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Abstract: We revisit here a landmark five-parameter SIR-type model, which is maybe the simplest
example where a complete picture of all cases, including non-trivial bistability behavior, may be
obtained using simple tools. We also generalize it by adding essential vaccination and vaccination-
induced death parameters, with the aim of revealing the role of vaccination and its possible failure.
The main result is Theorem 1, which describes the stability behavior of our model in all possible
cases.
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1. Introduction

Motivation. This paper has the dual purpose of providing a short guide to students
of deterministic mathematical epidemiology, among which we count ourselves, and to
simultaneously illustrate the technical work one is faced with in an elementary, but not
simple “exercise”. Of course, one can easily find at least five must-read excellent textbooks
and theses surveying this field (with different emphases, e.g., epidemiological, stability, or
control); see, for example, the Refs. [1–8], and also at least a hundred major papers which
are a must-read. We hope, however, that our little guide may help future students decide
the order in which these materials must be assimilated.

A bit of history. Deterministic mathematical modelling of diseases started with the
works of Ross on malaria, and imposed itself after the work of the Ref. [9] on the Bombay
plague of 1905–1906. This was subsequently followed by works on measles, smallpox,
chickenpox, mumps, typhoid fever, and diphtheria (see, for example, [10]), and recently, the
COVID-19 pandemic (see, for example, the Refs. [11–23], to cite just a few examples within
the wide range of literature). Note that at its beginning, mathematical epidemiology was a
collection of similar examples dealing with current epidemics (the first precise mathematical
framework for the field which we are aware of is in the recent paper, [24]).

The literature on deterministic mathematical epidemiology may be divided into
three streams.

1. “Constant total population” models are the easiest to study. However, since death is
an essential factor of epidemics, the assumption of a constant total population (clearly
a short-term or very large population approximation) deserves some comment. One
possible rigorous justification for deterministic constant population epidemiological
models comes from slow–fast analysis [25–27]. This is best understood for models
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with demography (birth, death), which typically happen on a slower scale than the
infectious phenomena. Here there is a natural partition of the compartments into
a vector~i(t) ∈ R−+ of disease/infectious compartments (asymptomatic, infectious,
hospitalized, etc). These interact (quickly) with the other input classes, such as the
susceptibles, and output classes, such as the recovered and dead.
For “constant total population” models, the total population N clearly plays no role,
and one may use the assumption that the rate of infection is independent of N, of
the form βS(t)I(t) (which was called pseudo, or simple mass-action incidence [28]).
Note that this simplification of the rate of infection (adopted in the majority of the
literature) is inappropriate for varying population models.

2. Models with a constant birth rate (in the analog stochastic model, this would corre-
spond to emigration). These models include the previous class, and preserve some of
its nice features, like the uniqueness of the endemic fixed point. They typically satisfy
the “R0 alternative”, established via the next-generation matrix approach, and also
the fact that the endemic point exists only when R0 > 1—see [29] for a recent and
well-written review of several stability results for these classes of models.

3. Finally, we arrive at the class our paper is concerned with—models with linear birth
rates, ΛN (or a constant birth rate per capita in the analog stochastic model), varying
total population N, and a “proportionate mixing” rate of infection:

βS(t)
I(t)
N(t)

.

As far as we know, this stream of literature was initiated by the Refs. [30,31], and
allows the possibility of bi-stability whenR0 < 1 (absent from the previous models),
even in a SIR example with five parameters [32]. (This reveals that for an initially high
number of infectives, the trajectory may lie in the basin of attraction of a stable endemic
point instead of being eradicated. The discrepancy with what is expected from the
corresponding stochastic model suggests that the deterministic model is inappropriate
in this range.)
This last stream of literature is quite important, since a constant birth rate per capita is
a natural assumption.

Despite further remarkable works on particular examples—see, for example, the
Refs. [33–39] (which preferred all direct stability analyses to the next-generation matrix ap-
proach)—the literature on models with varying total populations, unlike the two preceding
streams, has not yet reached a general result.

To understand this failure, it seemed to us a good idea to revisit an important SIR
model with disease-induced deaths and loss of immunity [32,35]. These important works
already illustrate some of the complexities which may arise for varying population models,
particularly the possibility of bi-stability when R0 < 1. This surprising fact led us to
introduce the concept of strong global stability of the DFE (disease-free Equilibrium), and
to find conditions for this to hold in our example (see Proposition 4). Since the method
used is simply linear programming, we hope to extend this in future work.

Our model. We further added to the extension of the Ref. [9] introduced in vaccina-
tions of the Ref. [32,35]. Grouping together the recovered and vaccinated, our “SIR/V+S”
model is described by:
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S′(t) = ΛN(t)− β

N(t)
S(t)I(t)− (γs + µ)S(t) + γrR(t),

I′(t) = I(t)(
β

N(t)
S(t) +

βr

N(t)
R(t)− γ− µ− νi),

R′(t) = γsS(t) + γI(t)− (γr + µ + νr)R(t)− βr

N(t)
R(t)I(t),

D′(t) = µ(S(t) + I(t) + R(t)),

D′e(t) = νi I(t) + νrR(t),

N′(t) = (S(t) + I(t) + R(t))′ = (Λ− µ)N(t)− νi I(t)− νrR(t).

(1)

It involves six states: S : R≥0 → N>0 describing the number of susceptible individuals
in the population, I : R≥0 → N>0 describing the number of infections, R : R≥0 → N>0
describing the number of recovered or vaccinated, D : R≥0 → N>0 describing the number
of natural deaths in the population, De : R≥0 → N>0 describing the number of deaths
originated by the disease, and N : R≥0 → N>0 describing the total number of (alive)
individuals in the population.

The parameters Λ ∈ R≥0 and µ ∈ R≥0 denote the average birth and death rates in
the population (in the absence of the disease), respectively, γs ∈ R≥0 is the vaccination
rate, γr ∈ R≥0 denotes the rate at which immune individuals lose immunity (this is the
reciprocal of the expected duration of immunity), γ ∈ R>0 is the rate at which infected
individuals recover from the disease, νi ∈ R≥0 is the extra death rate due to the disease,
and νr ∈ R≥0 is the average death rate in the recovered/vaccinated compartment (due to,
e.g., deaths caused by the vaccine). Note that in what follows, we use the notation γc to
denote the total rate at which individuals leave a certain compartment C towards other
non-deceased compartments, and we use νc to denote the rate at which individuals leave
compartment C towards a deceased compartment.

In (1), susceptible individuals become infected at rate β
N(t) I(t) (thus moving to the I

compartment), they are vaccinated at rate γs (thus moving to the R compartment), and
deaths occur at rate µ (thus moving to the D compartment); infected individuals recover
at rate γ (thus moving to the R compartment), die of non-disease related causes at rate
µ (thus moving to the D compartment), and die of disease-related causes at rate νi (thus
moving to the De compartment); recovered individuals lose immunity at rate γr (thus
moving to the S compartment), die of non-disease-related causes at rate µ (thus moving
to the D compartment), die of disease-related causes at rate νr, and become re-infected
at rate βr

N(t) I(t) (thus moving to the I compartment) (see Remark 1 for a discussion on
re-infections).

