
Distributed Fault Detection in Sensor Networks
via Clustering and Consensus

Gianluca Bianchin, Angelo Cenedese, Michele Luvisotto, and Giulia Michieletto

Abstract— In this paper we address the average consensus
problem in a Wireless Sensor-Actor Network with the particular
focus on autonomous fault detection. To this aim, we design a
distributed clustering procedure that partitions the network
into clusters according to both similarity of measurements
and communication connectivity. The exploitation of clustering
techniques in consensus computation allows to obtain the
detection and isolation of faulty nodes, thus assuring the
convergence of the other nodes to the exact consensus value.
More interestingly, the algorithm can be integrated into a
Kalman filtering framework to perform distributed estimation
of a dynamic quantity in presence of faults. The proposed
approach is validated through numerical simulations and tests
on a real world scenario dataset.

I. INTRODUCTION

Wireless Sensor-Actor Networks (WSANs) are systems
composed of a large number of interactive devices distributed
over a vast area, linked by a wireless medium and equipped
with computational capabilities [1]. In recent years, the
definition of algorithms and models to manage such net-
worked systems has emerged among the most popular and
prolific research topics. At the same time, the application
domains of large scale sensor networks are growing and
range from factory automation to ambient assisted living [2],
[3], [4]: while the characteristics of the devices employed
in the specific applications may be quite different, WSANs
are devised according to common criteria and employ col-
laborative strategies, in order to ensure remarkable features
such as scalability and robustness. To model and design
such properties, a distributed approach is often preferred to a
centralized one, and many strategies have been lately studied
and developed that rely on network nodes cooperation to
perform global tasks resting upon local rules.

In this context, a well-known example of a distributed
algorithm is the linear average consensus, which guarantees
the convergence of node states (e.g. sensor measurements of
a quantity of interest) to the average of their initial values
through information exchange at local level [5], [6], [7],
[8]. Interestingly, clustering may result to be an appealing
approach to be employed with consensus since grouping
nodes into clusters can improve the convergence properties
by better exploiting the network connectivity and the similar-
ities among nodes. To this aim, many efficient strategies have

A.Cenedese, M.Luvisotto, and G.Michieletto are with the Department
of Information Engineering, University of Padova, via Gradenigo 6/B,
35131 Padova, Italy. G.Bianchin is with the Department of Mechanical
Engineering, University of California Riverside, CA (USA). Corresponding
author: A.Cenedese, angelo.cenedese@unipd.it.

The research leading to these results was partially supported by MIUR
Project SEAL - Smart&safe Energy-aware Assisted Living (SCN-00398).

been proposed to partition a WSAN according to a specific
definition of clusters, as for example in [9] and [10].

From the application point of view, clustering may result
interesting also for fault detection and faulty node isolation:
indeed, if not recognized, a faulty sensor (be it for a mali-
cious behavior or for an actual failure) can compromise the
operation of the whole network and prevent the attainment
of the desired task. This problem has been deeply studied
and several algorithms based on clustering approach are
available in literature [11], [12], [13]. Nonetheless, to the best
of our knowledge, clustering techniques have not yet been
applied to distributed fault detection for secure consensus
computation although the scientific community has shown a
strong interest towards this topic [14], [15], [16].

In this work, the distributed fault detection problem in
the average consensus framework is addressed and, to solve
this issue, a strategy is proposed that exploits a cluster-
ing procedure based on both similarity of measurements
and communication connectivity. The effectiveness of the
approach is supported by numerical results obtained from
highly connected sensor networks. A validation on data
gathered from an actual WSAN installation in a real-world
environment has also been conducted.

The remainder of the paper is organized as follows. After
some preliminary review of useful network notions in Sec. II,
the distributed clustering procedure is presented in Sec. III
and it is applied to solve the average consensus problem in
presence of faulty nodes. Then, Sec. IV is dedicated to the
validation of the cluster-based consensus algorithm through
its application to the interesting case of a measurement flow
related to a dynamic process. Similarly, Sec. V deals with
tests on data from a real scenario. Finally, in Sec. VI some
concluding remarks are drawn with respect to current and
future developments.

