
ARGFree: A Randomized Gradient-Free algorithm for Aggregative
Cooperative Optimization and Applications to Robotic Formation

(Extended Version)

Amir Mehrnoosh, Giuseppe Speciale, Riccardo Brumali, Giuseppe Notarstefano, Gianluca Bianchin

Abstract— Aggregative cooperative optimization problems arise
in distributed decision-making scenarios where each agent’s
objective depends on its own decision as well as on an aggregate
variable representing the collective behavior of the system.
Motivated by practical settings in which gradient information
is unavailable, this paper proposes a randomized gradient-free
algorithm, named ARGFree, for solving such problems. We
establish that ARGFree converges in expectation to an approx-
imate optimizer, where the approximation error originates from
the use of a randomized gradient estimator. To the best of our
knowledge, ARGFree is the first method in the literature ca-
pable of solving aggregative cooperative optimization problems
without requiring gradient information. The effectiveness of
the proposed algorithm is validated through robotic formation
control experiments, including an implementation on a team of
embedded systems based on Segway-type robots.

I. INTRODUCTION

In recent years, the widespread use of multi-agent systems
has sparked increasing interest in solving optimization prob-
lems through distributed approaches. Representative exam-
ples include parameter estimation, source localization in
sensor networks, utility maximization, resource allocation,
and multi-robot coordination. See the recent surveys [1]–[3]
for comprehensive overviews of the field.
A large body of work on cooperative distributed optimiza-
tion focuses on the so-called consensus optimization or
federated learning framework [1]. In this setting, agents
aim to jointly solve optimization problems of the form
minx1,...,xN

1
N

∑N
i=1 fi(xi), subject to xi = xj for all i ̸= j.

In this formulation, fi denotes the local loss function that
agent i seeks to minimize, and the consensus constraints
xi = xj ensures that all decision variables agree at con-
vergence. One key feature of this problem is that each fi
depends only on the the local decision variable xi. However,
in many practical problems—such as robotic formation [4]
and feedback optimization [5], [6]—local objective functions
may depend not only on the agent’s own decision variable,
but also on those of other agents. Moreover, the decision
variables may not need to always coincide at convergence
(such as in k-agreement problems [7]). For example, in
robotic formation control problems, each agent is interested
in reaching a configuration that depends not only on the

A. Mehrnoosh and G. Bianchin are with the ICTEAM institute and the
Department of Mathematical Engineering (INMA) at the University of Lou-
vain, Belgium. Email: {amir.mehrnoosh,gianluca.bianchin}
@uclouvain.be R. Brumali and G. Notarstefano are with the
Department of Electrical, Electronic and Information Engineering,
Alma Mater Studiorum–Università di Bologna, Bologna, Italy. Email:
{riccardo.brumali,giuseppe.notarstefano}@unibo.it.

individual target location, but also on the barycenter of
the group. These objectives have inspired the framework
of aggregative cooperative optimization, recently proposed
in [8], where agents cooperatively solve optimization prob-
lems of the form minx1,...,xN

1
N

∑N
i=1 f̃i(xi, σf(x)) , with

σf(x) denoting an aggregation function that depends on
all decision variables x1, . . . , xN . Unfortunately, existing
techniques to solve aggregative cooperative optimization
problems assume that the agents have access to gradient (or
subgradient) information about the local objective. In fact,
in various applications, the relationship between the decision
variables and the cost functions may be unknown, gradient
information may be inaccessible, or the functions may not
even be differentiable. The dependence on the aggregative
function, along with the potentially complex structure of
σf(x), further increases the difficulty of computing gradients.
Motivated by this gap, we propose ARGFree, a distributed
gradient-free method that employs randomized (zeroth-order)
finite-difference approximations to estimate gradients and
solve aggregative cooperative optimization problems without
requiring explicit gradient information.
The Aggregative Random Gradient-Free (ARGFree) algo-
rithm proposed here builds upon two main components: (i)
a descent step, based on a forward-difference approximation
of the gradient, which drives the optimization toward a
minimizer of the aggregate loss function; and (ii) a group of
tracking variables, designed to estimate finite-difference ap-
proximations of the gradient of the loss function. We demon-
strate that the proposed method is capable of computing an
approximate solution to the optimization problem, where the
approximation error stems from using a randomized gradient
estimate in place of the exact gradient.
We classify the existing literature relevant to our work into
two main categories: (i) research on aggregative cooper-
ative optimization, and (ii) gradient-free methods for dis-
tributed optimization. Aggregative cooperative optimization:
The aggregative cooperative optimization framework was
introduced in the pioneering work [8] to model problems
where local objectives depend on a global (aggregative)
variable. It is worth emphasizing that our use of the term
“cooperative” in aggregative cooperative optimization is in-
tended to distinguish our framework from that of aggregative
games [9]. Online and constrained variants of the aggregative
cooperative optimization problem have been studied in [10].
Other notable contributions include [11], which introduces a
distributed Frank–Wolfe method, and the accelerated algo-

1

mailto:amir.mehrnoosh@uclouvain.be
mailto:gianluca.bianchin@uclouvain.be
mailto:riccardo.brumali@unibo.it
mailto:giuseppe.notarstefano@unibo.it

rithms proposed in [12]. Particularly relevant to the present
work are the recent works [13], [14], which harness learning-
based techniques to handle uncertainty in the environment.
Gradient-free methods in distributed optimization: Although
gradient-free techniques have a long history in optimization,
their theoretical analysis was formalized only recently in [15]
in the centralized setting. In distributed settings, most ex-
isting works focus on the consensus optimization problem.
Methods based on multi-point gradient estimators are studied
in [16], two-point estimators are proposed in [17], and single-
point estimators are considered in [18]. Continuous-time
algorithms have also been shown to be effective [19]. Further
developments include analysis over time-varying graphs [20],
primal-dual approaches [21], constrained stochastic prob-
lems [22], and communication-imperfect settings [23]. Ac-
celerated variants are proposed in [24], while extremum-
seeking based approaches are studied in [25]. Gradient-free
methods tailored for games are presented in [26]. To the
best of the authors’ knowledge, all these methods are limited
to the consensus optimization framework, and gradient-free
methods specifically designed for aggregative cooperative
optimization problems are still lacking.
This paper features three main contributions. First, we in-
troduce ARGFree (Algorithm 1), a randomized, gradient-
free method designed to solve aggregative cooperative opti-
mization problems. Unlike existing approaches, our method
does not require gradient information; instead, it relies
only on local function evaluations (as detailed in require-
ments (R1)–(R2) in Section II). Second, we establish con-
vergence bounds for the proposed algorithm (theorems 7
and 8), showing that its iterates converge in expectation to an
approximate optimizer; the approximation error arises from
the use of a randomized gradient estimator in place of the
exact gradient. An important feature of the algorithm is that
its asymptotic accuracy can be controlled by appropriately
tuning the available parameters. Third, we validate our
theoretical findings through both numerical simulations and
experiments using a team of embedded systems based on the
Balboa 32U4 self-balancing robot (Section V).
The remainder of the paper is organized as follows. Section II
introduces the problem formulation and technical preliminar-
ies. Section III presents the proposed ARGFree algorithm
and analyzes its convergence properties. Section V provides
numerical and experimental validations on robotic formation
control tasks. Finally, Section VI concludes the paper.
We adopt the following notation. Rn

