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Abstract— The exact pole placement problem concerns com-
puting a feedback gain that will assign the poles of a system,
controlled via static state feedback, at a set of pre-specified
locations. This is a classic problem in feedback control and
numerous methodologies have been proposed in the literature
for cases where a model of the system to control is available.
In this paper, we study the problem of computing feedback
gains for pole placement (and, more generally, eigenstructure
assignment) directly from experimental data. Interestingly, we
show that the closed-loop poles can be placed exactly at
arbitrary locations without relying on any model description
but by using only finite-length trajectories generated by the
open-loop system. In turn, these findings imply that classical
control objectives, such as feedback stabilization or meeting
transient performance specifications, can be achieved without
first identifying a system model. Numerical experiments demon-
strate the benefits of the data-driven pole-placement approach
as compared to its model-based counterpart.

I. INTRODUCTION

Data-driven control methods enable the synthesis of feed-
back controllers directly from historical data generated by
a physical systems, and thus elude the need to construct
or identify a model for the underlying system to control.
Data-driven approaches are especially useful in scenarios
where first-principle models are difficult to derive or the
identification task may lead to numerically-unreliable model
parametrizations [1], [2]. In these cases, data-driven methods
set out a huge potential since controllers can be synthesized
directly from data, and thus possible uncertainties in the
identified model parameters shall not propagate when these
parameters are used for control design.

Data-driven control synthesis is, by now, a well-
investigated area of research (see, e.g., the representative
works [3]–[5]). Despite the availability of several techniques
to synthesize various types of controllers from data, to the
best of our knowledge, the problem of data-driven pole
placement and the (more general) problem of data-driven
eigenstructure assignment via static feedback have not been
studied until now. The classical problem of pole placement
consists in finding a static feedback gain matrix such that the
poles of the closed-loop system are in a set of pre-specified
locations; analogously, the problem of eigenstructure assign-
ment is that of finding a static feedback gain such that the
closed-loop system has a pre-specified set of eigenvalues
and eigenvectors (hereafter named eigenstructure). Motivated
by this background, in this paper we study the data-driven
pole placement problem and the data-driven eigenstructure
assignment problem. Our results show that it is possible
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to place the closed-loop eigenvalues exactly at arbitrary
locations (in this context, “exactly” means that the closed-
loop poles can be placed at exact locations, in contrast with
cases where they can placed within certain regions) by using
formulas that can be applied directly on data. Moreover, our
results show that the data-driven eigenstructure assignment
problem is feasible under the same conditions required for
its model-based counterpart.

Paper contributions. This paper features two main contri-
butions. First, we show that static feedback gains that place
the poles at an arbitrary set of locations can be computed
directly from data collected from finite-length open-loop
control experiments. We remark that our formulas apply
also to cases where the open-loop system is not stable.
We provide an explicit formula to compute the feedback
gain and we show that the problem is always feasible
when the underlying system is controllable. Second, we
study the eigenstructure assignment problem and we provide
a necessary and sufficient condition to check when such
a problem is feasible. Moreover, we provide an explicit
formula to compute feedback gains that assign a pre-specified
eigenstructure. Finally, as a minor contribution, we evaluate
via numerical simulations the benefits of the proposed data-
driven method as compared to model-based approaches.

Related work. Several techniques have been proposed to
synthesize controllers from data while avoiding the need
to identify the system model. Solutions for static feedback
control are studied in [6], [7], the linear quadratic regulator
(LQR) in [3], model predictive control (MPC) in [5], [8],
minimum-energy control laws in [4], trajectory tracking
problems in [9], distributed control problems in [11], and
feedback-optimization controllers are proposed in [10]. Some
extensions to the case of nonlinear systems are presented
in [12], [13]. Most of these methods exploit the ability to
express future trajectories of a linear system in terms of a
sufficiently-rich past trajectory, as shown by the Fundamental
Lemma [14]. With respect to this body of literature, in this
work, we focus on the exact pole-placement problem.

