(0). On the other hand, when
∆ ̸= 0,

∥y∞∥ ≤ ∥RGc(Ac +BcRGc)
−1∥∥θ(0)∥∥∆∥,

namely, bounded errors in ∆ result in a bounded y∞.

Interestingly, analogous continuity properties may not hold
when the Poisson stability assumption is dropped. Consider
an instance of (12) with n = p = 2, R = Q = I, and

S =

[
0 1
0 0

]
.

Suppose the algorithm (17) is used, with Gc = I,Bc = I,

Ac =

[
−ϵ1 1
0 −ϵ2

]
,

where 0 ≤ ϵ1 < 1, 0 ≤ ϵ2 < 1. To avoid trivial cases, we will
assume θ1(0) and θ2(0) are nonzero. When ϵ1 = ϵ2 = 0, (21)
holds with Σ = −I and ∆ = 0, in which case y∞ = 0. On
the other hand, when ϵ1, ϵ2 ̸= 0, from (23):

y∞ = lim
s→0

[ ϵ1
s−α1

ϵ1
s(s−α1)

+ ϵ2
(s−α1)(s−α2)

0 ϵ2
s−α2

,

] [
θ1(0)
θ2(0)

]
where αi = 1− ϵi for i ∈ {1, 2}. Since ϵ1 ̸= 0 and θ2(0) ̸= 0,
we conclude that |y(t)| → ∞ as t → ∞, i.e., asymptotic
tracking is not attained.

In conclusion, the tracking accuracy depends on the fidelity of
the internal model as well as the asymptotic behavior of the
exosystem.

VI. EXTENSIONS TO CONSTRAINED PROBLEMS

We can extend our results to study constrained time-varying
optimization problems by searching for a stationary point of
the Lagrangian.

Consider the equality-constrained problem

minimize f(x, θ(t))

subject to hi(x, θ(t)) = 0, i = 1, . . . ,m

where the constraint functions hi(x, θ(t)) depend on the
parameter vector. The associated Lagrangian function is

L(x, λ, θ(t)) = f(x, θ(t)) +

m∑
i=1

λihi(x, θ(t))

where λi is the Lagrange multiplier associated with the ith

equality constraint. A pair (x, λ) ∈ Rn × Rm is said to be a
saddle-point of the Lagrangian if

L(x, λ̄, θ(t)) ≤ L(x, λ, θ(t)) ≤ L(x̄, λ, θ(t))
for all pairs (x̄, λ̄) ∈ Rn×Rm. For any such saddle-point, x is
primal optimal, λ is dual optimal, and the optimal duality gap
is zero. Moreover, the gradient of the Lagrangian (assuming
it exists) is zero at any saddle-point. It follows from the
derivations in the previous sections that the gradient-feedback
and parameter-feedback algorithms can be directly applied to
seek a stationary point of the Lagrangian function by replacing
(in (1)) the variable x with the extended decision variable
x̃ = (x, λ) and by letting f(x̃, θ) = L(x, λ, θ). Notice that,
if the critical point computed by (4a) is also a saddle-point,
then it is also a solution to the equality-constrained problem;
see [36, Ch. 5].

VII. SIMULATION RESULTS

In this section, we illustrate our results and optimization design
method through a set of numerical simulations.

A. Optimization design for quadratic costs

We begin by numerically investigating the quadratic instance
of (1) with linear temporal variability, discussed previously
in Example 3. With dimensions n = p = 4, we chose the
matrix R ∈ S4 with random entries such that its eigenvalues
are uniformly distributed in the open real interval (0, 1), and
we set Q = I ∈ R4×4. We let the exosystem be θ̇(t) =
Sθ(t), where S ∈ R4×4 is given by S = S̃ − S̃T, and S̃
is a matrix with random entries uniformly distributed in the
open real interval (0, 1). Notice that this choice ensures that
the eigenvalues of S are on the imaginary axis. We chose
Hc(θ) = Hcθ with Hc = −R−1Q, which ensures (10) holds
(see Example 3). We applied Algorithm 1, choosing L such
the eigenvalues of S − LQ are uniformly distributed in the
real interval (−2,−1), letting Gc = −R−1Q, and

Fc(z, y) = s(z) + L(y −∇xf(Hc(z), z)),

= Sz + L(y − (RGcz +Qz)),

= Sz + Ly.
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Fig. 3: Simulation results illustrating the performance of an optimization
algorithm synthesized using Algorithm 1 for the quadratic instance (12) of (1).
See Example 3 and Section VII-A for a discussion. (Top) Illustration of the
temporal variability of the parameter θ(t) and of z(t). (Second from top)
z(t) is an estimator for θ(t), and thus z(t) → θ(t) as t → ∞. (Third
from top) The proposed control algorithm is successful in regulating the
gradient feedback signal y(t) to zero asymptotically. (Bottom) Illustration
that x(t) → x⋆(t) as t → ∞.