>0 and Rn
≥0 denote vec-

tors in Rn with positive and nonnegative entries, respectively;
Sn is the space of symmetric n×n real matrices; and [n] :=
{1, . . . , n}. For vectors v1, . . . , vn, col(v1, . . . , vn) denotes
their column stacking. 1n and 0n denote the n-dimensional
all-ones and all-zeros vectors, respectively (dimensions are
omitted when clear). For a square matrix M , ρ(M) denotes
its spectral radius, and ⊗ the Kronecker product. Eu[·]
denotes expectation with respect to the random variable u.

II. PROBLEM SETTING

In this section, we introduce the problem of interest and
illustrate its relevance through representative applications.

A. Problem formulation

Consider a group of N agents, where each agent i ∈ [N] is
associated with a local decision variable xi ∈ Rni and a local
loss function f̃i : Rni × Rd → R. Let x = col(x1, . . . , xN)
and define n :=

∑N
i=1 ni. We assume that each loss function

f̃i depends not only on the local decision xi but also on a
global quantity σf(x) ∈ Rd, referred to as the aggregative
variable, which aggregates information from all agents as

σf(x) :=
1

N

N∑
i=1

ϕi (xi) , (1)

where ϕi : Rni → Rd. The agents aim to collaboratively
solve the following optimization1 problem:

min
x∈Rn

f(x) :=
1

N

N∑
i=1

f̃i (xi, σf(x)) . (2)

Equations (1)–(2) formalize an aggregative cooperative op-
timization problem [8], in which the agents aim to minimize
a global objective defined as the average of their local costs.
It is worth noting that, unlike in aggregative games [9],
where σf(x) is typically assumed to be independent of xi,
problem (2) explicitly accounts for this dependence.
In this work, we focus on scenarios in which the agents
operate under the following Requirements (R):
(R1) The functions f̃i(·, ·) and ϕi(·), along with the decision

variable xi, need to be kept private to agent i and,
therefore, are not known by any other agent j ̸= i.

(R2) Agent i does not have access to the analytic expressions
(nor the derivatives) of f̃i(·, ·) or ϕi(·); instead, these
functions can only be evaluated through oracle queries:

(xi, σ) 7→ f̃i(xi, σ), xi 7→ ϕi(xi),

with xi ∈ Rni , σ ∈ Rd.

Requirements (R1)–(R2) naturally occur in many practical
scenarios; a representative example is the robotic formation
control problem discussed in Section V. Solving (2) under
(R1)–(R2) is challenging for two main reasons: (i) due
to (R1), centralized algorithms are inapplicable, necessitating
a distributed architecture in which each agent i relies only
on its local functions f̃i(·, ·) and ϕi(·); and (ii) due to (R2),
existing methods (e.g., those in [8]) relying on gradient-
descent-type iterations, are inapplicable.
Motivated by these requirements, we consider scenarios in
which agents aim to solve problem (2) in a distributed
manner, using only local communication and cooperative
coordination. To this end, we assume that the agents can

1For notational clarity, throughout this work, the tilde notation (e.g., f̃) is
used to denote functions that explicitly depend on the aggregative variable
(i.e., functions of two arguments), whereas functions without a tilde (e.g.,
f) represent the corresponding composite (single-argument) functions. The
two are related through (10), as detailed shortly below.

2

exchange information with their neighbors; we model the
communication topology using a directed graph G = (V, E),
where the node set V = {1, . . . , N} models the agents and
the edge set E ⊂ V × V describes the communication links.
We impose the following assumption on G (see Section II-B
for the adopted graph-theoretic notation).
Assumption 1 (Properties of the communication graph).
The digraph G is strongly connected. Moreover, G admits an
adjacency matrix A that is doubly stochastic. □

Assumption 1 is standard in the design of coordination
schemes and distributed algorithms (e.g., consensus averag-
ing) [27]–[29]. Intuitively, the strong connectivity condition
guarantees that information can (asymptotically) propagate
from any node of G to every other node (note that it does
not necessarily require that the graph is complete [27]). The
doubly stochasticity requirement is, for instance, automati-
cally satisfied when G is additionally aperiodic or when each
node possesses a self-loop [30]. We also note that several
procedures are available to construct matrices A that satisfy
this assumption; see [27] for centralized methods and [30]
for distributed ones. In the remainder, we let A ∈ RN×N be
a matrix as in Assumption 1.
We now formally state the problem studied in this work.
Problem 1 (Objective of this work). Design a distributed
algorithm, compatible with the graph topology G, enabling
the agents to cooperatively compute solutions to problem (2),
subject to requirements (R1)–(R2). □

B. Preliminaries

We present hereafter basic properties used throughout the
paper.
a) Basic notions on algebraic graph theory: For a digraph
G = (V, E), we adopt the convention that an edge (j, i) ∈ E
indicates that node j is able to receive information from i
(or, equivalently, i transmits information to j). For a node
i ∈ V , we denote by Ni = {j ∈ V : (i, j) ∈ E} the set
of agents that send information to i. Matrix A = [aij] ∈
RN×N is said to be an adjacency matrix for G if it satisfies
aij > 0 if (j, i) ∈ E , and aij = 0 otherwise. A is said
to be doubly stochastic if

∑N
j=1 aij = 1 and

∑N
i=1 aij =

1. We let J := 1
N 1N1

⊤
N ∈ RN×N and J := J ⊗ Id ∈

RNd×Nd. Notice that ∥J − I∥ = 1. With a slight abuse of
notation, we denote by ρA = ∥A− J∥ the operator norm of
A (which, in general, differs from its spectral radius ρ(A)).
Let v = col(v1, . . . , vN) ∈ RNd with vi ∈ Rd, i ∈ [N], and
recall that v̄ := 1

N

∑N
i=1 vi ∈ Rd denotes the entries average.