The model-based exact pole placement problem has a long
history; a non-exhaustive list of references includes [15]–
[18]. However, all these classical methods construct on a
model-based description of the system to control; in contrast
with these methods, our focus here is to derive formulas
for pole placement that can be applied directly on data. In
line with this work is the recent contribution [19], where the
authors study the problem of placing the closed-loop poles
in linear matrix inequality (LMI) regions; in contrast, in this
work, we focus on placing the poles at exact locations and,
moreover, we address the eigenstructure assignment problem.



II. PRELIMINARIES

In this section, we recall some useful facts on
behavioral system theory from [14]. Given a signal
(time-series) z : Z → Rσ , and scalars T ∈ Z≥0 ∪ {+∞},
i ∈ Z≥0, i ≤ T , we denote the restriction of z to the interval
[i, i + T − 1] by z[i,i+T−1] := {z(i), . . . , z(i+ T − 1)}
(notice that z[i,i+T−1] is a T -long signal). With a
slight abuse of notation, we will also denote by
z[i,i+T−1] := (z(i), . . . , z(i+ T )) ∈ RσT the vectorization
of the signal z[i,i+T−1], where the distinction will be clear
from the context. Given the T−long signal z[i,i+T−1], we
denote the associated Hankel matrix with L (block) rows by:

HL(z[i,i+T−1]) =


z(i) z(i+ 1) . . . z(i+ T − L)

z(i+ 1) z(i+ 2) . . . z(i+ T − L+ 1)
...

...
. . .

...
z(i+ L−1) z(i+ L) . . . z(i+ T − 1)

 ,

Notice that HL(z[i,i+T ]) ∈ RLσ×(T−L+1). The following
definition is instrumental for our analysis.

Definition 2.1: (Persistently Exciting Signal [14]) The
signal z[i,i+T−1] ∈ Rσ is persistently exciting of order L
if the matrix HL(z[i,i+T−1]) has full row rank σL. □

We note that persistence of excitation implicitly requires that
the number of columns of HL(z[i,i+T−1]) is non-smaller than
the number of rows, or T − L+ 1 ≥ Lσ.

We recall the following properties of linear dynamical
systems subject to a persistently exciting input.

Lemma 2.2: (Fundamental Lemma [14, Thm 1]) Assume
that the linear system x(t+ 1) = Ax(t) +Bu(t) is control-
lable and let (u[0,T−1], x[0,T−1]) be an input-state trajectory
generated by this system. If u[0,T−1] is persistently exciting
of order n+ d, then:

rank

[
H1(x[0,T−1])
Hd(u[0,T−1])

]
= n+ dm.

□

This condition will play a fundamental role in the sequel.

III. PROBLEM SETTING

In this section, we formulate the problem of interest and
discuss existing (model-based) techniques for its solution.

A. Problem formulation

Consider the discrete-time linear time-invariant system:

x(t+ 1) = Ax(t) +Bu(t), (1)

where A ∈ Rn×n and B ∈ Rn×m denote, respectively, the
system and input matrices, and x : Z≥0 → Rn and u :
Z≥0 → Rm denote, respectively, the state and input signals.
We assume that B has full column rank. The behavior of (1)
is governed by the poles of the system, that is, by the
eigenvalues of A. It is often desirable to modify the poles
of the system to obtain certain properties, such as system
stability or a desired transient performance. This can be
achieved by using a state-feedback control law of the form
u(t) = −Kx(t) + v(t), where v : Z≥0 → Rm is a new free

input and K ∈ Rm×n is called feedback gain, which should
be chosen so that the controlled system

x(t+ 1) = (A−BK)x(t) + v(t), (2)

has the desired poles. In line with [15]–[18], we make the
following assumption.

Assumption 1 (Desired set of pole locations): The set of
desired pole locations contains n complex numbers L =
{λ1, . . . , λn} and is closed under complex conjugation. □

The data-driven state-feedback pole placement problem is
then formulated precisely as follows.