The simulation results are presented in Figure 3. It follows
from our choice of Fc(z, y), that the optimization state z(t)
converges to the parameter vector θ(t) (see the top two plots
in Fig. 3). Moreover, it follows from our choice of Gc(z) that
y(t) → 0 and thus x(t) → x⋆(t) as t → ∞ (see the bottom
two plots in Fig. 3).

B. Application to solve the dynamic traffic assignment prob-
lem in transportation

We next illustrate the applicability of the framework in
solving the dynamic traffic assignment problem in roadway

(a) (b)

Fig. 4: (Left) Areal view of the highway system between the cities of Wavre
and Brussels, Belgium. (Right) Graph utilized to model the portion of traffic
network of interest.

transportation [37]; intuitively, the objective is to decide how
traffic flows split among the available paths of a network to
minimize the drivers’ travel time to destination. We model a
roadway transportation network using a static flow model [37],
described by a directed graph G = (V, E), with edges
i ∈ E ⊆ V×V (modeling traffic roads) and nodes V (modeling
traffic junctions). For i ∈ E , we denote by i+ ∈ V and i− ∈ V
its origin and destination nodes, respectively. We assume that
an exogenous, time-varying, inflow of traffic θ(t) enters the
network at a certain origin node, denoted by o ∈ V, and exits
at a certain destination node, denoted by d ∈ V; for simplicity,
we assume that there is only one origin-destination pair, but
this is without loss of generality [37]. We describe the network
state using a vector x ∈ R|E|

≥0 (where |E| denotes the number
of edges) whose entries xi describe the amount of inflow θ
routed through road i. To each link i, we associate a function
ℓi(xi) describing the latency (or travel time) of road i. For our
simulations, we consider the network topology in Fig. 4, and
choose the latency functions as follows:

ℓ1(x1) = x1, ℓ2(x2) = 10x2, ℓ3(x3) = x3,

ℓ4(x4) = 5x4, ℓ5(x5) = x5.

According to Wardrop’s first principle [37, pp. 31], trans-
portation networks operate at a condition where travelers
select their path to minimize their travel time to destination.
Mathematically, a Wardrop’s equilibrium is the optimizer of
the following optimization problem:

min
x∈R|E|

∑
i∈E

∫ xi

0

ℓi(s)ds

subject to:
∑

j∈E:j−=v

xj −
∑

j∈E:j+=v

xj = δv(θ(t)), ∀v ∈ V,

xi ≥ 0, ∀i ∈ E , (24)

where δv(θ), v ∈ V, is defined as:

δv(θ) =


θ, if v = o,

−θ, if v = d,

0, otherwise.

The loss function in (24) is used to model travelers who
will switch to a different path if it has shorter travel time

10



to destination, while the first constraint in (24) describes the
network topology, namely, that traffic flows are conserved at
each node. Notice that (24) is a time-varying optimization
problem, where the temporal variability originates from the
dependence of the constraint on θ(t), which describes the
inflow of vehicles at the origin and outflow at the destination,
measured in vehicles per hour. For our simulations, we assume
that the network inflow is sinusoidal:

θ(t) = θ0 − θ1 cos(ω1t+ ϕ1)− θ2 cos(ω2t+ ϕ2), (25)

where θ0, θ1, θ2, ω1, ω2, ϕ1, ϕ2 ∈ R>0, satisfy θ0 > θ1,
θ0 > θ2, and ω2 > ω1. The model (25) states that the network
inflow is the sum of a constant term, θ0, a slowly-varying
sinusoid with angular frequency ω1 and a quickly-varying si-
nusoid with angular frequency ω2. The low-frequency sinusoid
is used here to describe slowly-varying (e.g., hourly) traffic
demands, while the high-frequency sinusoid is used to model
sudden (e.g., at the minute-level) variations in traffic demand.
For our simulations, we let θ0 = 3 veh/h, θ1 = 1 veh/h,
θ2 = 0.1 veh/h, ω1 = 0.1 rad/hour, ω2 =

√
50 rad/hour, and

ϕ1 = ϕ2 = 0, see Fig. 5 (top).