Recalling the well-known [31] property (A⊗B)(C ⊗D) =
AC ⊗BD for A,B,C,D of suitable dimensions, we have

1N ⊗ v̄ = J v. (3)

Given A ∈ RN×N , we denote by A := A⊗ Id ∈ RNd. The
following lemma is instrumental to our analysis.
Lemma 1 ([31]). Let A ∈ RN×N be a doubly stochastic
matrix. Then, ρA satisfies ρA < 1. Moreover,

AJ = JA = J , ∥Ax− J x∥ ≤ ρA∥x− J x∥, (4)

for any x ∈ RNd. □

b) Notions on Gaussian smoothing approximations: Con-
sider a function f : Rn → R and assume that, at each point
x ∈ Rn, it is differentiable along any direction. The Gaussian
approximation of f(x) is defined as:

fδ(x) =
1

κ

∫
Rn

f(x+ δu)e−
1
2∥u∥

2

du, (5)

where δ ∈ R>0 and κ :=
∫
Rn e−

1
2∥u∥

2

du. Observe that, if
we let u ∼ N (0,Σ), then fδ(x) ≡ Eu[f(x + δu)]; in this
case, κ = (2π)n/2(detΣ)1/2. Given u ∼ N (0,Σ), we define
the forward-difference gradient-free oracle as follows:

gδ(x) =
f(x+ δu)− f(x)

δ
Σ−1u, (6)

where δ ∈ R>0. Intuitively, in (6), the vector u can be
interpreted as a random perturbation or directional probe
that excites the function f(x) to estimate its gradient. The
following results are instrumental to our analysis.
Lemma 2 ([15, Lem. 1]). Let p ∈ Z≥0 and Mp :=
1
κ

∫
Rn ∥u∥pe−

1
2∥u∥

2

du. Then, M0 = 1,M1 = n, and

Mp ≤

{
np/2, if p ∈ [0, 2],

(p+ n)p/2, if p > 2.
(7)

□
Lemma 3 ([15, Thm. 2]). Suppose f : Rn → R is convex
and Lipschitz continuous. Then,

Eu[gδ(x)] = ∇fδ(x) (8)

for any x ∈ Rn □
Lemma 4 ([15, Thm.s 1 and 4, Lemmas 4 and 5]). Suppose
f : Rn → R is convex and L1-smooth. Then, for any x ∈
Rn,

|fδ(x)− f(x)| ≤ δ2

2
L1n, (9a)

fδ(x)− f(x) ≥ 0, (9b)

∥∇f(x)∥2 ≤ 2∥∇fδ(x)∥2 +
δ2

2
L2
1(n+ 6)3, (9c)

Eu[∥gδ(x)∥2] ≤
δ2

2
(n+ 6)3L2

1 + 2(n+ 4)∥∇f(x)∥2,
(9d)

Eu[∥gδ(x)∥2] ≤ 4(n+ 4)∥∇fδ(x)∥2 + 3δ2L2
1(n+ 4)3.

(9e)

□

III. ALGORITHM DESIGN AND CONVERGENCE
GUARANTEES

In this section, we introduce an iterative algorithm for solving
Problem 1 and establish its convergence guarantees.

A. The ARGFree algorithm

The proposed method, called Aggregative Random Gradient-
Free (ARGFree) algorithm, is presented in Algorithm 1.
The algorithm is structured as follows: each agent i ∈ [N],
updates its local decision variable xk

i using a forward-
difference optimization scheme (see line 1), driven by the

3

Algorithm 1: ARGFree (agent i)
Data: Parameters α, δ ∈ R>0,
Initializations: Set k = 0, u0

i ∼ N (0, Ini
), x0

i ∈ Rni ,

σ0
i = ϕi(x

0
i), s0i = ϕi(x

0
i + δu0

i),

z0i = f̃i(x
0
i , σ

0
i) p0i = f̃i(x

0
i + δu0

i , s
0
i)

Optimization variable update:
1

xk+1
i = xk

i − α
pki − zki

δ
uk
i

Tracking variables update:
2 Generate uk+1

i ∼ N (0, Ini) and update:

3 σk+1
i =

∑
j∈Ni

aijσ
k
j + ϕi(x

k+1
i)− ϕi(x

k
i)

4 sk+1
i =

∑
j∈Ni

aijs
k
j + ϕi(x

k+1
i + δuk+1

i)− ϕi(x
k
i + δuk

i)

5 zk+1
i =

∑
j∈Ni

aijz
k
j + f̃i(x

k+1
i , σk+1

i)− f̃i(x
k
i , σ

k
i)

6 pk+1
i =

∑
j∈Ni

aijp
k
j + f̃i(x

k+1
i + δuk+1

i , sk+1
i)

− f̃i(x
k
i + δuk

i , s
k
i)

7 Transmit σk+1
i , sk+1

i , zk+1
i pk+1

i to neighbors
8 Set k ← k + 1 and go to line 1

Result: xk
i , estimate for the optimizer of (2)

term α
pk
i −zk

i

δ · uk
i , where α > 0 is the algorithm’s stepsize

and δ > 0 is a tunable parameter (hereafter called smoothing
ratio—see (5)). In this operation, the vector uk

i ∈ Rni

describes a random perturbation direction, while the vari-
ables pki and zki model local estimates for, respectively, the
quantities f(xk+δuk) and f(xk). To update the estimates pki
and zki , the algorithm uses two dynamic consensus tracking
schemes (see lines 5 and 6) driven, locally, by the signals
f̃i(x

k
i + δuk

i , σf(x
k + δuk)) and f̃i(x

k
i , σf(x

k)), respectively.
Finally, because evaluating the quantities σf(x

k + δuk) and
σf(x

k) would require global knowledge (through knowledge
of the global vectors xk, uk as well as of the functions ϕj(·)),
these quantities are replaced by the local estimates ski and
σk
i in lines 5–6. In other words, ski and σk

i are interpreted
as local proxies for, respectively, σf(x

k + δuk) and σf(x
k),

and estimated through a dynamic consensus tracking scheme
(see lines 3–4).