Problem 1 (Pole placement): Given a set of complex
numbers L satisfying Assumption 1 and historical data D =
(u[0,T−1], x[0,T−1]) generated by (1), find, when possible, a
matrix K ∈ Rm×n such that the eigenvalues of A−BK are
the elements of the set L. □

Conditions for the existence of solutions to the pole
placement problem are well known [20]: a solution exists
if and only if L contains all uncontrollable modes [20] of
(A,B). Thus, we will make the following assumption.

Assumption 2 (Controllability): All modes of (A,B) are
controllable. □

In the single-input case (m = 1), the solution to Prob-
lem 1, when it exists, is unique [20]. In the multi-input
case 1 < m < n, the feedback gain K that solves the pole
placement problem is in general non-unique. One common
way to select a particular K within the ambiguity set is to
choose the one that assigns the closed-loop eigenstructure:

(A−BK)X = XΛ, (3)

where Λ is an n×n diagonal matrix with spectrum given by
L and X is a non-singular matrix of associated closed-loop
eigenvectors, chosen according to some notion of optimality.
For instance, the authors in [16, Sec. 2.5] show that choosing
a matrix of eigenvectors X that is well-conditioned leads
to pole locations that are robust against perturbations of the
entries of A. Motivated by this, in this paper we consider the
data-driven state-feedback eigenstructure assignment prob-
lem, formulated precisely as follows.

Problem 2 (Eigenstructure assignment): Given a set of
complex numbers L satisfying Assumption 1, a matrix of
linearly independent eigenvectors X, and historical data D =
(u[0,T−1], x[0,T−1]) generated by (1), find, when possible, a
matrix K ∈ Rm×n such that (3) holds. □

B. Existing model-based pole-placement methods

Several formulas have been proposed in the literature
to solve the pole placement and eigenstructure assignment
problems. Next, we will summarize some of the most cele-
brated. In what follows, we denote by M† the Moore-Penrose
inverse of matrix M.

1) Approach in [16, Thm 3]. Let B =
[
U0, U1

] [Z
0

]
with [U0, U1] orthogonal and Z nonsingular. Then,
the following choice satisfies (3):

K = Z−1UT
0 (XΛX−1 −A). (4)



2) Approach in [17, Main Theorem]. Assume that λ(A)∩
λ(Λ) = ∅ and let G and X satisfy AX−XΛ+BG =
0. Then, the following choice satisfies (3):

K = GX−1. (5)

3) Approach in [18, Thm 1]. Let X be an invertible matrix
that satisfies (I − BB†)(XΣ − AX) = 0. Then, the
following choice satisfies (3):

K = B + (XΣX−1 −A). (6)

It is evident from (4)-(6) (see also Remark 3.1) that
to obtain a numerically-reliable K using these formulas,
matrices (A,B) must be known with high precision.

Remark 3.1: It is possible to quantify the sensitivity of the
eigenvalues of A− BK against perturbations of the entries
of A or B as follows. Let λ denote a simple eigenvalue of
M := A − BK with left and right eigenvectors x and y,
respectively. Wilkinson [21] showed that if a perturbation
∆M is made to the entries of M , then there exists a simple
eigenvalue λ̂ of M +∆M such that

|λ̂− λ| ≤ cond(λ,M)∥∆M∥+O(∥∆M∥2),

where cond(λ,M) = ∥x∥∥y∥
|y∗x| denotes the condition number

of λ. Notice that cond(λ,M) ≥ 1 and cond(λ,M) = 1 if
and only if M is a normal matrix, that is MTM = MMT.
Thus, in a first-order sense, perturbations in the entries of A
or B lead to shifts in the eigenvalues of A−BK as amplified
by the condition number of the matrix of eigenvectors X . □

Since matrices (A,B), in practice, must be first identified
from (possibly noisy) historical data before the formulas (4)-
(6) can be applied, a promising way to reduce the sensitivity
of the closed-loop pole locations is to bypass the system
identification process and to develop methods for determin-
ing K directly from the collected data. Motivated by this, the
focus of this paper is on deriving direct formulas for pole
placement from data that do not require the identification of
matrices A and B.