II. NETWORK NOTIONS AND DEFINITIONS

Let a WSAN be modeled by a network of N nodes
endowed with a set of states x = [x1 . . . xN]

>, that are
scalar noisy measurements of a global quantity x ∈ R that
the N agents attempt to estimate. The network topology is
represented by a highly connected undirected graph G =
(V, E), where V and E are the sets of nodes and edges,
respectively. We define the adjacency matrix E such that
E(i, j) = 1 if and only if (i, j) ∈ E , the neighborhood of
a node i as N (i) = {j ∈ V : E(i, j) = 1, i 6= j} and its
degree as d(i) = |N (i)|.

The average of the nodes measurements, x̂ = 1
N

∑
i xi, is

usually considered to be a reliable estimation for the quantity

2015 IEEE 54th Annual Conference on Decision and Control (CDC)
December 15-18, 2015. Osaka, Japan

978-1-4799-7886-1/15/$31.00 ©2015 IEEE 3828

of interest and can be computed in a distributed way through
the average consensus algorithm. Following this strategy,
agents iteratively update their estimates according to

x(k + 1) = Px(k) (1)

where x(k) = [x1(k) . . . xN (k)]
> is the vector of nodes

estimates at k-th iteration, x(0) = x is the vector of initial
measurements and P ∈ RN×N is a weight matrix. If P is
doubly stochastic, this procedure is ensured to converge, i.e.
limk→∞ xi(k) = x̂ ∀i. Among the several strategies that
are available to build a matrix that satisfies this condition,
in this work we adopt the Metropolis-Hastings weights [17],
which show good convergence properties and are particularly
suitable for a distributed implementation. Indeed, in such a
case, the i-th node that computes row P (i, :) needs to know
only its own degree d(i) and those of its neighbors.

Given these premises, we introduce the following
Definition 1 (Cluster): A cluster in the network G is a

group C = {c1, . . . , ck} ⊆ V of k ≤ N nodes such that the
following criteria are both satisfied.

C1 Cluster connectivity: for each pair of nodes ci, cj in C,
there exists at least one path connecting them entirely
composed by elements of the same cluster;

C2 Measurement similarity: for each pair of nodes ci, cj in
C, it must hold |xci − xcj | < b, where b is the imposed
clustering bound (setup parameter). �

In other words, if two nodes have similar measurements
but are not connected either directly or through nodes of the
same cluster, they are not clustered together: the communica-
tion between them would not be managed by a single cluster
and hence it is not judged reliable. On the other hand, if two
nodes are connected but show dissimilar measurements, it is
assumed that they are not observing the same phenomenon
and so they are assigned to different clusters.

In practical implementations, the consensus algorithm (1)
is strictly dependent on the measurements and communica-
tion capabilities and, consequently, the presence of faulty
nodes can cause system misbehaviors, performance losses
or even compromise the successful completion of a task. As
a general definition, a fault occurs when the delivered service
deviates from the expected service [18]. Hereafter, a specific
fault model is considered, related to a wrong measurement
in the WSAN context.

Definition 2 (Fault): Let x ∈ R be the true value of a
quantity to measure, a sensor i is considered faulty if its noisy
measurement xi = x+wi (wi being some noise realization)
does not fall in a range R = [x − δ, x + δ], where δ is a
chosen design parameter1. �

According to this definition, a sensor that permanently or
temporarily provides an unreliable measurement is faulty and
it always influences the estimation of other nodes in a stan-
dard consensus procedure (1), forcing the global estimation
to be biased with respect to the true value.

1In practice, suitable values for δ can be derived from the sensitivity
of employed sensors, reported in technical specifications, or from ad hoc
experimental tuning.