We applied Algorithm 1 to derive an optimization algorithm
to solve the traffic assignment problem (24). For the synthesis,
we utilized the internal model s(z) = Sz, where

S =


0 1 0 0 0
−ω2

1 0 0 0 0
0 0 0 1 0
0 0 −ω2

2 0 0
0 0 0 0 0

 .
Notice that knowledge of θ0, θ1, θ2, ϕ1, ϕ2 is not required to
synthesize the optimization algorithm – only the frequencies
ω1, ω2 are required to be known. To seek a solution to the
constrained problem (24), consider the Lagrangian function:

L(x, λ, θ(t)) :=
∑
i∈E

∫ xi

0

ℓi(s)ds

+
∑
v∈V

λv

δv(θ(t))− ∑
j∈E:
j−=v

xj +
∑
j∈E:
j+=v

xj

 ,

where λ := (λ1, . . . , λ|V|) is the vector of Lagrange multipli-
ers. We applied Algorithm 1 to the optimization problem (1)
with f(x̃, θ) = L(x, λ, θ) (see Section VI); the inequality
constraints in (24) have been accounted for by projecting x(t)
onto the feasible set. Here, matrix L has been chosen so that
the eigenvalues of S − LQ are uniformly distributed in the
open real interval (−1,−2). Notice that, since the latencies are
strictly increasing, the Lagrangian is strongly convex-strongly
concave [37], and thus the problem admits a unique critical
point that is a saddle point. It follows that our algorithm is
guaranteed to converge to a minimizer of (24). Simulation for
this problem are presented in Fig. 5. The simulation shows
that z(t) → θ(t) as t → ∞ (see Fig. 5-second figure)
and y(t) → 0, which implies that the algorithm successfully
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Fig. 5: Simulation results illustrating the performance of the optimization al-
gorithm synthesized using Algorithm 1 to solve the dynamic traffic assignment
problem (24). See Section VII-B for a discussion. The bottom figure show that,
from a zero initial condition, the algorithm is capable of computing a Wardrop
equilibrium in about 1.5 hours, and then of tracking this equilibrium. Notice
that, a faster rate of convergence could be obtained by shifting the eigenvalues
of S − LQ.

computes the critical point (see Fig. 5-third figure). Finally, the
bottom figure of Fig. 5 illustrates the rate of convergence of the
algorithm, which, as expected, is governed by the placement
of the eigenvalues of the observer.

VIII. CONCLUSIONS

We showed that the problem of designing optimization algo-
rithms for time-varying optimization problems can be recon-
ducted to the output regulation problem of nonlinear multivari-
able systems. This connection allowed us to prove the internal
model principle of time-varying optimization, which states that
asymptotic tracking can be achieved only if the optimization
algorithm incorporates a reduplicated model of the temporal
variability of the problem. Further, we showed that asymptotic
tracking can be achieved under more relaxed assumptions
(namely, assumption (A2)) than what is normally imposed in
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the literature (see assumption (A3)). Moreover, our algorithm
structure is novel in the literature, and it relies on the use of
an observer for the temporal variability of the problem. This
work opens the opportunity for several directions of future
work, including an investigation at discrete-time and possibly
the application in feedback optimization.

APPENDIX

We now summarize relevant facts in center manifold theory
from [18]; see also [38]. Consider the nonlinear system:

ẋ = f(x) (26)

where f is a Ck vector field defined on an open subset U
of Rn, and let x◦ ∈ U be an equilibrium point for f , i.e.,
f(x◦) = 0. Without loss of generality, suppose x◦ = 0. Let
F =

[
∂f
∂x

]
x=0

, denote the Jacobian matrix of f at x = 0.
Suppose the matrix F has n◦ eigenvalues with zero real part,
n− eigenvalues with negative real part, and n+ eigenvalues
with positive real part. Let E−, E◦, and E+ be the (gener-
alized) real eigenspaces of F associated with eigenvalues of
F lying on the open left half plane, the imaginary axis, and
the open right half plane, respectively. Note that E◦, E−, E+

have dimension n◦, n−, n+, respectively and that each of these
spaces is invariant under the flow of ẋ = Fx. If the linear
mapping F is viewed as a representation of the differential
(at x = 0) of the nonlinear mapping f , its domain is the
tangent space T0U to U at x = 0, and the three subspaces
in question can be viewed as subspaces of T0U satisfying
T0U = E◦ ⊕ E− ⊕ E+. We refer to [39, Sec. A.II] for a
precise definition of Ck manifolds; loosely speaking, a set
S ⊂ U is a Ck manifold it can be locally represented as the
graph of a Ck function.