IV. DATA-DRIVEN POLE PLACEMENT

In this section, we will focus on Problem 1. We
will assume the availability of historical data D =
(u[0,T−1], x[0,T−1]) collected over T time intervals generated
by (1). In what follows, we will denote by R{M} the range
space generated by the columns of M and by N {M} the
null space of the columns of M . It will be useful to consider
the following representation of the data:

U0 :=
[
u(0) u(2) . . . u(T − 2)

]
∈ Rm×T−1,

X0 :=
[
x(0) x(1) . . . x(T − 2)

]
∈ Rn×T−1,

X1 :=
[
x(1) x(2) . . . x(T − 1)

]
∈ Rn×T−1.

Theorem 4.1 (Data-driven pole placement): Let
Assumptions 1–2 be satisfied, L = {λ1, . . . , λn}, and
u[0,T−1] be persistently exciting of order n + 1. Then,
there exists a matrix M = [m1, . . . ,mn] ∈ RT−1×n, with
rank(M) = n, that satisfies:

0 = (X1 − λiX0)mi, ∀i ∈ {1, . . . , n}. (7)

Moreover, for any M that satisfies (7), the matrix

K = −U0M(X0M)†, (8)

satisfies det(A−BK − λI) = 0 for all λ ∈ L. □
Proof: To prove existence of M , notice that

(X1 − λiX0)mi =
[
A− λiI, B

] [X0

U0

]
mi. (9)

Since (A,B) is controllable, rank[A − λiI, B] = n and
thus [A − λiI, B] has a nontrivial (m-dimensional) right
null space. Thus, it is sufficient to choose the columns of M
so that: [

X0

U0

]
mi ∈ N {

[
A− λiI, B

]
}. (10)

Since u[0,T−1] is persistently exciting of order n + 1,
Lemma 2.2 guarantees rank[XT

0 , U
T
0 ]

T = n + m, and thus
mi can always be chosen so that (10) holds, thus proving
existence of M . To show that rank(M) = n, notice that

dimN {
[
X0

U0

]
} ≥ mn, (11)

and thus there always exist n linearly independent vectors
mi that satisfy (10).

To prove the second part of the claim, notice that

0 = (X1 − λiX0)mi

= (AX0 +BU0 − λiX0)mi

= (A− λiI)X0mi +BU0mi, (12)

where the last identity follows from X1 = AX0 + BU0,
which holds because X0, X1, U0 are generated by (1). Next,
by using (8) we have −U0mi = KX0mi. In fact, since
rank(M) = n, rank(X0M) = n and thus (X0M)† is a
right inverse of X0M. By substituting this identity into (12)
we obtain:

(A−BK − λiI)X0mi = 0,

which proves the claim.
The formula (8) provides an direct way to determine

feedback gains by performing algebraic operations on the
data and without first identifying (A,B). The condition (7)
specifies a set of linear equations in the unknown M, and
thus M can be determined by using standard linear equation
solvers. Finally, we refer to Section VI for a discussion on
the numerical benefits of utilizing (8) as compared to the
standard model-based pole placement formulas.

V. DATA-DRIVEN EIGENSTRUCTURE ASSIGNMENT

In this section, we will tackle the eigenstructure assign-
ment problem. It is natural to begin by asking ask under what
conditions a given nonsingular matrix X can be assigned as
eigenvectors. The following result addresses this question.

Theorem 5.1 (Feasibility of eigenstructure assignment):
Let Assumptions 1–2 hold, X ∈ Rn×n be a nonsingular
matrix, and assume that the input u[0,T−1] is persistently



exciting of order n + 1. There exists a solution K to (3) if
and only if

∆A := A−XΛX−1 ∈ R{X1

[
X0

U0

]† [
0
Im

]
}. (13)

□
Proof: Notice that (3) holds if and only if

−BK = XΛX−1 −A.