Note that D, De are completely determined once the other classes are found. These
“output classes” will not be mentioned further (since they are only relevant in control
problems, which are outside our scope). The dynamics of I, the disease class, allows to
compute the basic reproduction number via the next-generation matrix method. Finally,
the input classes S, R determine the disease-free Equilibriumby themselves. We will analyze
the research content based on Figures 1–6.
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Figure 1. Parametric (s, i) plots of the scaled epidemic (9) and its FA (12) and intermediate ap-
proximations for a SIR-type model with one infectious class, starting from a starting point SP
with i0 = 10−6,R = 3.21, critical vaccination 0.622222, and γs = 0.01. The other parameters are
β = 5, γ = 1/2, Λ = µ = 1/10, γr = 1/6, νi = 0.9, νr = 0. EESc, EEIn, EEFOA are the stable
endemic points of the scaled model, intermediate model, and the FA model, respectively. The green
vertical line denotes the immunity threshold 1/R = sEEFOA = sEEIn. Note that the epidemic will
at first spend a long time (since births and deaths have slow rates as compared to the disease) in
the vicinity of the manifold~i(t) = 0, where the three processes are indistinguishable, before turning
towards the endemic equilibrium point(s).
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Figure 2. Stream plots of (s, i) for the scaled model (13) illustrating the case when γs is less than the
critical vaccination γ∗s defined in (24), EE1 is a stable equilibrium point, DFE is a (boundary) saddle
point, and EE2 is outside the domain.
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Figure 3. Stream plots of (s, i) when γs > 0, in four cases whenR0 > 1. The DFE is a saddle point and
EE is a stable sink. (a) β = 5 > βr = 4 > 3 = Λ + γ + νi = 1 + 1 + 1, γr = 1, γs = 1 > γ∗s ⇔ sB >

1, β > βr > γ + νi + Λ. (b) βr = 4 > β = 3.5 > 0.21 = Λ + γ + νi = 1 + 1 + 0.1, γr = 1/6, γs = 0.01.
(c) B, A ∈ D, with β = 0.3 > 0.21 = Λ + γ + νi = 0.01 + 0.05 + 0.15 > βr = 0.1, γr = 1/26, γs. =
0.015 < γ∗s ⇔ sB < sd f e. (d) B, C ∈ D, with R0 = 1.04762 > 1, β = 2 < Λ + γ + νi = 1 + 1 + 1 =

3 < βr = 4, γr = 1/2, γs = 2 > γ∗s ⇔ sB > sd f e.

Remark 1. Models of the form (1) that account for non-constant population sizes can be especially
useful in two scenarios: (i) to study diseases that remain infectious for long periods of time with a
small disease mortality rate, where the natural death/birth rate of the population plays a central role
(such as HIV/AIDS, malaria and tuberculosis), as well as (ii) to study diseases with short infectious
periods but with a substantial disease mortality rate, where the death rate due to the disease plays a
central role (such as measles, influenza, SARS/COVID).

The two-way transfers between the recovered and infected compartments (recall that R
βr
�
γ

I).

can be used to account for multiple variants of the disease, whereby immunity to one variant does not
guarantee immunity to all other variants. For instance, diseases such as HIV can develop resistance
to medications, and such resistance can be transmitted to a partner. In these cases, even when the
second party has recovered, it may become re-infected with a different variant. Notice that an even
more general case is considered in the Ref. [35], where vaccinated individuals may transition to the
infected compartment.
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Figure 4. Stream plots of (s, i) when γs > 0, in six cases when R0 < 1. The DFE is the only stable
sink in the boundary of the domain, with the exception of case (d), when EE1 = (0.313823, 0.428942)
is a second sink, and EE2 = (0.799177, 0.0406582) is a saddle point. (a) R0 = 0.952381 < 1, β =

4, βr = 2, Λ + γ + νi = 1 + 1 + 1 = 3, β
(+)
r = 1.625, γr = 1/2, γs = 2, βr < Λ + νi + γ < β, νi <

β, βr > β
(+)
r , and γs > γ∗s ⇔ sB > sd f e. (b) β = 0.03, βr = 0.25, Λ + γ + νi = 0.03 + 0.07 + 0.06 =

0.16, β
(+)
r = 0.0219597, γr = 0.03, γs = 0, 02, β < νi < Λ + νi + γ < βr, βr > β

(+)
r , and γs < γ∗s ⇔

sB < sd f e. (c) β = 0.1, βr = 0.3, Λ + γ + νi = 0.03 + 0.07 + 0.05 = 0.15, β
(+)
r = 0.729883, γr =

0.03, γs = 0, 02, νi < β < Λ + νi + γ ≤ βr, βr < β
(+)
r , and γs < γ∗s ⇔ sB < sd f e. (d) β = 0.2, βr =

0.4, Λ + γ + νi = 0.01 + 0.07 + 0.15 = 0.23, β
(+)
r = 0.327443, γr = 10−4, γs = 0, 002, νi < β <

Λ + γ + νi < βr, βr ≥ β
(+)
r , and sB < sd f e. (e) Λ + γ + νi = 1 + 2.1 + 0.1 = 3.2 > βr = 3.1 > β =

3, γr = 0.1, γs = 0.3, β < βr < Λ + γ + νi, and β > νi. (f) Λ + γ + νi = 1 + 1 + 2.5 = 4.5 > β =

0.5 > βr = 0.25, γr = 1, γs = 1, βr < β < Λ + γ + νi, and β < νi.

Remark 2. In practical situations, certain parameter relations, for instance, βr > β, νr > νi, might
seem “unreasonable from a medical point of view”. In what follows, we choose not to assume any
relationship among the parameters in (1) in order to highlight the fact that surprising mathematical
behaviors, such as bistability—see Figure 4d—may arise when “things go wrong”.

We now make several remarks which serve as an appetizer for the rest of the paper.

Remark 3. The critical value β = βr defines a model where both the sickness and the vaccination
do not affect the infectivity (neither confers any immunity). The recovered class might be better
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viewed, then, as a susceptible class So of older individuals, with extra mortality rate νr > 0 and
no births:

S′(t) = ΛN(t)− β

N(t)
S(t)I(t)− (γs + µ)S(t) + γrSo(t),

S′o(t) = −
β

N(t)
So(t)I(t)− (γr + µ + νr)So(t) + γsS(t) + γI(t),

I′(t) = I(t)(
β

N(t)
(S(t) + So(t))− γ− µ− νi).

A moment of reflection reveals that this particular case has two surprising features: (a) after
the infection is over, transfers only occur towards the old class, So, and (b) transfers between the two
age groups occur; it is hard to make sense of this without further imposing γs = γr = 0.

0.1 0.2 0.3
β

0.2

0.4

0.6

0.8

1.0

i*

β*νi β2

EE1 stable sink

EE2 saddle point

DFE stable

DFE unstable

i=β

Figure 5. Diagram bifurcation with respect to β, in the case max[Λ + γ + νi, β
(+)
r ] < βr. For β < νi

we are in the case of Figure 4b (Theorem 1(2(b))), with the immunity line to the left of the hyperbola,
and no endemic points. The same situation occurs for νi < β < β2, where β2 is the largest root of
∆(β) = 0, except that the hyperbola changes to convex—see Figure 4c (Theorem 1(2(c)(i))). After
β2, two endemic points emerge—see Figure 4d (Theorem 1(2(c)(ii))). The lower endemic point exits
through the boundary i = 0 at β∗, defined in (31), after which the remaining endemic point remains
the only stable point.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

s

i

DFE
EEFOA

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

s

i

DFE

Figure 6. Stream plots of (s, i) for the FA model when γs ∈ {1/100, 3} is smaller and bigger,
respectively, than the critical vaccination γ∗s = 0.239087 defined in (25).