Algorithm 1
1: procedure DISTRIBUTED CLUSTERING
2: term← false
3: while not term do
4: if not v(i) then
5: v(i)← true
6: if not k(i) then
7: k(i)← true
8: end if
9: for j ← 1 to N, j 6= i do

10: if E(i, j) = 1 and j /∈ C(i) then
11: if not k(j) then
12: Q(i)← enqueue(j)
13: end if
14: if |xk − xj | < b ∀k ∈ C(i) then
15: C(i)← C(i) ∪ j
16: k(j)← true
17: end if
18: end if
19: end for
20: end if
21: if Q(i) 6= ∅ then
22: next← dequeue(Q(i))
23: r(next)← i
24: else
25: if r(i) 6= 0 then
26: next← r(i)
27: else
28: term← true
29: end if
30: end if
31: if next ∈ C(i) and not term then
32: update C(next) with elements of C(i)
33: end if
34: i← next
35: end while
36: end procedure

III. DISTRIBUTED CLUSTERING ALGORITHM FOR FAULT
DETECTION

In this framework, a procedure has been developed that
partitions the network into a (non-fixed) number of clusters
that fulfill criteria C1-C2, and that can be then exploited to
handle the fault detection and isolation problem in a WSAN.

A. Clustering Algorithm

The proposed algorithm is based on the circulation of a
special token message over the network, which starts from
a randomly selected root node and enables the node that
receives it to temporarily exchange information with its
neighbors and update its internal information.

This procedure is reported as Alg. 1, where the following
variables are defined for each node i:
- Q(i), queue containing next nodes to transmit the token,
- k(i), flag indicating if node has been clustered,
- C(i), indexes of nodes belonging to the same cluster as i,
- r(i), node whence the token has been received,
- v(i), flag indicating if node has received the token for the
first time.

The initialization requires setting Q(i) = ∅, C(i) = {i},
r(i) = 0, v(i) = false and k(i) = false.

3829

The first time the i-th node receives the token (rows 4-20,
part A), it retrieves the measurements of its neighbors and if
the measurement similarity condition (C2) is satisfied, it adds
them to C(i). Then, every time node i has the token (rows
21-34, part B), it selects the next node j to pass the token,
either dequeuing Q(i) or, if Q(i) = ∅, setting j = r(i). If
j ∈ C(i), the cluster of the next node is updated with the
elements of C(i). The procedure terminates when all nodes
have been visited.

Focusing on its structure, it is possible to prove that the
distributed clustering algorithm Alg. 1 correctly partitions a
N -nodes network into a certain number of clusters according
to Def. 1 and has complexity O(N2) in terms of communi-
cation exchanges [19]. In detail, part A of the procedure is
executed once for each node i and, during its execution, for
each neighbor j, the edge (i, j) is explored at most three
times when i has the token and three more times when
j has it. In the worst case, each edge of the network is
explored six times, so the complexity is directly proportional
to the cardinality of E , i.e. O(N2). Part B of the algorithm
requires only one communication exchange and in the worst
case (i.e. if the graph is complete and each cluster has
unitary cardinality) each node i receives the token i−1 times
from node r(i) and N − i times from a node in its queue.
Therefore, the total number of communication exchanges is
N(N − 1) and the complexity of this part is again O(N2).

Observation 1: It is worth mentioning that the obtained
partition is not unique and depends on the scenario conditions
such as graph topology, measurements distribution, clustering
bound and the randomly chosen root node, nonetheless it
results in a set of configurations that are equivalent w.r.t.
the given definitions and assumptions (see [19] for a more
detailed explanation). Specifically, if the fault model pro-
posed in Def. 2 is adopted, the presented clustering algorithm
allows a correct detection and isolation of faults regardless
of the choice of the root node.

B. Cluster-based Consensus and Fault Detection

The proposed clustering strategy can be exploited before
the implementation of a consensus procedure, in order to
exclude all the nodes that could provide biased information
from the measurement averaging. More specifically, the
distributed clustering algorithm Alg. 1 can be modified to
compute a consensus matrix P based on the Metropolis-
Hastings strategy and on a clustering bound b that is suitably
set according to the measurements distribution range R.