Since K is a free matrix, this holds if and only if the columns
of XΛX−1 − A ∈ R{B}. To characterize R{B}, let z ∈
Rm be arbitrary, and notice that Bz can be expressed as:

Bz =
[
A B

] [0
z

]
=

[
A B

] [X0

U0

]
g, (14)

for some g ∈ RT−1. Here, the last identity follows by noting
that, because u[0,T−1] is persistently exciting of order n+1,

Lemma 2.2 guarantees rank

[
X0

U0

]
= n+m, and thus there

always exists g such that (14) holds. Since g is guaranteed
to exist, any g that satisfies (14) can be expressed as:

g =

[
X0

U0

]† [
0
z

]
+ w, (15)

where w satisfies X0w = U0w = 0. Next, notice that (14)
can be re-expressed as:

Bz =
[
A B

] [X0

U0

]
g = X1g. (16)

By combining (15) with (16), we obtain:

Bz = X1g = X1

[
X0

U0

]† [
0
z

]
+X1w

= X1

[
X0

U0

]† [
0
z

]
+
[
A B

] [X0

U0

]
w

= X1

[
X0

U0

]† [
0
z

]
,

where the last inequality follows from the properties of w.
Hence, we conclude

R{B} = R{X1

[
X0

U0

]† [
0
Im

]
},

which proves the claim.
The theorem provides a characterization of all perturba-

tions ∆A of the open-loop system matrix A that can be
obtained via static feedback: these are all and only the
matrices that belong to the following space:

R{X1

[
X0

U0

]† [
0
Im

]
}.

When the open-loop system matrix A is known, the theorem
also provides a condition to determine whether the eigen-
structure assignment problem admits a solution: the problem
is feasible if and only if A−XΛX−1 belongs to the range
space of the matrix characterized in (13).

Before stating our result, we present the following techni-
cal lemma, which is a direct consequence of [16, Cor 1].

Lemma 5.2: Let Assumptions 1–2 hold, and X ∈ Rn×n

be a nonsingular matrix. Moreover, let xj denote the j-th
column of X , corresponding to the assigned eigenvalue λj ∈
L. Then, xj ∈ Sj , where

Sj = N {UT(A− λjI)},

where the columns of U form a basis for N {B}. Moreover,
the dimension of Sj is:

dim(Sj) = m.

□
We remark that this lemma is of model-based nature, and

thus the provided characterization is of no use when A and U
are unknown. Despite its nature, in what follows we will next
use this lemma for technical purposes (to derive necessary
conditions for the eigenstructure assignment problem to be
feasible and in the proof of the subsequent result). Since the
maximum number of independent eigenvectors that can be
chosen for each assigned eigenvalue is equal to dim(Sj) =
m, it follows that the algebraic multiplicity of the eigenvalue
λj ∈ L to be assigned must be less than or equal to m. The
lemma thus motivates the following assumption.

Assumption 3 (Set of pole locations): The desired pole
locations L = {λ1, . . . , λn} and eigenvectors X satisfy:

1) L is closed under complex conjugation,
2) L contains ν complex numbers with associated alge-

braic multiplicities {m1, . . . ,mν} satisfying m1+· · ·+
mν = n, mi ≤ m for all i ∈ {1, . . . , ν},

3) pairs of complex conjugate poles with λi = λ∗
j satisfy

mi = mj ,
4) X is such that the desired (A−BK) is non-defective

(i.e., it admits n linearly independent eigenvectors). □

With this technical assumption, we now provide the fol-
lowing formula for eigenstructure assignment.