Remark 4. When βr = 0, our model is an example of the matrix-SIR Arino model with a linear
birth rate, a class of models for which only few general results are available [40].
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In what follows, we will investigate the stability properties of an equivalent system to
(1) obtained by investigating the normalized quantities s = S

N , i = I
N , r = R

N and given by
(see Proposition 1, Section 2 for a detailed derivation).

s′(t) = Λ + γrr(t)− (βi(t) + γs) s(t) + s(t)(−Λ + νii(t) + νrr(t)),
i′(t) = i(t)[β s(t) + νii(t) + (νr + βr)r(t)− (γ + νi + Λ)],
r′(t) = γi(t) + γs s(t)− (γr + Λ + νr)r(t) + r(t)(−βri(t) + νii(t) + νrr(t)),
s(t) + i(t) + r(t) = 1.

Remark 5. Note that this reduces to the classic SIR model [9] when Λ = νi = νr = γr = γs =
βr = 0.

Remark 6. Factoring the second equation reveals the threshold after which the infection starts decreasing:

β s(t) + νii(t) + (νr + βr)r(t) < Λ + γ + νi (2)

herd immunity (s, i) line, or max-line (line since r = 1− s− i). Notice that, in contrast with
the case of models with a constant population size and no loss of immunity where the herd immunity
condition depends only on the susceptible state, the above condition depends on three states (s, i, r).
Additionally, when νi = νr = βr = 0, this reduces to the well-studied herd immunity threshold.

(1) The inequality obtained at the DFE, when i = 0,

βsd f e + (νr + βr)rd f e ≤ Λ + γ + νi ⇔
βsd f e + (νr + βr)rd f e

Λ + γ + νi
:= R0 < 1 (3)

turns out to ensure the local stability of the disease-free equilibrium (disease-free Equilibrium)–see
Section 3.1.

(2)R0 introduced above coincides with the famous basic reproduction number defined via the
next-generation matrix approach.

(3) The disease-free equilibrium (obtained by plugging i = 0, r = 1− s in the fixed point
equation) is such that

sd f e :=
Λ + γr

Λ + γr + γs
∈ [0, 1], sd f e = 1⇔ γs = 0 (4)

Remark 7. (A) The equalityR0 = 1 is linear in γs and yields the so-called “critical vaccination”

γ∗s = (Λ + γr)
β− (Λ + γ + νi)

Λ + γ + νi − βr
, (5)

provided that the denominator does not blow-up.
This formula is positive if either βr ≤ Λ + γ + νi ≤ β, or β ≤ Λ + γ + νi ≤ βr. When

βr = 0, we recover a classical critical vaccination formula

γ∗s = (Λ + γr)(R− 1),R =
β

Λ + γ + νi
. (6)

(B) The equalityR0 = 1 is also linear in β and yields a “critical contact rate”

β∗ =
(γ + νi + Λ)(Λ + γr + γs)− βrγs

Λ + γr
. (7)

It may be checked that at this critical value, the value iee of the infectious at the lower endemic
point crosses the i = 0 axis, and may reduce the number of endemic points from 3 to 2—see Figure 5
for details.
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Contents. Section 2 reviews the dimension reduction available for the proportions of
models with a linear birth rate, and emphasizes the fact that the well-studied deterministic
model is an approximation of the model with a linear birth rate studied here. A second,
finer “intermediate approximation” is introduced as well.

Section 3.1 computesR0 via the next-generation matrix approach (NGM), thereby estab-
lishing the well-known weakR0 alternative [41]; it also introduces the concept of “strong global
stability” of the DFE in Proposition 4, which may be useful for more advanced models.

The endemic equilibria are discussed in Section 4.
Section 5 identifies more precisely, in the particular case νr = 0, the case when global

stability does not hold. The results heavily involve the vaccination parameter γs and its
critical value. The increased complexity of the model forces a geometric approach, already
hinted at in [Section 4] of [32]. This ends up in the consideration of 10 cases, one of which,
Theorem 1(2(c)), remains only partly resolved.

Section 6 discusses the particular case γs = 0, generalizing and providing missing
details of the results in [Section 4] of [32].

Section 7 gives simpler results for the first approximation FA (actually for a slightly
more general “classic/pedagogical model”).

Finally, Section A provides the proof of a technical result, and Section 8 reviews the
pillar of deterministic epidemic models: the definition of the basic reproduction number
via the next-generation matrix method.

2. Dimension Reduction for the SIR/V+S Model with Linear Birth Rate

It is convenient to reformulate (1) in terms of the normalized fractions

s =
S
N

, i =
I
N

, r =
R
N

. (8)

This process, sometimes called “non-dimensionalizing” (see for example [42]), allows
us to provide the following equivalent representation of (1).

Proposition 1. Let s, i, r be as defined in (8). Then, the dynamics (1) can be equivalently rewritten
as:

s′(t) = Λ + γrr(t)− (βi(t) + γs) s(t) + s(t)(−Λ + νii(t) + νrr(t)),

i′(t) = i(t)[β s(t) + νii(t) + (νr + βr)r(t)− (γ + νi + Λ)],

r′(t) = γi(t) + γs s(t)− (γr + Λ + νr)r(t) + r(t)(−βri(t) + νii(t) + νrr(t)),

s(t) + i(t) + r(t) = 1.

(9)

Proof. By using
N′(t)/N(t) = (Λ− µ)− νii(t)− νrr(t), (10)

we obtain for the susceptibles:

s′(t) =
S′

N
− N′

N2 S

=
Λ(N)

N
− βS(t)I(t)

N2 +
γrR(t)− (µ + γs)S(t)

N
− S(t)

(Λ− µ)− νii(t)− νrr(t)
N

= Λ(1− s(t))− β s(t)i(t) + γrr(t) + s(t)(µ + νii(t) + νrr(t)− µ− γs)

= Λ− β s(t)i(t) + γrr(t)− (γs + Λ) s(t) + s(t)(νii(t) + νrr(t)).
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Similarly,

i′(t) =
I′

N
− N′

N2 I = β s(t)i(t)− (γ + µ + νi)i(t)− I(t)
(Λ− µ)− νii(t)− νrr(t)

N
= −i(t)Λ + i(t)(β s(t) + βrr(t))− (γ + µ + νi)i(t) + i(t)(µ + νii(t) + νrr(t))
= i(t)[β s(t) + νii(t) + (βr + νr)r(t)− (Λ + γ + νi)],

and

r′(t) =
R′

N
− N′

N2 R

= γi(t) + γs s(t)− (γr + µ + νr)r(t)− R(t)
(Λ− µ)− νii(t)− νrr(t)

N
= γi(t) + γs s(t)− (γr + Λ + νr)r(t) + r(t)(−βri(t) + νii(t) + νrr(t)).

Finally, s(t) + i(t) + r(t) = 1 follows from N′(t) = (S(t) + I(t) + R(t))′ by substitut-
ing (8), which proves the equivalence between (1) and (9). �

Remark 8. Note that the natural death rate µ does not intervene in (9), which is to be expected.
Indeed, since this rate is the same for all the compartments, it has no effect on the fractions.