Furthermore, when the generic node i is selected (via
token passing), it computes the consensus weights P (i, :)
by exchanging the information on its own and its neighbors
degrees. It is worth to notice that the considered degrees
are those related only to the cluster’s connected subgraph,
that is P (i, j) 6= 0 if and only if nodes i and j are in the
same cluster. The consensus algorithm can then be applied,
leading every node i to converge to the mean value of the
measurements in the cluster. As a result, if a node j is faulty,
the overall procedure:

Consensus iterations
5 10 15 20 25 30

N
od

es
 e

st
im

at
es

 [K
]

200

250

300

350

400
Cluster-based consensus

True value
Faulty nodes
Healthy nodes

5 10 15 20 25 30

N
od

es
 e

st
im

at
es

 [K
]

200

250

300

350

400
Standard consensus

True value
Nodes estimates

Fig. 1. Standard vs. Cluster-based consensus strategies in a network with
faulty nodes.

1) results in node j isolation (because the measurement
similarity criterion is not verified) before the consensus
procedure, thus avoiding both the a-posteriori verifica-
tion of the presence of faulty nodes (and a following
phase of iterative estimate recomputation) and the un-
necessary exchange of information;

2) preserves the connectivity of the rest of the network,
allowing the other nodes to converge to consistent
clustered solutions (i.e. subgraphs exhibiting the same
average values).

In Fig. 1, it is shown a simple (static) example of average
consensus in a connected network made up of N = 100
nodes: the quantity to estimate is a temperature of T = 300K
and the sensors measurements are affected by additive uni-
form noise. Faults are generated by a Bernoulli distribution
with fault probability p = 0.4 and a node is considered faulty
if its measurement falls out of a range R = [290K, 310K].
The bound for the clustering algorithm is then set to b =
20K. The distributed cluster-based consensus procedure is
applied, and it can be observed that the estimates of healthy
nodes (reported in blue) converge to the true value T , since
they all belong to the same cluster. Conversely, faulty nodes
(red lines) are either isolated or clustered together separately
from the healthy ones, without affecting the estimation pro-
cedure. On the other hand, the standard consensus procedure
takes into account the estimates of all nodes in the network
(healthy and faulty), resulting in a final estimate that is
substantially different from the true value T .

Observation 2: Although the algorithm well performs in
the general case, an additional remark is due with respect to
particular measurements distribution that may lead to false
positives and/or false negatives, i.e. undetected faulty nodes
and healthy nodes labeled as faulty respectively. According
to Def. 2, the presence of false negatives can be always
avoided by setting the value of clustering bound b equal to
twice the measurement noise bound, b = 2δ. Indeed, this
condition guarantees that healthy nodes are always included
in the same cluster (provided that they are part of a connected
graph), even in the worst case represented by two nodes
whose measurements are positioned at the opposite sides of

3830

R, i.e. x1 = x − δ and x2 = x + δ. Unfortunately, this
choice may cause the emergence of false positives: nodes
whose measurements are in the range {(x−3δ, x−δ)∪ (x+
δ, x + 3δ)} can be included in the cluster of healthy nodes
even if they are faulty. However, statistical considerations,
here omitted for brevity, show that such cases occur with
low probability (some percent) [19].

IV. DISTRIBUTED DYNAMIC ESTIMATION

The proposed algorithm can reveal useful also in a more
interesting scenario, namely distributed estimation in a dy-
namical system: nodes take periodic noisy measurements of a
physical quantity that evolves over time and have to provide
an on-line estimation of its behavior.

A. Distributed Dynamic Estimation Problem

We consider a network of N nodes that need to estimate
a global quantity T (·) ∈ R (e.g. a temperature) that changes
according to the discrete stochastic model

T (s+ 1) = T (s) + v(s) (2)

where v(s) is a zero-mean random variable with covariance
q and s is the sampling instant ranging from 1 to M .