Theorem 5.3 (Data-driven eigenstructure assignment):
Let Assumptions 1–3 be satisfied, L = {λ1, . . . , λn}, and
u[0,T−1] be persistently exciting of order n + 1. Then,
there exists a matrix M = [m1, . . . ,mn] ∈ RT−1×n, with
rank(M) = n, that satisfies:

0 = (X1 − λiX0)mi, ∀i ∈ {1, . . . , n},
X = X0M, (17)

Moreover, for any M that satisfies (7), the matrix

K = −U0M(X0M)† (18)

satisfies (3). □
Proof: We begin by proving the existence of M . By

iterating the steps in (9)–(10) for the first condition in (17),
we conclude that that a matrix M that satisfies (17) exists if
and only if the following two conditions hold simultaneously:[

X0

U0

]
mi ∈ N (

[
A− λiI, B

]
), xi = X0mi,



where xi denotes the i-th row of X . Since Lemma 5.2
guarantees that xi ∈ N {B} and (11) holds, we conclude
that there exists at least n linearly independent vectors that
satisfy (17). To prove the second part of the claim, notice:

0 = (X1 − λiX0)mi = (AX0 +BU0 − λiX0)mi

= (A− λiI)X0mi +BU0mi,

where the last identity follows from X1 = AX0 + BU0,
which holds because X0, X1, U0 are generated by (1). Next,
by using (8) we have −U0mi = KX0mi. In fact, since
rank(M) = n, rank(X0M) = n and thus (X0M)† is a right
inverse of X0M. By substituting this identity into (12):

(A−BK − λiI)X0mi = 0,

from which λi is an eigenvalue of A−BK with eigenvector
X0mi. The conclusion follows using X = X0M.

The formula (18) provides an explicit way to determine
feedback gains that assign the desired eigenstructure by
performing algebraic computations on the data. Notice that,
with respect the conditions required for pole placement (7),
assigning the eigenstructure imposes n2 additional con-
straints on matrix M, described by X = X0M . We remark
that, similarly to (7), condition (17) specifies a set of linear
equations in the unknown M, and thus M can be determined
by using standard linear equation solvers.

VI. NUMERICAL ANALYSIS

In this section, we illustrate the methods via numerical
simulations on two test problems. First, we apply the for-
mulas to stabilize the dynamics of a chemical reactor and,
second, we compare the accuracy of the data-driven formulas
with respect to a model-based approach.

Consider the following linear model describing a chemical
reactor and obtained by discretizing [16, Example 1] with
unitary sample time:

A =


6.9771 2.0379 5.0672 −2.2212
−0.6941 −0.0434 −0.4738 0.3425
0.2048 0.9081 0.3159 0.6172
−0.5082 0.7106 −0.2000 0.8531

 ,

BT =

[
4.8874 1.4777 5.0448 4.6020
−6.5545 0.5230 −1.1389 −0.1133

]
. (19)

This system is unstable and the open-loop eigenvalues are:

eig(A) = {7.0162, 1.0798, 0.0002, 0.0065},

and thus state feedback is required to stabilize the system.
Therefore, we move two of the unstable modes into the
unitary circle, keeping the original stable modes. We thus
assign the set: L = {0.5, 0.3, 0.0002, 0.0065}. Historical
data (u[0,T−1], x[0,T−1]) is generated by simulating the open-
loop system for T = 10 time steps by applying i.i.id.
Gaussian noise as the input signal and starting from zero
initial conditions. The feedback gain obtained as in (8)
using the built-in fsolve routine in Matlab R2022a to
solve (7) is:

K =

[
−0.1758 −1.3970 2.8668 −2.4679
−0.4441 0.2711 4.9848 −4.9424

]
, (20)
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Fig. 1. Simulations comparing the accuracy of the closed-loop pole
locations when (8) is applied to open-loop data generated by a stable system
(green line) and an unstable system (orange dashed line), for different values
of the signal length T . Data for the unstable system has been generated by
simulating the chemical reactor (19), while the data for the stable system has
been generated by a pre-stabilized reactor model. The simulation illustrates
that (8) is more accurate by several orders of magnitude when applied to
data generated by a stable system.

leading to the closed-loop eigenvalues:

eig(A−BK) = {0.4999, 0.3001, 0.0002, 0.0066}.