Remark 9. Note that the conservation equation

n := s+ i+ r = 1,

in general, does not follow from the first three equations in (9). Indeed, by summing up the right-hand
sides, we have:

n′(t) = [1− s(t)− r(t)− i(t)](Λ− νii(t)− νrr(t)),

which shows that n′(t) 6= 0 in general cases. However, the above differential equation guarantees
that if s(t0) + i(t0) + r(t0) = 1 for some t0 ∈ R≥0, then s(t) + i(t) + r(t) = 1 for all t ≥ t0.
Accordingly, the manifold

D := { s+ i+ r = 1, s ≥ 0, i ≥ 0, r ≥ 0}

is forward-invariant, since the flow along its boundaries is directed towards the interior—see [35]
(this reduction of the state space is important, since otherwise we get an additional fixed point
obtained from the first factor above, which turns out not to satisfy the conservation equation, and
makes no sense from an epidemiologic point of view). Note that the conservation equation may
replace either the last or the first equation in the dynamics, and allows to reduce the computation of
fixed points to dimension 2.

The study of the dynamics in Proposition 1 is quite challenging, and it may sometimes
be useful to also consider the two approximations introduced in the following definition.

Definition 1. Let Φs, Φi, Φr ∈ {0, 1} and let

s′(t) = Λ− β s(t)i(t) + γrr(t)− (γs + Λ) s(t) + Φs s(t)(νii(t) + νrr(t)),

i′(t) = i(t)[β s(t) + βrr(t)− (γ + νi + Λ)] + Φii(t)(νii(t) + νrr(t)),

r′(t) = γi(t) + γs s(t)− (γr + Λ + νr)r(t)− βrr(t)i(t) + Φrr(t)(νii(t) + νrr(t)),

s(t) + i(t) + r(t) = 1.

(11)

1. The model (11) with Φs = Φi = Φr = 1 will be called the scaled model (SM).
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2. The model (11) with Φs = Φi = Φr = 0 will be called the first approximation (FA) in the
specific case of Λ = µ. The FA is thus:

s′(t) = Λ− β s(t)i(t) + γrr(t)− (γs + Λ) s(t),

i′(t) = i(t)[β s(t) + βrr(t)− (γ + νi + Λ)],

r′(t) = γi(t) + γs s(t)− (γr + Λ + νr)r(t)− βrr(t)i(t),

s(t) + i(t) + r(t) = 1. (12)

3. The model (11) with Φs = Φr = 1 and Φi = 0 will be called an intermediate approxima-
tion (IA).

Remark 10. Each model, particularly SIR/V+S, has a SM, FA, and IA version, which will be
denoted by SIR/V+S-SM, SIR/V+S-FA, and SIR/V+S-IA.

Remark 11. The FA is not a constant population model when νc > 0, for some compartment c.

Remark 12. It follows from N′(t)/N(t) = (Λ − µ) − νii(t) − νrr(t) that N′(t) = 0 for all
t ∈ R≥0 if, and only if µ = Λ and νi = νr = 0. Thus, the popular assumption of constant
population size [43] applies only to epidemics without extra deaths, which contradicts the essence of
most epidemics [5]. Clearly, constant population papers have in mind some large N or short-term
approximation, but this is rather vague. On the other hand, the FA approximation (12) with µ = Λ,
as well as IA, may be heuristically justified as approximations obtained by ignoring certain quadratic
terms in (9). This justifies studying FA without restrictive assumptions like νi = 0.

Remark 13. A considerable part of the epidemics literature has studied (1) with N(t) = 1 (this
produces an analog of (12) with µ 6= Λ). The justification for studying this model is of course an
assumption that N is “approximately constant”. The purpose of our paper is not to assume that;
however, we chose to include results about them, under the name of “classic/pedagogic models”
(PM), to be in line with this part of the literature. As explained, we need here only results on the
FA model (which approximate the object of interest to us (9)), and these may be easily recovered by
replacing µ with Λ.

We conclude this section by illustrating in Figure 1 a comparison between the tra-
jectories of the first approximation, of the intermediate approximation, and of the scaled
model. Note that the approximate dynamics are an accurate approximation of the SM at
the beginning of the epidemic (i.e., when i(t) ≈ 0). This period starts with the lower part
in Figure 1, and continues until the processes start turning towards their distinct endemic
points—see [26] for a rigorous slow–fast analysis of similar models. (On the other hand, in
real-life controlled epidemics, for example via ICU constraints (see [44,45], etc), one has, at
least for the French situation with 400 positives out of 100,000 individuals (which is still
4 to 10 times the admissible figures for Japan or other countries), that imax ≈ 0.004. Thus,
one may argue that if state upper constraints are imposed, i ≈ 0 for all time, not just the
beginning.

The Disease-Free System and Its Equilibria

It is convenient to eliminate r from s + i + r = 1, and work with the following
two-dimensional scaled dynamic{

s′(t) = Λ− s(t)i(t)(β− νi)− (γs + Λ) s(t) + (γr + νr s(t))(1− s(t)− i(t))
i′(t) = i(t)[ s(t)β + νii(t) + (νr + βr)(1− s(t)− i(t))]− i(t)(Λ + γ + νi),

(13)

defined on the positively invariant region [35]

D = {(s, i), s ≥ 0, i ≥ 0, s + i ≤ 1}.
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See Figure 2.
The fixed points are the solutions of{

s[νr s+ i(β− νi + νr) + Λ + γs + γr − νr] + iγr − (Λ + γr) = 0
i[ s(β− νr − βr) + (νi − νr − βr)i+ νr + βr − (Λ + γ + νi)] = 0.

(14)

The disease-free system ( with i = 0, r = 1− s) reduces to

s′(t) = Λ− (γs + Λ) s(t) + (γr + νr s(t))(1− s(t))

= Λ + γr − (γs + γr + Λ− νr) s(t)− νr s(t)2,
(15)

and its fixed points are such that s satisfies the equation{
Λ + γr − s[νr s+ Λ + γr + γs − νr] = 0 νr > 0
s[Λ + γr + γs]− (Λ + γr) = 0 νr = 0

.

One root

sd f e =


Λ+γr

Λ+γr+γs
νr = 0√

∆d f e−(Λ+γr+γs−νr)

2νr
, ∆d f e = 4νr(Λ + γr) + (Λ + γr + γs − νr)

2 νr > 0,
(16)

is always in [0, 1] and will be denoted by sd f e.

Remark 14. sd f e is continuous in νr, since for small νr,

sd f e ≈
Λ + γr + γs − νr +

2νr(Λ+γr)
Λ+γr+γs−νr

− (Λ + γr + γs − νr)

2νr
→ Λ + γr

Λ + γr + γs
.

Remark 15. The other root in the quadratic case νr > 0

νr − (Λ + γr + γs)−
√

4νr(Λ + γr) + (Λ + γr + γs − νr)
2

2νr
(17)

is strictly negative, unless{
Λ + γr = 0
νr ≥ γs + Λ + γr

⇔
{

Λ = γr = 0
νr ≥ γs

, (18)

in which case it yields a second DFE point with s = 0 = i.

Assumption 1. From now on, we will exclude the particular boundary case (18), which may be
resolved by elementary explicit eigenvalue computations—see [35] (note, however, that while not
necessarily interesting from an epidemics point of view, this case is remarkable mathematically.
(More precisely, the extra DFE point (0, 0) may be either source- or saddle-point, and there are two
endemic points, which may be either a sink and a saddle, or two sinks [35]; finally, for the general
SIR/V+S model, both cases may be achieved as small perturbations of the particular case (18))).