B. Convergence guarantees for ARGFree

We now establish convergence guarantees for ARGFree.
Before proceeding, we introduce some notation that will
be instrumental for stating the main results. Define f̃ :

Rn × RNd → R as

f̃(x, σ) :=
1

N

N∑
i=1

f̃i (xi, σi) ,

where, for a vector σ ∈ RNd, we used the notation σ =
col(σ1, . . . , σN), σi ∈ Rd. Observe that, by (1)–(2), the
following identity holds

f̃(x,1⊗ σf(x)) = f(x). (10)

Next, we introduce the vector notation:

xk = col
(
xk
1 , . . . , x

k
N

)
∈ Rn, uk = col

(
uk
1 , . . . , u

k
N

)
∈ Rn,

σk = col
(
σk
1 , . . . , σ

k
N

)
∈ RNd, sk = col

(
sk1 , . . . , s

k
N

)
∈ RNd,

zk = col
(
zk1 , . . . , z

k
N

)
∈ RN , pk = col

(
pk1 , . . . , p

k
N

)
∈ RN .

(11)

Using this notation the updates of Algorithm 1 can be written
in vector form2 as:

xk+1 = xk −
α

δ
(pk − zk)⊙ uk, (12a)

σk+1 = Aσk + ϕv (xk+1)− ϕv (xk) , (12b)
sk+1 = Ask + ϕv (xk+1 + δuk+1)− ϕv (xk + δuk) ,

(12c)

zk+1 = Azk + f̃v (xk+1, σk+1)− f̃v (xk, σk) , (12d)

pk+1 = Apk + f̃v (xk+1 + δuk+1, sk+1)− f̃v (xk + δuk, sk) ,
(12e)

where ϕv : Rn → RNd and f̃v : Rn × RNd → RN are:

ϕv(x) := col (ϕ1(x1), . . . , ϕN (xN)) ,

f̃v(x, σ) := col(f̃1(x1, σ1), . . . , f̃N (xN , σN)). (13)

We are now ready to present our first result, which formalizes
the tracking properties of the dynamic consensus tracking
scheme used in lines 3–6 of Algorithm 1. Recall that, for
v = col(v1, . . . , vN), the notation v̄ := 1

N

∑N
i=1 vi denotes

the average of its elements (see Section I for notation).
Lemma 5 (Properties of the tracking variables). Suppose
Assumptions 1–2 hold. Then, the states (σk, sk, zk, pk) gen-
erated by Algorithm 1 satisfy:

σ̄k = σf(xk), s̄k = σf(xk + δuk),

z̄k = f̃(xk, σk), p̄k = f̃(xk + δuk, σk), (14)

at every k ∈ Z≥0. □

The proof of this claim is presented in the appendix.
Lemma 5 establishes that the averages (computed across the
agents) of the state variables σk, sk, zk, pk coincide, respec-
tively, with the quantities σf(xk), σf(xk + δuk), f̃(xk, σk),
and f̃(xk + δuk, σk). This result implies that the aver-
ages across the network of the algorithm’s state variables
σk, sk, zk, pk track, respectively, the quantities they are de-
signed to represent (see the interpretation of the algorithm’s
variables presented in Section III-A).

2Given two vectors, v = col(v1, . . . , vN) ∈ RN , vi ∈ R, and
u = col(u1, . . . , uN) ∈ Rn, ui ∈ Rni , we denote by v ⊙ u =
(v1u1, . . . , vNuN) ∈ Rn their entrywise product.

4

Next, we state an instrumental lemma that will be used to
establish the convergence properties of Algorithm 1.
Lemma 6 (Contraction of randomized descent under for-
ward-difference gradient approximation). Let f : Rn → R
be an L1-smooth and µ-strongly convex function, and let x∗

be such that ∇f(x∗) = 0. Let u ∼ N (0,Σ) and consider
the forward-difference gradient-free oracle from (6):

gδ(x) =
f(x+ δu)− f(x)

δ
Σ−1u.

Then, for any x ∈ Rn, the following inequality holds:

Eu[∥x− αgδ(x)− x∗∥] ≤
√
1− βα

1 ∥x− x∗∥+ βα
2 , (15)

where

βα
1 := αµ(1− 2α(n+ 4)L1), (16)

βα
2 :=

√
αδ2L1(n+

α

2
(n+ 6)3L1). □

The proof of this claim is presented in the appendix.
Lemma 6 considers the iteration xk+1 = xk − αgδ(xk),
which can be interpreted as a (centralized) gradient-descent-
type method that employs the forward-difference approxi-
mation (6) in place of the exact gradient. The estimate (15)
establishes that these iterates are contractive with respect to
the optimizer x∗. Specifically, the contraction occurs with
rate

√
1− βα

1 , up to a neighborhood of radius βα
2 . Here,

convergence to an inexact point arises from employing a
randomized gradient estimate instead of the exact gradient.
The convergence rate and accuracy of the algorithm depend
on several optimization parameters; in particular, note that
βα
1 < 1 requires a stepize α < 1

2(n+4)L1
, and that the radius

of the convergence neighborhood (i.e., βα
2) can be controlled

(i.e., made arbitrarily small) by reducing the smoothing ratio
δ.
Motivated by the statement of Lemma 6, we impose the
following requirements on the optimization problem (2).
Assumption 2 (Properties of the loss functions). The
following statements hold:
(A2a) The function f(x) is Lipschitz smooth and µ-

strongly convex. We denote by L0, L1 > 0 constants
such that ∥f(x)−f(x′)∥ ≤ L0∥x−x′∥ and ∥∇f(x)−
∇f(x′)∥ ≤ L1∥x− x′∥, ∀x, x′ ∈ Rn.

(A2b) For each i ∈ [N], the function ϕi(xi) is Lipschitz
continuous. We let Lϕ > 0 be such that ∥ϕi(xi) −
ϕi(x

′
i)∥ ≤ Lϕ∥xi − x′

i∥, ∀xi, x
′
i ∈ Rni , i ∈ [N].