The sensors measure a noisy quantity

x(s) = T (s)1 + w(s) + f(s) (3)

where vector x(s) ∈ RN contains the measurements of the
nodes at the s-th sampling instant, the measurement noise
vector w(s) is an independent zero-mean random vector with
covariance matrix R = rI , and vector f(s) represents the
additive bias provided by faulty sensors. Through f(s), the
model allows to account for different situations, such as:
• non-faulty node: fi(s) = 0, ∀s;
• permanent fault: fi(s) = f̄ , ∀s;
• sudden fault: fi(s) = f̄ · u(s− s̄), s̄ > 1;
• temporary fault: fi(s) = f̄ · [u(s − s̄1) − u(s − s̄2)],
s̄2 > s̄1 > 1;

• linear degrading fault: fi(s) = f̄ · s
M−s̄ ·u(s−s̄), s̄ > 1;

where f̄ ∈ R, f̄ 6= 0 and u(·) is the unit step.
The distributed dynamic estimation problem concerns the

computation by every node of an optimal estimate T̂ (s)
of the real value T (s) at each sampling instant. It is well
known that the optimal estimator for the evolution of a
dynamical system is given by the Kalman filter [20], that can
be implemented in a distributed way using average consensus
[21]. In this scenario, nodes are able to compute the mean
of a set of values only through local communication and the
global optimal estimate can be derived by each sensor node
at the s-th sample through the following two-step procedure.

1) Kalman estimation: each node updates its local estima-
tion according to the steady-state Kalman filter equation

T̂(s) = (1−l∗)·T̂(s−1)+l∗·x(s), T̂(1) = x(1) (4)

2) Average consensus: nodes perform average consensus
algorithm on their local estimations

T̂(s, k + 1) = P · T̂(s, k), 0 ≤ k < kmax (5)

where k is the index of consensus iterations and s is the
sampling instant, hence the initial condition T̂(s, 0) is
the value computed by (4).

The two design parameters in this procedure are the
optimal Kalman gain l∗ and the consensus matrix P . The
P matrix is chosen according to what previously discussed

in Sec. II, while the centralized gain l∗c =
−q+
√

q2+4qr̄

2r̄ , with
r̄ = r

N , results to be the optimal gain value [21], depending
on the measurement and process variances.

B. Cluster-based Consensus in a Dynamic Framework

In a network with faulty nodes, the cluster-based con-
sensus algorithm of Subsec. III-B can be implemented at
each sampling instant using the local Kalman estimation
(4) as the initial value. This approach guarantees an effi-
cient detection and isolation of faults, however the overall
estimation-clustering-consensus procedure adds a relevant
computational burden that must fit within a single sampling
interval, for a practical implementation [19].

In order to reduce the impact of the clustering strategy in
a dynamic estimation framework in terms of computational
and communication costs, a lighter version of the cluster-
based consensus algorithm can be devised (fast cluster-based
consensus), supported by a deeper analysis on the emergence
of faults. Specifically, we can observe that when the set of
faulty nodes does not change between two consecutive sam-
pling instants, i.e. f(s) = f(s+ 1), the clustering procedure
is executed twice but returns the same network partition. To
avoid such a redundant behavior, it might be convenient to
perform the clustering phase only every s̃ sampling instants
thus reducing the average number of messages exchanged
but decreasing the overall robustness to faults. To provide a
reference value for this design parameter s̃, let us consider
a network of N nodes, each one with probability p of being
faulty at a certain sampling instant. The number F of faults
at each instant is a binomial variable of parameters N and p,
while the number S of samples before having a faulty node
is a geometric random variable of parameter ρ = P [F ≥1]=
1 −(1−p)N . It follows that the parameter s̃ can be set in
order to ensure s̃≤E[S]=ρ−1 = (1−(1−p)N)−1.