Definition 3 (Locally invariant manifold). A Ck manifold S of
U is said to be locally invariant for (26) if, for each x◦ ∈ S,
there exists t1 < 0 < t2 such that the integral curve x(t)
of (26) satisfying x(0) = x◦ is such that x(t) ∈ S for all
t ∈ (t1, t2). □

Intuitively, by letting x = (y, θ) and expressing (26) as:

ẏ = fy(θ, y), θ̇ = fθ(θ, y), (27)

a curve y = π(θ) is an invariant manifold for (27) if the
solution of (27) with θ(0) = θ◦ and y(0) = π(θ◦) lies on
the curve y = π(θ) for t in a neighborhood of 0. The notion
of invariant manifold is useful as, under certain assumptions,
it allow us to reduce the analysis of (26) to the study of a
reduced system in the variable θ only. The remainder of this
section is devoted to formalizing this fact.

Definition 4 (Center manifold). Let x = 0 be an equilibrium
of (26). A manifold S, passing through x = 0, is said to be a
center manifold for (26) at x = 0 if it is locally invariant and
the tangent space to S at 0 is exactly E◦. □

Returning to the decomposition (27), intuitively, the invariant
manifold y = π(θ) is said to be a center manifold when all

orbits of y decay to zero and those of θ neither decay nor
grow exponentially.

In what follows, we will assume that all eigenvalues of F have
nonpositive real part, i.e.,

n+ = 0. (28)

When (28) holds, it is always possible choose coordinates in
U such that (26) reads as:

ẏ = Ay + g(y, θ) (29a)

θ̇ = Bθ + h(y, θ) (29b)

where A is an n−×n− matrix having all eigenvalues with neg-
ative real part, B is an n◦ × n◦ matrix having all eigenvalues
with zero real part, and the functions g and h are Ck functions
vanishing at (y, θ) = (0, 0), together with all their first-
order derivatives. Because of their equivalence, any conclusion
drawn for (29) will apply also to (26). The following result
ensures the existence of a center manifold.

Theorem 8 (Center manifold existence theorem). Assume
that (28) holds. There exist a neighborhood V ⊂ Rn0

of 0
and a class Ck−1 mapping π : V → Rn−

such that the set

S = {(y, θ) ∈ Rn− × V : y = π(θ)},

is a center manifold for (29). □

Some important observations are in order. By definition, a
center manifold for (29) passes through (0, 0) and is tangent
to the subset of points whose y coordinate is zero. Namely,

π(0) = 0 and
∂π

∂θ
(0) = 0. (30)

Moreover, this manifold is locally invariant for (29): this
imposes on the mapping π the constraint:

∂π

∂θ
(Bθ + h(π(θ), θ)) = Aπ(θ) + g(π(θ), θ), (31)

as deduced by differentiating with respect to time any solution
(y(t), θ(t)) of (29) on the manifold y(t) = π(θ(t)). In
other words, any center manifold for (29) can equivalently be
described as the graph of a mapping y = π(θ) satisfying the
partial differential equation (31), with the constraints specified
by (30).

Remark 6. Theorem 8 shows existence but not uniqueness of
a center manifold. Moreover, (i) if g and h are Ck, k ∈ N>0,
then (29) admits a Ck−1 center manifold; (ii) if g and h are
C∞ functions, then (29) has a Ck center manifold for any
finite k, but not necessarily a C∞ center manifold. □

The next result shows that any y-trajectory of (29), starting
sufficiently close to the origin, converges, as time tends to
infinity, to a trajectory that belongs to the center manifold.

Theorem 9. Assume that (28) holds and suppose y = π(θ) is a
center manifold for (29) at (0, 0). Let (y(t), θ(t)) be a solution
of (29). There exists a neighborhood U◦ of (0, 0) and real
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numbers M > 0 and K > 0 such that, if (y(0), θ(0)) ∈ U◦,
then for all t ≥ 0,

∥y(t)− π(θ(t))∥ ≤Me−Kt∥y(0)− π(θ(0))∥. □

From the above discussion, any trajectory of (29) starting at a
point y◦ = π (θ◦) of a center manifold satisfies:

y(t) = π(ζ(t)), θ(t) = ζ(t),

where ζ(t) is any solution of

ζ̇ = Bζ + h(π(ζ), ζ), (32)

satisfying the initial condition ζ(0) = θ◦. This decomposition
allows us to predict the asymptotic behavior of (29) by
studying the asymptotic behavior of a reduced-order system,
namely, (32). This is formalized in the following result.

Theorem 10. Suppose ζ = 0 is a stable (respectively,
asymptotically stable, unstable) equilibrium of (32). Then
(y, θ) = (0, 0) is a stable (respectively, asymptotically stable,
unstable) equilibrium of (29). □
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