(A2c) For each i ∈ [N], the function f̃i is Lipschitz
continuous. We let L̃0,i > 0 be such that

∥f̃i(xi, σ)− f̃i(x
′
i, σ

′)∥ ≤ L̃0,i∥
[
xi

σ

]
−
[
x′
i

σ′

]
∥,

∀xi, x
′
i ∈ Rni , σ, σ′ ∈ Rd. Moreover, we let L̃0 :=

maxi L̃0,i. □

Note that strong convexity is required only for the global
objective f(·), while the individual local objectives f̃i(·, ·)
may possibly be non-convex or non-smooth. Additionally,
note that no differentiability is assumed for ϕi(·).

We are now ready to present a convergence estimate for
Algorithm 1, which is the main result of this paper. To this
end, we first introduce the following instrumental notation:

θk := col(∥xk − x∗∥ , ∥σk − J σk∥ , ∥sk − J sk∥ , (17)
∥zk − J zk∥ , ∥pk − J pk∥),

where x∗ ∈ Rn is the unique (see (A2a)) optimizer of (2).
Theorem 7 (Convergence estimate for Algorithm 1). Let
Assumptions 1-2 hold, suppose δ < α

√
n, L̃0 < 1−ρA

∥A−I∥ , and
that the stepsize α satisfies

0 < α < min

{
1

2(n+ 4)L1
, α∗

1, α
∗
2

}
, (18)

where

α∗
1 :=

1− ρA

Lϕ

(√
2(n+ 4)L1 +

2
√
n

δ

) ,
α∗
2 :=

1− ρA − L̃0∥A− I∥

L̃0 (1 + Lϕ)
(

2
√
n

δ +
√
2(n+ 4)L1

) .
Then, there exists η ∈ (0, 1) and ε ∈ R>0 such that, for all
k ∈ Z≥0, the iterates of Algorithm 1 satisfy:

E[θk] ≤ ηkE[θ0] +
1− ηk

1− η
ε. (19)

Moreover3, for large4 n,

ε = O(δ · E[∥uk+1 − uk∥2]}) = O (δn) . (20)

□

The proof of this claim is presented in Section IV. Theo-
rem (7) establishes that the iterates of Algorithm 1 converge
at rate η to a neighborhood of the solution of (2). Note that
precise estimates for η and ϵ are given shortly below (see
Theorem 8). In analogy with (15), convergence to an inexact
point arises from employing a randomized gradient estimate
instead of the exact gradient. The algorithm’s accuracy ε
depends on the smoothing ratio δ and on the problem dimen-
sion n, and can be controlled (i.e., made arbitrarily small)
by reducing δ. The algorithm’s stepsize α is required to be
sufficiently small, as given by the estimate (18). Note that the
upper bound α < 1

2(n+4)L1
recovers the maximum stepsize

allowed for the centralized method (see Lemma 6). The
additional bounds α < α∗

1 and α < α∗
2 are required to ensure

contraction of the dynamic consensus tracking variables
(lines 3–6 of Algorithm 1). Notice also that α∗

2 is guaranteed
to be a real positive number under the requirement L̃0 <
1−ρA

|A−I∥ , which can be interpreted as an upper bound on the
largest admitted variability on the functions f̃i (cf. (A2c))
in relation to the averaging rate of the communication graph
(measured by the parameters ρA and ∥A − I∥). Intuitively,
the larger L̃0, the faster the communication graph needs to
be at averaging (cf. Assumption 1). We conclude by giving
precise estimates for η and ε next.

3We say that f(x) = O(g(x)) as x → ∞ if there exist constants C > 0
and x0 ∈ R such that: |f(x)| ≤ C · |g(x)| for all x ≥ x0.

4That is, there exists n◦, such that, for any n ≥ n◦, the estimate holds.

5

Theorem 8 (Estimates for the convergence rate and accu-
racy of Algorithm 1). Under the assumptions of Theorem 7,
the convergence rate in (19) satisfies:

η ≤ max{η∗1 , η∗2 , η∗3}, (21)

where

η∗1 :=
√
1− αµ (1− 2α(n+ 4)L1) +

2α
√
n

δ
,

η∗2 := ρA + αLϕ

(√
2(n+ 4)L1 +

2
√
n

δ

)
,

η∗3 := ρA + αL̃0 (1 + Lϕ)

(√
2(n+ 4)L1 +

2
√
n

δ

)
+ L̃0∥A− I∥.

Moreover, the algorithm’s accuracy ε satisfies:

ε = δ

[
αL1n+ 2L2

combE[∥uk+1 − uk∥2]2 (22)

+
α2L2

1

2
(n+ 6)3

(
1 +

3

2
L2

comb

)]1/2

,

where L2
comb := L2

ϕ + L̃2
0 (1 + Lϕ)

2
. □

The proof of this claim is presented in Section IV. It is
worth comparing the convergence rate estimate established
by Theorem 8:

η∗1 =
√
1− αµ (1− 2α(n+ 4)L1) +

2nα2

δ2
,

with the corresponding estimate for the centralized algorithm
given in Lemma 6 (see (15)):√

1− βα
1 =

√
1− αµ (1− 2α(n+ 4)L1).

The degradation in rate affecting the distributed algorithm
(characterized by the additional term 2nα2

δ2) can be traced
back to the presence of the tracking variables σk, sk, zk, pk.
Intuitively, while the centralized algorithm has direct access
to the quantities f(x+δu) and f(x), the distributed algorithm
must rely on approximations of these quantities via the vari-
ables pk and zk, which in turn slows down the descent step.
The remaining estimates, η∗2 and η∗3 , can be interpreted as
bounds on the convergence rates of the tracking variables—
specifically, η∗2 corresponds to the convergence of (σk, sk),
while η∗3 pertains to (zk, pk).

IV. CONVERGENCE ANALYSIS OF THE ALGORITHMS

This section is devoted to establishing the bounds presented
theorems 7 and 8. Our approach is based on showing that, for
all k ∈ Z≥0, the quantity θk satisfies the following bound:

E[θk+1] ≤M(α)E[θk] + b, (23)

where M(α) is a Schur stable matrix with spectral radius
η and b is such that ∥b∥ ≤ ε. We begin with the proof
of Theorem 7, which is organized into seven subsections
(Section IV-A–IV-G). We conclude by presenting the proof
of Theorem 8 in Section IV-H.