3. DFE Stability

Recall (cf. Assumption 1) that we exclude the case Λ = γr = 0, νr ≥ γs (18), so that
the DFE defined in (16) is unique.

3.1. Local DFE Stability

The Jacobian of (13) (with r eliminated) is
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J =
(
−i(β− νi + νr)− γs −Λ− γr + νr − 2sνr −s(β− νi + νr)− γr

i(β− βr − νr) s(β− βr − νr)−Λ− γ + (2i− 1)(νi − νr − βr)

)
. (19)

Plugging in i = 0 yields

Jd f e =

(
−2sνr + νr −Λ− γr − γs −s(β− νi + νr)− γr

0 s(β− νr − βr)− γ−Λ− νi + νr + βr

)
,

with eigenvalues {
λP = sd f eβ + (νr + βr)rd f e − γ− νi −Λ
λ− = νr(1− 2sd f e)−Λ− γr − γs

. (20)

Since the DFE is unique, we may apply the next-generation matrix method [46], the
first step of which consists in checking the local asymptotic stability of sd f e for the disease-free
Equation (15). This amounts to proving that

λ− = νr − (Λ + γr + γs)− 2νrsd f e < 0. (21)

However, this is automatic both when νr = 0, and when νr > 0, since by (16) λ− =

−
√

∆d f e < 0.

With local stability in the disease-free space established, one might use the next-
generation matrix approach. However, the direct approach is quicker here.

Proposition 2. The DFE is locally stable if the Perron–Frobenius eigenvalue of the next-
generation matrix satisfies

R0 := λP(FV−1) =
βsd f e + (νr + βr)rd f e

γ + νi + Λ
< 1, (22)

and is unstable ifR0 > 1.

Proof. Since λ− < 0 by (21), the DFE is locally stable if

λP < 0⇔
sd f eβ + (νr + βr)rd f e

Λ + γ + νi
< 1. (23)

�

Remark 16. The equalityR0 = 1 is linear in γs and yields

γs =
(Λ + νi + γ− β)(νr(γ + νi − γr − νr)− βr(Λ + γr + νr) + β(Λ + γr))

(β− βr − νr)(−γ− νi −Λ + βr + νr)
:= γ∗s , (24)

provided that the denominator does not blow up. The parameter γ∗s is called “critical vaccination”.
The daunting Formula (24) simplifies and turns out to provide crucial help for stability analysis

in the following particular cases (this should be true in general, but we have not been able to work
analytically with this daunting formula).{

νr = 0 =⇒ γ∗s
Λ+γr

= β−(Λ+γ+νi)
Λ+γ+νi−βr

βr = 0 =⇒ γ∗s
Λ+γr

= R− 1,R = β
Λ+γ+νi

. (25)

The first formula is positive if either βr ≤ Λ + γ + νi ≤ β, or β ≤ Λ + γ + νi ≤ βr, and a
geometric consequence of this is provided in Section 5.
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3.2. Global Stability of the Disease-Free Equilibrium

Proposition 3. IfR0 < 1 and DFE is the unique equilibrium point, then it is globally asymptoti-
cally stable in the invariant set D.

Proof. Each solution starting in D is obviously bounded, so its ω-limit set is not empty.
The Poincare–Bendixon Theorem implies that this is the unique equilibrium point DFE,
since otherwise it would be a closed orbit (see [47]) and one may check similarly as in
[Theorem 3.1] of [32] that no periodic orbits exist. �

Since the explicit conditions for the uniqueness of the equilibrium point are quite
complicated, we prefer to provide them only in a particular case, in Section 5.

For the general case, we may find a simple criteria if we weaken the concept of global
stability of the disease-free Equilibrium as follows:

Proposition 4. If
max[βr + νr, β, Λ + γ + νi] = Λ + γ + νi,

then the DFE is “strongly globally stable”, in the sense that the function L(s, i) = i is Lyapunov
over the invariant region D :=

{
(s, i) ∈ R2

+ : 0 ≤ s+ i ≤ 1
}

.

Remark 17. In lay-terms, we may say that “the epidemics never picks up” in this case.

Proof. The non-negative function L(s, i) = i, with L(1, 0) = 0, is Lyapunov (i.e., the
epidemics may never increase) if

L′(s, i) = i′ ≤ 0⇔ s(β− βr − νr) + (νi − νr − βr)i + βr + νr −Λ− γ− νi ≤ 0.

The maximimization of i′ thus reduces to a simple linear programming problem. Thus,
there must exist an extremal point of D where the maximum is attained, and

max
(s,i)∈D

s(β− βr − νr) + (νi − νr − βr)i + βr + νr −Λ− γ− νi =

max[βr + νr −Λ− γ− νi, β−Λ− γ− νi,−Λ− γ] ≤ 0,

provided that

βr + νr ≤ Λ + γ + νi,R0 < 1⇔ max[βr + νr, β, Λ + γ + νi] = Λ + γ + νi. (26)

�

4. The Endemic Equilibria

The endemic equilibrium set may be obtained algebraically by solving one of the
variables from i′/i = 0 in (14), and plugging it into the other equation. Eliminating s using

s = 1− i +
i(νi − β) + β− (Λ + γ + νi)

−β + βr + νr
, β 6= βr + νr,

yields a quadratic equation Ai2 + Bi + C = 0, where A = (β− βr)(β− νi)(βr + νr − νi),
and the other coefficients are very complicated.

Thus, in the complex plane, i(EE)
1,2 = −B±

√
∆

2A . Since analytically locating the endemic
points requires considerable effort, we will restrict starting with the next section to the case
νr = 0.

Remark 18. However, we note already that:
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1. The equation is quadratic if β 6= βr, β 6= νi and βr + νr 6= νi. We will at first exclude these
particular cases, but note that they suggest that different regimes occur when the respective
thresholds are crossed—this will be further explained below.

2. Locating the endemic points may be achieved geometrically by studying the intersection of the
vertical and horizontal isoclines:

(a) the i′ = 0 isocline is given by i = 0 and by the herd immunity line

s(β− βr − νr) + i(νi − βr − νr) = Λ + γ + νi − βr − νr, (27)

with slope β−βr−νr
βr+νr−νi

.
(b) The s′ = 0 isocline is

νr

Λ + γr + γs
s2 + is

β− νi + νr

Λ + γr + γs
+ s + i

γr

Λ + γr + γs
− Λ + γr

Λ + γr + γs
= 0, (28)

which is a hyperbola.
This passes by definition through the DFE, and therefore necessarily intersects the
domain when

sd f e < 1⇔ γs > 0.

5. The Case νr = 0, γs > 0

Getting sharper stability results beyond the weakR0 alternative requires locating the
endemic points, and this seems quite difficult in general. Therefore, we will restrict from
now on to the case νr = 0, which avoids the necessity of handling the complications arising
from the square root formula of sd f e. The case γs = 0, essentially covered in [Section 4]
of [32] , requires special treatment—see Section 6.

The quadratic equation Ai2 + Bi + C = 0 has coefficients
C = −(γ + νi + Λ)(Λ + γr + γs) + β(Λ + γr) + βrγs

B = β(−γ− νi −Λ + βr − γr)− βr(νi + Λ + γs) + νi(γ + νi + 2Λ + γr + γs)

A = (β− νi)(νi − βr).