We interpret the error between the desired pole locations in
L and the spectrum of A−BK as a numerical error due to
the poor conditioning of the regression problem (7) resulting
from the use of data generated by an unstable system (whose
state diverges over time). For example, after t = 10 time
steps, we observed ∥x(10)∥ = 1.254×105, which makes the
regression matrix in (7) numerically unreliable. To further
illustrate this fact, Fig. 1 compares the accuracy of the
closed-loop eigenvalues when (8) is applied to data generated
by an unstable system (orange lines) and when, instead,
it is applied to data generated by a stable system (green
lines). The latter is obtained by first stabilizing (19) with
u(t) = −Kx(t) + v(t) using K given as in (20) and,
subsequently, by using the input v(t) = −K2x(t) (see (2))
with K2 obtained by applying (8) to data generated by
A − BK. As illustrated by the figure, the accuracy of the
resulting pole locations deteriorates for increasing values of
T (i.e., by using increasingly-long trajectories) when (8) is
applied to data generated by an unstable system and, on
the other hand, the poles accuracy remains high when (8)
is applied to data generated by a stable system.

Next, we compare the accuracy of the closed-loop pole
locations obtained using the data-based formula (8) with
those obtained using a model-based pole placement formula,
applied to an identified model. In both cases, the methods
are applied to noisy data, and we conducted Montecarlo
simulations by averaging over 100 experiments. To this aim,
we generated noisy data by simulating:

x(t+ 1) = A0x(t) +B0u(t) + e(t),

with x(0) ∼ N (0, In), u(t) ∼ N (0, Im), e(t) ∼
N (0, σ2

eIn), and the matrices A0 and B0 have been chosen
randomly and such that the modulus of all the eigenvalues
of A0 is inside the unit circle and (A0, B0) is controllable,
with m = ⌊n/2⌋. We identified (A0, B0) from noisy data by
solving the least-squares problem:[

A B
]
∈ arg min

[A,B]
∥X1 −

[
A B

] [X0

U0

]
∥F.
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Fig. 2. Montecarlo simulation comparing the accuracy of (8) when
applied to noisy data with Gaussian distribution and three different levels
of variance: σ2

e = 1 (top), σ2
e = 10 (middle), and σ2

e = 100 (bottom). The
results suggest that the higher the noise variance, the more the data-driven
formula becomes preferable over a model-based pole placement approach.

The set L has been chosen so that its entries are uniformly
distributed in the real interval [−n, n] and, for the model-
based pole placement, we determined the feedback gain
K using the built-in place routine in Matlab R2022a.
Fig. 2 compares the accuracy of the closed-loop pole loca-
tions obtained by using a model-based placement formula
and the data-based formula (8) for increasing values of the
state space size n. As illustrated by the figure, the pole
locations obtained using the data-based formula (8) are more
accurate by about one order of magnitude for all considered
values of n. Moreover, by comparing the results for three
different choices of the noise variance: σ2

e = 1 (top), σ2
e = 10

(middle), and σ2
e = 100 (bottom), the numerics suggest the

higher the noise variance, the more the data-driven approach
becomes preferable over the model-based one.

VII. CONCLUSIONS

In this paper, we derived data-driven formulas to compute
static feedback gains matrices that assign arbitrarily the
eigenstructure of a linear dynamical system. By leveraging
the linearity of the dynamics and a persistence of excitation
condition, we showed for the first time that the closed-loop

eigenstructure can be assigned exactly. Further, we illustrated
the benefits of the data-driven methods, as compared to
the model-based counterpart, through a set of numerical
simulations, which showcase the numerical robustness of
the approach, especially in the presence of noise in the
measured data. This paper also opens several directions for
future research, including an analytical investigation of the
sensitivity of the closed-loop pole locations in the presence
of noise in the data, and the extension to cases where the
open-loop system contains uncontrollable modes.
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