Fig. 1. Simulation results comparing the proposed methods with gradient-
based techniques from [8] for a robotic formation control problem. All
results are averaged over 10 Monte Carlo runs, and shaded regions represent
±σ confidence intervals. (Top) Noiseless setting. (Bottom) Noisy setting.
The results show that, while in the absence of noise gradient-based methods
achieve faster convergence and higher accuracy, under noisy conditions
our approach outperforms them, despite requiring less information. See
Section V-A for further discussion.

A. Bound for E[∥xk+1 − x∗∥]
We have the following estimate:

Euk
[∥xk+1 − x∗∥] = Euk

[∥xk −
α

δ
(pk − zk)uk − x∗∥]

≤ Euk
[∥xk − αgδ(xk)− x∗∥]︸ ︷︷ ︸

:= a

+ αE[∥gδ(xk)−
pk − zk

δ
uk∥]︸ ︷︷ ︸

:= b

.

By application of Lemma 6, we have a ≤
√
1− βα

1 ∥xk −
x∗∥+ βα

2 ; The term b satisfies:

b ≤ αEuk
[∥gδ(xk)− 1⊗

p̄k − z̄k
δ

uk∥]︸ ︷︷ ︸
:= c

+
α

δ
Euk

[∥(pk − 1⊗ p̄k)uk∥]︸ ︷︷ ︸
:= d

+
α

δ
Euk

[∥(zk − 1⊗ z̄k)uk∥]︸ ︷︷ ︸
:= e

, (24)

where the first inequality follows by adding and subtracting
1⊗ p̄k−z̄k

δ uk inside the norm. Next, observe that c
(14),(6)
= 0;

the remaining terms satisfy:

d
(3),(7)
≤ α

√
n

δ
∥pk − J pk∥,

e
(3),(7)
≤ α

√
n

δ
∥zk − J zk∥. (25)

6

<latexit sha1_base64="YrZgqLZy92tWRQO5v6F2zPfHhxs=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRahXkoipXosePFYwX5AE8Jmu2mXbjZhdyItIX/FiwdFvPpHvPlv3LY5aOuDgcd7M8zMCxLOFNj2t1Ha2t7Z3SvvVw4Oj45PzNNqT8WpJLRLYh7LQYAV5UzQLjDgdJBIiqOA034wvVv4/ScqFYvFI8wT6kV4LFjICAYt+WbVVWwcYd8FOoMszOuzK9+s2Q17CWuTOAWpoQId3/xyRzFJIyqAcKzU0LET8DIsgRFO84qbKppgMsVjOtRU4IgqL1venluXWhlZYSx1CbCW6u+JDEdKzaNAd0YYJmrdW4j/ecMUwlsvYyJJgQqyWhSm3ILYWgRhjZikBPhcE0wk07daZIIlJqDjqugQnPWXN0nvuuG0Gq2HZq3dLOIoo3N0gerIQTeoje5RB3URQTP0jF7Rm5EbL8a78bFqLRnFzBn6A+PzBxVulHA=</latexit>

ωf(x)
<latexit sha1_base64="Acw7qXvmtS+6Sx6YeCnG2Wh1/2Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6e+6JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wrd1dVuqXeRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AFf7I3V</latexit>xi

<latexit sha1_base64="EnxanAk7nttx9auLxOORYdqq9a0=">AAACInicbVDJSgNBEO1xN25Rj14agxBBwoyIy03w4jGCUSEThp5OTdLY3TN010jCkG/x4q948aCoJ8GPsbMc3B4UPN6roqpenElh0fc/vKnpmdm5+YXF0tLyyupaeX3jyqa54dDgqUzNTcwsSKGhgQIl3GQGmIolXMe3Z0P/+g6MFam+xH4GLcU6WiSCM3RSVD4JldBR0YvEgIYoZBtoEolQQoJVJ+7R0IqOYlGI0MMiGVR7u6ERnS7uRuWKX/NHoH9JMCEVMkE9Kr+F7ZTnCjRyyaxtBn6GrYIZFFzCoBTmFjLGb1kHmo5qpsC2itGLA7rjlDZNUuNKIx2p3ycKpqztq9h1KoZd+9sbiv95zRyT41YhdJYjaD5elOSSYkqHedG2MMBR9h1h3Ah3K+VdZhhHl2rJhRD8fvkvudqvBYe1w4uDyunBJI4FskW2SZUE5IicknNSJw3CyT15JM/kxXvwnrxX733cOuVNZjbJD3ifX8r9pGc=</latexit>

min
xi

f̃i (xi,ωf(x))

<latexit sha1_base64="8UbbUXKMAg+oa3NE9rSmBOK65Is=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWvK7Ur/M4inAG53AJHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDeHWMsQ==</latexit>

0

Fig. 2. (Left) Illustration of the robotic formation control problem studied in Section V. (Center) Trajectories followed by the robots when applying the
algorithm from [8], which relies on exact gradient information. (Right) Implementation of the modified ARGFree algorithm. Overall, ARGFree achieves
performance comparable to that of exact gradient methods, while requiring no gradient information for its implementation. See Section V-A for details.

Summarizing, we have derived the estimate:

Euk
[∥xk+1 − x∗∥] ≤

√
1− βα

1 ∥xk − x∗∥+ βα
2 (26)

+ γα
1 (∥zk − J zk∥+ ∥pk − J pk∥),

where we defined γα
1 =: α

√
n/δ.

B. An auxiliary bound for E[∥xk+1 − xk∥]

We have the following estimate:

Euk
[∥xk+1 − xk∥] = αE[∥pk − zk

δ
uk∥]

≤ αEuk
[∥gδ(xk)−

pk − zk
δ

uk∥]︸ ︷︷ ︸
= b

+αEuk
[∥gδ(xk)∥]

(24),(25)
≤ γα

1 (∥pk − J pk∥+ ∥zk − J zk∥)
+ αEuk

[∥gδ(xk)∥]
(9d)
≤ γα

1 (∥pk − J pk∥+ ∥zk − J zk∥)

+ α

(
δ2

2
L2
1(n+ 6)3 + 2(n+ 4)∥∇f(x)∥2

)1/2

≤ γα
1 (∥pk − J pk∥+ ∥zk − J zk∥) + γα

2

+ γα
3 ∥xk − x∗∥, (27)

where for the third inequality we combined (9d) with
Jensen’s inequality (which, for a scalar a ≥ 0, gives
E[
√
a] ≤

√
E[a]) and the last inequality we used

∥∇f(x)∥ = ∥∇f(x) − ∇f(x∗)∥ ≤ L1∥x − x∗∥ and we
defined γα

2 := 1
2αδL1(n+6)3/2 and γα

3 :=
√
2(n+ 4)αL1.