(29)

The endemic points are still complicated:

EE1,2 =

s = β(γ+νi+Λ−βr−γr)−νi(γ+νi−βr−γr−γs)−βr(Λ+γs)±
√

∆
2(β−βr)(β−νi)

i = βγ+βΛ+βνi−γνi−2Λνi−ν2
i +νi βr+Λβr−ββr∓

√
∆

2(νi−β)(βr−νi)

,

where

∆ = 4(β− βr)(β− νi)(Λ(−νi + βr + νr) + (γ + µ)γr) (30)

+(β(−γ− νi − µ + βr + γr + νr) + βr(−νi + µ + γs) + νi(γ + νi − γr − γs)− νr(γ + νi − γs))
2.

By solving C = 0, we may compute, however, an important critical value for β,

β∗ =
(γ + νi + Λ)(Λ + γr + γs)− βrγs

Λ + γr,
(31)

above which one (the higher) of the endemic points crosses above the i = 0 axis, therefore
entering D (equivalently,R0 becomes larger than 1).

Locating the endemic points may be attempted algebraically—see Lemma A2 in the
Appendix, which seemed quite difficult.

We therefore resorted to a geometric study of the isoclines in Theorem 1, attempting
to geometrically explain all the possible cases. For example, the caseR0 > 1 turned out to



Mathematics 2022, 10, 402 16 of 25

be equivalent to the unicity of the endemic point, and to the fact that the immunity line
intersects with the domain line on both sides of the s′ = 0 isocline.

Remark 19. Since the number of crossing points must be odd, on one hand, and less than two on
the other, identifying such a crossing is equivalent to the uniqueness of the endemic point.

We turn now to listing some elementary geometric facts, particularly the coordinates
of various intersection points.

1. When νi 6= β, the s′ = 0 isocline becomes the hyperbola

sd f e = is
β− νi

Λ + γr + γs
+

γr

Λ + γr + γs
i + s

= i
β− νi

Λ + γr + γs

(
s +

γr

β− νi

)
+ s +

γr

β− νi
− γr

β− νi

⇔
(

i
β− νi

Λ + γr + γs
+ 1
)(

s +
γr

β− νi

)
= sd f e +

γr

β− νi
,

with asymptotes s = γr
νi−β , i = Λ+γr+γs

νi−β . Note that the center is in the first quadrant
when β < νi and in the third quadrant otherwise, and that the intersection E with the
line s = 0 has iE = 1 + Λ

γr
, outside D. The convexity of the branch which intersects D

is also important. From

i′′(sd f e) = 2
sd f e + k
(s + k)3

γr + Λ + γs

β− νi
, k =

γr

β− νi
,

we find that our branch is convex when β > νi, and concave otherwise. The equality
case νi = β is analyzed in the following remark.

Remark 20. When νi = β, the s′ = 0 hyperbola degenerates into a line s(Λ + γr) +
iγr − γr − Λ = 0. The intersection of the two lines gives a unique endemic point EE =(

(γ+Λ)γr
Λ(βr−νi)

+ 1, (γ+Λ)(Λ+γr)
Λ(νi−βr)

)
which never belongs to the feasible region. Indeed, iee > 0 if,

and only if νi > βr, and this further implies

see + iee = 1 +
(γ + Λ)Λ
Λ(νi − βr)

> 1 =⇒ EE /∈ D.

2. A crucial role in the analysis is played by the point where the immunity line inter-

sects i = 0, given by B(Λ+νi+γ−βr
β−βr

, 0), βr 6= β (when βr = β, B goes to ∞). This
point satisfies:

sB < 0 if Λ + νi + γ < βr < β, or β < βr < Λ + νi + γ

sB ∈ [0, 1] if β ≤ Λ + νi + γ < βr, or βr < Λ + νi + γ < β

sB > 1 if βr < β < Λ + νi + γ or Λ + νi + γ < β < βr

. (32)

The six cases listed above are the basis of our geometric analysis provided in Theorem 1.

Remark 21. sB coincides with sd f e if γs = γ∗s , which fits with the fact that γ∗s ∈ (0, 1) if
one of these two cases occurs—recall Remark 16.

3. Another important point is the point A where the immunity line (27) intersects
i = 1− s, with coordinates

(sA, iA) =

(
γ + Λ
β− νi

,
β− (γ + νi + Λ)

β− νi

)
. (33)
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It is easy to show that A ∈ D if β > Λ + νi + γ, that it then moves to the fourth
quadrant when Λ + νi + γ ≥ β > νi, and that it jumps from the fourth to the second
quadrant when β decreases below the threshold νi.

4. The point where the immunity line intersects s = 0 is C(0, 1 + γ+Λ
νi−βr

). This is negative
when νi < βr < Λ + γ + νi, in the domain when βr ≥ Λ + γ + νi, and bigger than 1
when βr ≤ νi. More precisely,

C =
Λ + γ + νi − βr

νi − βr
satisfies


iC ≤ 0 if νi < βr < Λ + νi + γ

iC ∈ [0, 1] if βr ≥ Λ + νi + γ

iC > 1 if βr < νi

.

5. The unique point D where the hyperbola intersects s+ i = 1 within the domain
has coordinates sD = 1

2 +
Λ+γs−

√
4Λ(νi−β)+(β−νi+Λ+γs)2

2(β−νi)

iD = 1
2 +

−Λ−γs+
√

4Λ(νi−β)+(β−νi+Λ+γs)2

2(β−νi)

. (34)

Remark 22. When β = βr, the slope β−βr
βr−νi

of the immunity line becomes 0 and iC = iA =
β−(γ+νi+Λ)

β−νi
= 1

γ+νi+Λ
R0−1
β−νi

. The dynamical system admits a unique endemic point and a unique
EE given by

EE =

(
Λ(β− νi + γr) + γγr

(β− νi)(β− γ− νi + γr + γs)
,

β−Λ + γ + νi
β− νi

)
,

which may be checked to belong to the feasible region if

R =
β

Λ + γ + νi
> 1.

Indeed, iee > 0 requires either β < νi, which leads subsequently to a contradiction, or β >
Λ + γ + νi, which may be shown to imply s > 0, s + i < 1. The stability analysis of this case is
elementary and left to the reader.

The Formula (32) and the subsequent Remark 21 suggest splitting the analysis ac-
cording to the order of the three quantities β, Λ + γ + νi, βr and on the orders of γs, γ∗s =

(Λ + γr)
β−(Λ+γ+νi)
Λ+γ+νi−βr

and of (νi, β). We end up with 10 cases, nine of which are fully re-
solved in Theorem 1, and one of which is left partly open. Note that, as proved in the
Appendix, these 10 cases form a disjoint decomposition of the parameter space if only strict
inequalities are allowed.

Before stating Theorem 1, we provide graphical illustrations of the 10 cases.

Theorem 1. Suppose νr = 0, and that neither two of the three parameters β, βr, νi coincide. Then,
one of the following cases must arise:

1. R0 > 1⇔ precisely, one endemic point lies in D, which may occur in one of the following
four ways:

(a) AC ∈ D crosses the hyperbola with positive slope Λ + γ + νi ≤ βr < β —see
Figure 3a;

(b) AC ∈ D crosses the hyperbola with negative slope Λ + γ + νi ≤ β < βr—see
Figure 3b;

(c) βr ≤ Λ + γ + νi ≤ β, γs < γ∗s ⇔ BA ∈ D crosses the hyperbola—Figure 3c;
(d) β ≤ Λ + γ + νi ≤ βr, γs ≥ γ∗s ⇔ BC ∈ D crosses the hyperbola—Figure 3d.