C. Numerical Validation

To clarify and validate the proposed approach, a numerical
example of distributed dynamic estimation in presence of
faults is performed on a network of N = 100 nodes
associated to a random geometric graph. The quantity T to
estimate is sampled over M = 1000 measurement intervals,
its initial value is T (0) = 300K and its covariance is
q = 5. The measurement noise is Gaussian distributed with
covariance r = 5 and a bound of b = 15K is set for the
clustering algorithm. According to the models presented in
Sec. IV-A, fault events and related fault types are randomly
generated with probability p = 5 · 10−4 at each sampling
instant, with f̄ being an uniform random variable in the range
{[−100K,−15K) ∪ (+15K, 100K]}. For each consensus
procedure, kmax = 200 iterations have been performed.

3831

Sampling instant
600 620 640 660 680 700

Te
m

pe
ra

tu
re

 [K
]

185

190

195

200

205

210

215

220

225

230

235
Temperature
SC
FCC-2
FCC-10
FCC-50
CC

Fig. 2. Dynamic distributed estimation with different consensus algorithms.

The results of the dynamic estimation procedure are re-
ported in Fig. 2 for several consensus algorithm versions,
namely standard consensus (SC), cluster-based consensus
(CC) and fast cluster-based consensus (FCC) with different
values of s̃ (2, 10, 50), and these are compared with the true
T value (red line). It can be observed that the consensus
procedures based on clustering techniques outperform the
standard algorithm in terms of estimation accuracy, since the
latter is strongly affected by the presence of faults.

In this example, the differences between cluster-based
consensus and its faster variants are almost negligible in
terms of estimation accuracy, although the FCC-50 version is
such that s̃ = 50 > E[S] = 20. On the other hand, in terms
of average number (nm) of messages exchanged between
all nodes at each sampling instant for what concerns the
clustering process, the benefit of increasing s̃ are clearly
visible. Indeed, given that nm = 2697 when clustering
procedure takes place at each sample instant (CC), this value
decreases to 1350, 269 and 53 when FCC is adopted with,
respectively, s̃ = 2, s̃ = 10 and s̃ = 50.

To further assess the performance offered by different
consensus strategies and limit dependency of results from
random measure noises and graph topology, a total of 1000
simulations have been executed with the same parameters
of the scenario just presented. The strategies efficiency has
been evaluated in terms of average absolute error, i.e. the
mean absolute error computed over all sampling intervals,
and average number of messages exchanged at each sampling
instant for what concerns the clustering process. The results,
averaged over all the simulations, are reported in Tab. I.

TABLE I
RESULTS FOR DISTRIBUTED DYNAMIC ESTIMATION AVERAGED OVER

1000 NUMERICAL SIMULATIONS

Strategy Average absolute error Average no. messages

SC 2.729 K -
CC 0.316 K 2656
FCC (s̃ = 2) 0.320 K 1329
FCC (s̃ = 10) 0.371 K 265
FCC (s̃ = 50) 0.582 K 52

Once again it emerges how the clustering technique
strongly increase the robustness of consensus, outperforming
the standard procedure in terms of estimation accuracy.
The faster versions of the cluster-based consensus algorithm
allow to decrease the average number of messages propor-

tionally with the chosen value of s̃: approximately we have
nm(s̃) = nm(1)/s̃, where nm(1) is the average number
of messages exchanged if the clustering process is repeated
at each sample instant (CC). Such an improvement clearly
trades off with a reduction in estimation accuracy. However,
even considering a very fast version of the algorithm (FCC-
50), the mean absolute error is still more than 4 times smaller
than that achieved with standard consensus algorithm.

V. VALIDATION ON A REAL SCENARIO DATASET

The efficiency of the cluster-based consensus algorithm
has been then tested on the data coming from a real dis-
tributed estimation scenario. We analyze the temperature
evolution in a primary school monitored by N = 19 sensors
placed in four rooms and connected as in Fig. 3(a), which
have collected data with a sampling time of five minutes for
four months.