C. Bound for E[∥σk+1 − J σk+1∥]
We have the estimate:

Euk
[∥σk+1 − J σk+1∥] (28)
(12)
≤ ∥Aσk − JAσk∥

+ Euk
[∥(I − J)(ϕv (xk+1)− ϕv (xk))∥]

(4)
≤ ρA∥σk − J σk∥
+ Euk

[∥ϕv (xk+1)− ϕv (xk) ∥]
(A2b)
≤ ρA∥σk − J σk∥+ LϕEuk

[∥xk+1 − xk∥]
(27)
≤ ρA∥σk − J σk∥+ Lϕγ

α
1 ∥pk − J pk∥

+ Lϕγ
α
1 ∥zk − J zk∥+ Lϕγ

α
2 + Lϕγ

α
3 ∥xk − x∗∥,

where for the second inequality we used ∥I − J ∥ = 1.

D. Bound for E[∥sk+1 − J sk+1∥]
Notice that sk+1 has two sources of stochasticity at time k:
uk and uk+1. We thus have:

Euk,uk+1
[∥sk+1 − J sk+1∥] (29)

(12)
≤ ∥Ask − JAsk∥

+ Euk,uk+1
[∥(I − J)(ϕv (xk+1 + δuk+1)

− ϕv (xk + δuk))∥]
(4)
≤ ρA∥sk − J sk∥

+ Euk,uk+1
[∥ϕv (xk+1 + δuk+1)− ϕv (xk + δuk) ∥]

(A2b)
≤ ρA∥sk − J sk∥+ LϕEuk

[∥xk+1 − xk∥]
+ LϕδEuk,uk+1

[∥uk+1 − uk∥]
(27)
≤ ρA∥sk − J sk∥+ Lϕγ

α
1 ∥pk − J pk∥

+ Lϕγ
α
1 ∥zk − J zk∥+ Lϕγ

α
2 + Lϕγ

α
3 ∥xk − x∗∥

+ LϕδEuk,uk+1
[∥uk+1 − uk∥],

where for the second inequality we used ∥I − J ∥ = 1.

7

E. Bound for E[∥zk+1 − J zk+1∥]
Before bounding the desired term, notice that:

Euk
[∥σk+1 − σk∥] (30)
(12)
≤ ∥Aσk − σk∥+ Euk

[∥ϕv (xk+1)− ϕv (xk))∥]
(A2b)
≤ ∥(A− I)(σk − J σk)∥+ LϕEuk

[∥xk+1 − xk∥]
(27)
≤ ∥A− I∥∥σk − J σk∥+ Lϕγ

α
3 ∥xk − x∗∥

+ Lϕγ
α
1 (∥pk − J pk∥+ ∥zk − J zk∥) + Lϕγ

α
2 ,

where, for the second inequality, we used the identity Aσk−
σk

(4)
= (A− I)(σk − J σk). We then have:

Euk
[∥zk+1 − J zk+1∥] (31)
(12)
≤ ∥Azk − JAzk∥

+ Euk
[∥(I − J)(f̃v (xk+1, σk+1)− f̃v (xk, σk))∥]

(4),(A2c)
≤ ρA∥zk − J zk∥

+ L̃0(Euk
[∥xk+1 − xk∥] + Euk

[∥σk+1 − σk∥])
(27),(30)
≤ γα

4 ∥xk − x∗∥+ γ5∥σk − J σk∥
+ (ρA + γα

6)∥zk − J zk∥+ γα
6 ∥pk − J pk∥+ γα

7 ,

where in the last step we defined γα
4 := L̃0γ

α
3 (1+Lϕ), γ5 :=

L̃0∥A−I∥, γα
6 := L̃0γ

α
1 (1+Lϕ), and γα

7 := L̃0γ
α
2 (1+Lϕ).

F. Bound for E[∥pk+1 − J pk+1∥]
We first need the following intermediate bound:

Euk,uk+1
[∥sk+1 − sk∥] (32)

(12)
≤ ∥Ask − sk∥

+ Euk
[∥ϕv (xk+1 + δuk+1)− ϕv (xk + δuk))∥]

(A2b)
≤ ∥(A− I)(sk − J sk)∥

+ LϕEuk
[∥xk+1 − xk∥] + LϕδEuk,uk+1

[∥uk+1 − uk∥]
(27)
≤ ∥A− I∥∥sk − J sk∥+ Lϕγ

α
3 ∥xk − x∗∥

+ Lϕγ
α
1 (∥pk − J pk∥+ ∥zk − J zk∥) + Lϕγ

α
2 ,

+ LϕδEuk,uk+1
[∥uk+1 − uk∥].

Then,

Euk,uk+1
[∥pk+1 − J pk+1∥] (33)

(12)
≤ ∥Apk − JApk∥

+ Euk,uk+1
[∥(I − J)(f̃v (xk+1 + δuk+1, sk+1)

− f̃v (xk + δuk, sk))∥]
(4),(A2c)
≤ ρA∥pk − J pk∥+ 2L̃0Euk

[∥xk+1 − xk∥]
+ L̃0Euk,uk+1

[∥sk+1 − sk∥]
+ L̃0δEuk,uk+1

[∥uk+1 − uk∥]
(27),(30)
≤ γα

4 ∥xk − x∗∥+ γ5∥sk − J sk∥
+ γα

6 ∥zk − J zk∥+ (ρA + γα
6)∥pk − J pk∥

+ γα
7 + γ8Euk,uk+1

[∥uk+1 − uk∥],

where we defined γ8 := L̃0δ(1 + Lϕ).