In all these cases, the endemic point is a sink and DFE is a saddle point.
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2. R0 ≤ 1 is the union of the following six cases (similar to the above, but taking also into
account the convexity of the hyperbola branch, in some cases):

(a)
βr < Λ + γ + νi < β, νi < β,

when both the points A, B lie to the right of a convex hyperbola branch, and the isoclines
do not intersect in D–see Figure 4a.

(b)
β < νi < Λ + γ + νi < βr,

when both the points C, B lie to the left of a concave hyperbola branch, and the isoclines
do not intersect in D–see Figure 4b.

(c) When both the points C, B lie to the left of a convex hyperbola branch, we have
two subcases:

i. When
νi < β < Λ + γ + νi < βr, γs < γ∗s , ∆ < 0,

the isoclines intersect D, but do not intersect each other—see Figure 4c.
ii. The isoclines intersect in D, yielding two endemic points—see Figure 4d.

Necessary conditions for this are

νi < β< Λ + γ + νi < βr, γs < γ∗s , ∆ ≥ 0,

and we conjecture that the necessary and sufficient conditions are obtained by
adding βr ≥ β

(+)
r , where β

(+)
r is defined in (36).

In this case, the DFE is one of two sink points, whose attraction domains are
separated by the separatrices of the third fixed saddle point.

(d) The i′/i = 0 isocline does not intersect the interior of D in the following two cases:

i. β ≤ βr ≤ Λ + γ + νi, with hyperbole concave—see Figure 5a—or convex,
according to whether β > νi or not;

ii. βr < β ≤ Λ + γ + νi, with hyperbole convex—see Figure 5b—or convave,
according to whether β < νi or not;

3. In all the cases when the DFE is the unique fixed point within the domain, it is a globally
stable sink.

Proof.

1. As noted already, β > Λ+γ+ νi is equivalent to fact that the point A = ( γ+Λ
β−νi

, β−νi−γ−Λ
β−νi

)

lies in D, which applies in the cases 1(a–c). Furthermore, we may check that in this case,
the point A is always to the right of (above) the hyperbola, that is,

sD =
1
2
+

Λ + γs −
√

4Λ(νi − β) + (β− νi + Λ + γs)2

2(β− νi)
<

γ + Λ
β− νi

= sA.

To conclude the existence of a unique endemic point, it is thus enough to find in these
three cases a point of the immunity line below the hyperbola. Referring to Figure 3,
we see that the following cases may arise:

(a) AC ∈ D crosses the hyperbola, and sB < 0. We must then be in the case
Λ + γ + νi < βr < β, which implies βr ≥ Λ + νi + γ, and so C ∈ D is below
the hyperbola—see Figure 3a.

(b) AC ∈ D crosses the hyperbola, and sB ≥ 1. We must then be in the case
Λ + γ + νi < β < βr, which implies again βr ≥ Λ + νi + γ, and so C ∈ D is
again below the hyperbola—see Figure 3b.

(c) BA ∈ D crosses the hyperbola when R0 > 1, β > Λ + γ + νi > βr, sB ≤
sd f e ⇔ γs ≤ γ∗s , since B is below the hyperbola—see Figure 3c.
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(d) BC ∈ D crosses the hyperbola (and A /∈ D) whenR0 > 1, βr > Λ + γ + νi >
β, sB > sd f e ⇔ γs > γ∗s , since B is below the hyperbola—see Figure 3d.

2. We turn now to the case R0 ≤ 1, when the point A lies in the fourth quadrant if
νi < β, and in the second quadrant otherwise.

(a) In this case sB > sd f e, sA > sD. Since the immunity line is to the right of a
convex hyperbola branch, it is clear geometrically that they cannot intersect
within the domain—see Figure 4a.

(b) Similarly, the end points in D of the immunity line are to the left of a concave
hyperbola branch, and so they cannot intersect within the domain—see Figure 4b.

(c) For two endemic points to exist, it is necessary that sB = Λ+νi+γ−βr
β−βr

∈ (0, sd f e),
which requires that

β ≤ Λ + γ + νi ≤ βr,

and this implies that the other intercept C = (0, Λ+γ+νi−βr
νi−βr

) is also in D.
The i′/i = 0 isocline intersects then D, and may also intersect the hyperbola,
when the discriminant

∆ = (νi(νi − βr + γ− γr − γs) + βr(γs + Λ) + β(βr − γ + γr −Λ− νi))
2

+4(β− βr)(β− νi)(γγr + Λ(βr + γr − νi)) (35)

satisfies ∆ ≥ 0.
The inequality ∆ > 0 is quadratic in βr and may be rewritten as

βr + Λ + γr − νi +
Λ(Λ + γr)

β− νi −Λ
− γ(β− νi)(β− νi + Λ + 2γr)

(β− νi −Λ)2 /∈ [−L,L]

L = 2

√
γ(Λ + γr)(β− νi)2(β− νi + γr)(Λ + γ + νi − β)

(β− νi −Λ + γs)2 + 4Λγs
(36)

(note that L > 0 whenR < 1, νi < β).
We conjecture based on numerical evidence that the two endemic points belong
to D only when βr is larger than the largest root β

(+)
r of ∆ = 0, defined

implicitly in (36). When γs = 0, the largest root is reduced to

β
(+)
r = L+

γ(β− νi)(β− νi + Λ + 2γr)− (β− νi −Λ)
(
ν2

i − νi(β + γr) + β(Λ + γr)
)

(−β + νi + Λ)2

where

L :=
2
√

γ(β− νi)2(Λ + γr)(−β + Λ + γ + νi)(β− νi + γr)

(−β + νi + Λ)2 .

(d) In the last case, we must show that the i′/i = 0 isocline does not intersect the
interior of D. Equivalently, we must show that in each of the two subcases{

β < βr ≤ Λ + γ + νi

βr ≤ β ≤ Λ + γ + νi
,

none of the points A, B, C belong to D. This is a tedious computation, and
not reproduced here. For a quick check, we offer a Mathematica file on our
website (we rely mostly on FindInstance with an empty output to show that
certain cases do not exist, and on the command Reduce to decompose other
cases into subcases).

�
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6. The Boundary Case γs = νr = 0

The case γs = νr = 0, generalizes on the particular case γs = νr = 0 = γr, which was
called the SIRI model in [Section 4] of [32] .

Note first that, in this case, sd f e = 1. It follows that cases 4, 5 (1(d) and 2(a)) may
not arise, and case 6 (2(b)) becomes degenerate, since sd f e = 1. It now becomes possible
that the hyperbola does not intersect the domain. This is equivalent to its slope at the DFE
i′(sd f e) = − Λ+γr

β−νi+γr
being either positive or less than −1, and further equivalent to

β ≤ Λ + νi.

This further impliesR < 1, and, together with the absence of endemic points and of
periodic solutions, leads to the fact that the DFE is the global attractor.

After having dealt with this case, which also includes the concave case β > νi, one
may restrict to the case when the hyperbola does intersect the domain, which is equivalent
to its slope at the DFE being such that

−1 < i′(sd f e) < 0⇔ β > Λ + νi

(note this implies that its center is in the third quadrant).
The proof becomes simpler than in the previous section. For example, the point D of

intersection of the hyperbola with i = 1− s satisfies

sD =
Λ

β− νi
∈ (0, 1),

and hence belongs to D.
The roots of ∆ = 0 now simplify to:

β
(±)
r := νi −Λ− γr −

Λ(Λ + γr)

β− νi −Λ
+

γ(β− νi)(β− νi + Λ + 2γr)

(β− νi −Λ)2 ±L, (37)

L = 2

√
γ(Λ + γr)(β− νi)2(β− νi + γr)(Λ + γ + νi − β)

(−β + νi + Λ)2 .