A. Static Cluster-based Consensus

We initially consider a static framework, where the cluster-
based consensus algorithm evaluates one single measure-
ments set. At the end of the procedure (kmax = 300), sensors
result to be correctly divided into four clusters according to
the rooms they belong to. As a consequence, we can state
that, imposing a suitable cluster bound (b = 2K), the dis-
tributed clustering algorithm allows to recognize the topology
of a structured environment. Then, non-faulty sensors of each
room converge to the average of their measurements, while
faults are excluded from consensus computation, as it is the
case of a permanently fault node in room 1 (sensor 01) that
has been correctly isolated and excluded from the consensus
computation.

TABLE II
COMPARISON BETWEEN STANDARD AND CLUSTER-BASED ALGORITHMS

FOR STATIC CONSENSUS

Room Sensor Consensus value Error

SC CC SC CC

1 no. 16 293.48 K 295.25 K 1.76 K 0 K
2 no. 08 293.48 K 290.44 K 3.05 K 0 K
3 no. 12 293.48 K 292.33 K 1.15 K 0 K
4 no. 04 293.48 K 292.81 K 0.67 K 0 K

The cluster-based consensus strategy is compared with the
standard one in Tab. II, which reports the error between
the consensus value and the average of the measurements
of the nodes in the same room for a few sample nodes.
The cluster-based approach is able to correctly converge
to the average of the measurements for each room, while
the standard consensus algorithm always provides non zero
errors since it is not able to discern among the different
rooms temperature profiles or to recognize the presence of
the faulty node in room 1.

B. Dynamic Cluster-based Consensus

The attention is subsequently focused on the temperature
evolution during a week comparing the results of different
strategies: standard consensus (SC), cluster-based consensus
(CC) and fast cluster-based consensus (FCC) with s̃ =10

3832

18

14
19

17 16
15

01 09
08

10

11
12

13

02

03 04 07

05 06

Room 1

Room 2

Room 3

Room 4

(a)

Day
1 2 3 4 5 6 7 8

T
em

pe
ra

tu
re

 [K
]

285

286

287

288

289

290

291

292

293

294

295

Real
SC
FCC-10
FCC-50
CC

(b)

Fig. 3. Real temperature sensor network. (a) Testbed setup. (b) Results of dynamic estimation with different consensus algorithms.

and s̃ =50. The cluster bound b and the maximum iteration
number kmax are set to 2K and 300 respectively, while the
evaluated measurement intervals are M = 2016 (samples
every 5 minutes).

The results of the dynamic estimation are depicted in
Fig. 3(b). For the sake of clarity, only the trend relevant
to one node (sensor 02) is reported and the real temperature
evolution is computed as the mean of the measurements of
the nodes in the same room at each sampling instant. The
cluster-based approach provides better performance in terms
of estimation accuracy, whereas the standard procedure is
less precise especially in correspondence to abrupt variations.
The more substantial ones are related to the weekend: a rapid
decrease of the temperature can be observed between the
third and fourth day, i.e. on Saturday and Sunday respec-
tively, during which the heating is switched off. Similarly, for
each day is possible to distinguish the daytime and nighttime
hours. In all cases, the cluster-based approaches emerge as
the best solutions for the dynamic estimation.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, a distributed cluster-based consensus algo-
rithm has been proposed to deal with the average consensus
problem in faulty WSANs. Through this procedure, the nodes
in the network are partitioned into clusters according to
measurements similarity and nodes connectivity: in doing
so, faulty sensors remain isolated and do not concur to the
average consensus procedure. This algorithm can also be
integrated into a Kalman filtering framework and allows per-
forming robust distributed estimation of a dynamic quantity.

The results obtained in simulations with a large number of
nodes and different kind of faults show the good performance
of the proposed strategy, also confirmed by the validation on
a real scenario dataset. Further developments are currently
devoted to a more complete assessment of the procedure
also in comparison with other techniques for distributed fault
detection in sensor networks.