7. The Classic/Pedagogical SIR/V+S Model

The pedagogical model is defined as follows:

s′(t) = Λ− β s(t)i(t) + γrr(t)− (γs + µ) s(t),

i′(t) = i(t)[β s(t) + βrr(t)− (γ + νi + µ)],

r′(t) = γi(t) + γs s(t)− (γr + µ + νr)r(t)− βrr(t)i(t).

(38)

The following properties hold:

1. The region
D = {(s, i, N) ∈ R3

+, s+ i ≤ N ≤ Λ/µ} (39)

may be shown to be positively invariant with respect to (38); therefore, this region
must include an attractor set [48,49].

2. The DFE equilibrium point of the pedagogic system is obtained by plugging id f e = 0
into (38). Solving with respect to (s, r) the remaining first and third equations{

0 = Λ− (γs + µ) s+ γrr,
0 = γs s− (γr + µ + νr)r,
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yields

X(DFE) =

(
Λ(µ + γr + νr)

µγr + (µ + νr)(µ + γs)
, 0,

Λγs

µγr + (µ + νr)(µ + γs)

)
. (40)

In particular, the DFE for the FA model is obtained by substituting Λ = µ in (40):

X(DFE) =

(
Λ(Λ + γr + νr)

Λγr + (Λ + νr)(Λ + γs)
, 0,

Λγs

Λγr + (Λ + νr)(Λ + γs)

)
. (41)

Note the relation νrγs = 0 =⇒ id f e + rd f e + sd f e = 1.
3. When βr > 0, there may be two endemic equilibrium points (we omit their compli-

cated expressions), but when βr = 0 there is a unique FA EE, obtained by plugging

s =
1
R =

γ + Λ + νi
β

into the first and third equations, and solving the linear system{
Λ + γrr(t)− βi/R− (γs + Λ)/R = 0,
γi+ γs/R− (γr + Λ + νr)r = 0

. (42)

This yields X(EE) =

(
1
R ,

γr(Λ−ΛR) + (Λ + νr)(γs + Λ−ΛR)
γγrR− β(γr + Λ + νr)

,
γR(γs + Λ−ΛR)− βγs

R(γγrR− β(γr + Λ + νr))

)
(43)

=

(
1
R ,
Rsd f e − 1

z
,

γR(γs + Λ−ΛR)− βγs

R(γγrR− β(γr + Λ + νr))

)
,

where z := R
[

γr(Λ+νi)+(Λ+νr)(γ+Λ+νi)
Λγr+(Λ+νr)(Λ+γs)

]
.

Note the intriguing simplification of i(EE), which shows that

i(EE) ≥ 0⇔ 1 ≤ Rsd f e,

and it may be shown that the endemic point belongs to the domain if 1 ≤ Rsd f e.
This gives a pre-warning on the role of the parameterRsd f e := R in the stability of
the DFE.

Example 1. In the particular case νr = γr = γs = 0 =⇒ sd f e = 1, we recover the SIR-
FA example, for which the sharp threshold property holds ([50], (4.1)) that is, the disease-free
Equilibrium is globally stable ifR = R sd f e ≤ 1.

The endemic point simplifies to

X(EE) =

(
1
R ,

Λ
β
(R− 1),

γ

β
(R− 1)

)
.

We may observe that the endemic point X(EE) is positive ifR > 1. See Figure 6.

8. Conclusions

In this study, we completely analyzed the stability of a SIR model with eight parame-
ters. This simple example began as an attempt to understand more complicated models,
and the insights we obtained here were used [40]. We are currently unable to provide a
complete stability analysis of analog SEIR models with many parameters, but we expect
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that limit cycles will intervene as well, by Smale’s result [51] for Lotka Volterra models,
which are similar to the epidemic models in the Ref. [40].
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Appendix A. Auxiliary Lemmas

Lemma A1. If only strict inequalities between Λ+ γ+ νi, βr and β are allowed, then the following
10 cases 

Λ + γ + νi < βr < β

Λ + γ + νi < β < βr

βr < Λ + γ + νi < β, γs < γ∗s
β < Λ + γ + νi < βr, γs ≥ γ∗s
βr < Λ + γ + νi < β, νi < β

β < νi < Λ + γ + νi < βr

νi < β< Λ + γ + νi < βr, γs < γ∗s , ∆ < 0
νi < β< Λ + γ + νi < βr, γs < γ∗s , ∆ ≥ 0
β < βr < Λ + γ + νi

βr < β < Λ + γ + νi

,

form a disjoint decomposition of the parameter space.

Proof. We first note that in all cases where equality is allowed, the equality case may be
arbitrarily assigned to any of the two cases it separates. It is therefore enough to only
consider strict inequalities in this Lemma.

We want to show that the union of the 10 cases equals to the union of the six cases
representing the possible orders of β, βr, Λ + γ + νi, which are

β > βr > γ + νi + Λ 1
βr > β > γ + νi + Λ 2
β > γ + νi + Λ > βr 3
βr > γ + νi + Λ > β 4
γ + νi + Λ > βr > β 5
γ + νi + Λ > β > βr 6

.

Now the cases 1, 2, with Λ+ γ+ νi < min[β, βr], and the cases 9, 10, with Λ+ γ+ νi >
min[β, βe] appear only once in the 10 cases of Theorem 1, as case 1(a,b), and 2(d)(i,ii).

Next, we may check that the union of cases 3 and 5 (1(c) and 2(a) in the Theorem)
together form permutation 3. This requires checking the other two of the four formal cases,
taking into account that the possible orders between β, νi and γs, γ∗s are void; the tedious
verification is included in the Mathematica file available on our website.
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To conclude, it must be checked that the cases 4 and 6–8 (i.e., 1(d), 2(b), 2(c)(i,ii) in the
Theorem) together form a partition of the permutation 4. First, note that cases 7 and 8 may
be combined in νi < β < Λ + γ + νi < βr, γs < γ∗s . Next, we show in the Mathematica
file that case 4 β < Λ + γ + νi < βr, γs ≥ γ∗s is incompatible with β < νi, and so we can
modify case 4 to νi < β < Λ + γ + νi < βr, γs ≥ γ∗s . Thus, 4 and 6–8 become

νi < β < Λ + γ + νi < βr, γs ≥ γ∗s
β < νi < Λ + γ + νi < βr

νi < β< Λ + γ + νi < βr, γs < γ∗s ,

whose union is clearly permutation 4. �

Lemma A2. (A) A necessary and sufficient condition for having precisely one endemic point with
s ∈ (0, 1) is C(A + B + C) < 0, where A, B, C are defined in (29).

(B) Necessary and sufficient conditions for having precisely two endemic points with s ∈ (0, 1)
are ∆ > 0 and

−2 <
B
A

< 0 <
C
A

,
B
A

> −1− C
A

.

Proof. The conditions for having two roots bigger than 0 are B
A < 0 < C

A , and the conditions
for having two roots smaller than 1 are obtained by applying these, after substituting
y = 1− x, yielding the result. �

Since expressing these simple conditions in terms of the parameters of the model
turned out to be quite difficult, we did not finalize this approach.
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