REFERENCES

[1] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 138–162, 2007.

[2] C. Chong and S. Kumar, “Sensor networks: evolution, opportunities,
and challenges,” Proceedings of the IEEE, vol. 91, no. 8, pp. 1247–
1256, 2003.

[3] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor
networks: research challenges,” Ad Hoc Networks, vol. 2, no. 4, pp.
351–367, 2004.

[4] K. Romer and F. Mattern, “The design space of wireless sensor
networks,” IEEE Wireless Communications, vol. 11, no. 6, pp. 54–
61, 2004.

[5] W. Ren and R. Beard, “Consensus seeking in multi-agent systems
under dynamically changing interaction topologies,” IEEE Trans. on
Automatic Control, vol. 50, no. 5, pp. 655–661, 2005.

[6] R. Olfati-Saber and R. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Trans. on
Automatic Control, vol. 49, pp. 1520–1533, 2004.

[7] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation
in multi-agent networked systems,” Proceedings of the IEEE, vol. 95,
no. 1, pp. 215–233, 2007.

[8] F. Garin and L. Schenato, “A survey on distributed estimation and
control applications using linear consensus algorithms,” in Networked
Control Systems, ser. Lecture Notes in Control and Information Sci-
ences. Springer London, 2010, vol. 406, pp. 75–107.

[9] W. Li and H. Dai, “Cluster-based distributed consensus,” IEEE Trans-
actions on Wireless Communications, vol. 8, no. 1, pp. 28–31, 2009.

[10] I. Eyal, I. Kedar, and R. Rom, “Distributed data clustering in sensor
networks,” Distributed computing, vol. 24, no. 5, pp. 207–222, 2011.

[11] K. Detroja, R. Gudi, and S. Patwardhan, “A possibilistic clustering
approach to novel fault detection and isolation,” Journal of Process
Control, vol. 16, no. 10, pp. 1055–1073, 2006.

[12] G. Gupta and M. Younis, “Fault-tolerant clustering of wireless sensor
networks,” in IEEE Wireless Communications and Networking (WCNC
2003), vol. 3, 2003, pp. 1579–1584.

[13] X. Zhao, Z. Gao, R. Huang, Z. Wang, and T. Wang, “A fault detection
algorithm based on cluster analysis in wireless sensor networks,” in
Proc. of the 7th Int. Conf. on Mobile Ad-hoc and Sensor Networks
(MSN2011), 2011, pp. 354–355.

[14] F. Pasqualetti, A. Bicchi, and F. Bullo, “Distributed intrusion detection
for secure consensus computations,” in Proc. of the 46th IEEE Conf.
on Decision and Control (CDC2007), 2007, pp. 5594–5599.

[15] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “Solving
consensus in a byzantine environment using an unreliable fault de-
tector,” in Proc. of the Int. Conf. on Principles of Distributed Systems
(OPODIS), 1997, pp. 61–75.

[16] F. Pasqualetti, A. Bicchi, and F. Bullo, “Consensus computation in
unreliable networks: A system theoretic approach,” IEEE Trans. on
Automatic Control, vol. 57, no. 1, pp. 90–104, 2012.

[17] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[18] J. C. Laprie, “Dependable computing and fault tolerance: concepts and
terminology,” in Proc. of 15th Int. Symp. on Fault-Tolerant Computing
(FTSC-15), 1985, pp. 2–11.

[19] G.Bianchin, A.Cenedese, M.Luvisotto, and G.Michieletto, “Dis-
tributed fault detection in sensor networks via clustering and consen-
sus,” in http://paduaresearch.cab.unipd.it/8960/2/TechRep 2015.pdf,
2015.

[20] B. Anderson and J. Moore, Optimal Filtering. Prentice Hall, 1979.
[21] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Distributed kalman

filtering based on consensus strategies,” IEEE Journal on Selected
Areas in Communications, vol. 26, pp. 622–633, 2008.

3833