G. Proof of Theorem 7

By combining the estimates (26), (28), (29), (31), and (33),
we conclude that (23) holds with

M(α) =


√
1− βα

1 0 0 γα
1 γα

1

Lϕγ
α
3 ρA 0 Lϕγ

α
1 Lϕγ

α
1

Lϕγ
α
3 0 ρA Lϕγ

α
1 Lϕγ

α
1

γα
4 γ5 0 ρA + γα

6 γα
6

γα
4 0 γ5 γα

6 ρA + γα
6


(34)

and

b =


βα
2

Lϕγ
α
2

Lϕγ
α
2 + LϕδEuk,uk+1

[∥uk+1 − uk∥]
γα
7

γα
7 + γ8Euk,uk+1

[∥uk+1 − uk∥]

 .

Notice that b satisfies ∥b∥ ≤ O(δ · E[∥uk+1 − uk∥2]}). By
substituting the expressions of the constants involved, we
have that, for5 α→ 0+,

M(α) =


√
1− αµ 0 0 0 0
0 ρA 0 0 0
0 0 ρA 0 0
0 γ5 0 ρA 0
0 0 γ5 0 ρA

+ o(α),

which proves that the spectral radius of M(α) is smaller than
1 for sufficiently small α > 0. To determine an estimate on
the largest value of α that guarantees ρ(M(α)) < 1, we
leverage the Gershgorin Circle Theorem. An application of
the theorem to row 1 of M(α) gives the condition:√

1− αµ (1− 2α(n+ 4)L1) < 1− 2α
√
n

δ
. (35a)

Squaring both sides of (35a) and simplifying yields:

µ(1− 2α(n+ 4)L1) >
4
√
n

δ
− 4αn

δ2
.

The condition α < 1
2(n+4)L1

ensures that the left-hand
side is positive, while the assumption δ ≤ α

√
n guarantees

that the right-hand side is non-negative. Hence, under the
assumptions of Theorem 7, the above inequality holds, and
consequently (35a) is also satisfied. Applying Gershgorin’s
theorem to rows 2–3 of M(α) gives:

ρA + αLϕ

(√
2(n+ 4)L1 +

2
√
n

δ

)
< 1 (35b)

which gives the estimate α∗
1; applying Gershgorin’s theorem

to rows 4-5 of M(α) gives:

ρA + L̃0∥A− I∥ (35c)

+ L̃0 (1 + Lϕ)α

(
2
√
n

δ
+
√
2(n+ 4)L1

)
< 1

which gives the estimate α∗
2.

5We say f(x) = o(g(x)) as x → a if limx→a
f(x)
g(x)

= 0.

8

We have thus shown that the estimate (19) holds, where
M(α) is a Schur-stable matrix with spectral radius η =
ρ(M(α)), and b is a vector satisfying ∥b∥ = O(δ E[∥uk+1−
uk∥2]). Hence, the bound (19) is established with ε =
O(δ E[∥uk+1 − uk∥2]), consistent with the first identity
in (20).
Finally, we are left to prove the last identity in (20); that is,
∥b∥ = O (δn) . To this end, we apply the inequality (a +
b)2 ≤ 2a2 + 2b2 and bound the norm of the vector b as:

∥b∥ ≤ δ

[
αL1n+

α2L2
1

2
(n+ 6)3 (36)

+ 2
(
L2
ϕ + L̃2

0 (1 + Lϕ)
2
)
E[∥uk+1 − uk∥2]

+
3

4
α2L2

1(n+ 6)3
(
L2
ϕ + L̃2

0 (1 + Lϕ)
2
)]1/2

≤ δ

[
αL1n+ 8n2

(
L2
ϕ + L̃2

0 (1 + Lϕ)
2
)

+ α2L2
1(n+ 6)3

(
1

2
+

3

4
L2
ϕ +

3

4
L̃2
0 (1 + Lϕ)

2

)]1/2

= δO(max{
√
αn, n, αn3/2}).

where the last inequality follows from E[∥uk+1 − uk∥2] ≤
2n (which follows from (7), since uk+1 and uk are indepen-
dent). By noting that α = O(1n), it follows that the second
term dominates the maximization for large n and the estimate
∥b∥ ≤ ε = O (δn) follows.

H. Proof of Theorem 8

The estimate (21) follows by noting that, from (23), η can
be selected to be an upper bound for the spectral radius of
M(α) and, by using (34) and (35), (21) follows. Finally, the
expression (22) follows from (23) and the estimate (24).

V. NUMERICAL AND EXPERIMENTAL VALIDATION ON
ROBOTIC FORMATION CONTROL PROBLEMS

In this section, we demonstrate the applicability of the
framework through numerical simulations and experiments.
We consider a multi-agent robotic formation control problem
(see Fig. 2(Left)), where each agent i represents a robot with
planar position xi ∈ R2, aiming to reach its privately known
target ri ∈ R2. Moreover, the robots seek to maintain swarm
cohesion, which is enforced by penalizing large deviations of
xi from the swarm barycenter σf(x) :=

1
N

∑N
i=1 xi. These

objectives can be modeled using an instance of (1) with
ϕi(xi) = xi and

f̃i(xi, σf(x)) =
γi
2
∥xi − ri∥2 +

1

2
∥xi − σf(x)∥2,

where γi > 0 models the extent to which robot i priori-
tizes reaching its target, over maintaining cohesion with the
swarm. In the remainder, we use N = 5 and γi = 2 ∀i.

A. Numerical simulations

For the numerical simulations, both the target positions
ri and the initial positions x0

i were generated uniformly
at random within the interval [0, 10]. The communication
topology was chosen as a random graph with an Erdős–Rényi
topology, using an edge probability p = 0.6 and uniform
edge weights, normalized to satisfy Assumption 1. Simu-
lation results from an implementation of Algorithm 1 are
presented in Fig.s 1 and 2. The algorithm’s parameters have
been chosen as follows: α = 2 · 10−3, δ = 10−5. The top
plot of Fig. 1 shows that ARGFree (orange line) enables
the agents to reach the desired configuration with a relative
function value error on the order of 10−1. The figure also
proposes a comparison with the method from [8] (green line),
which relies on exact gradient information. Compared to our
approach, exact gradient methods exhibit faster convergence
and higher accuracy, though they cannot be implemented
under requirements (R1)–(R2). The plot further includes a
modified version of ARGFree (blue line), in which the
exploration signal is filtered through a damping term of the
form uk+1

i = Biu
k
i + vk+1

i , where Bi ∈ R2×2 satisfies
0.9 < ρ(Bi) < 1, and vi ∼ N (0, 0.16I2). Intuitively, this
damping mitigates abrupt variations in the exploration signal
uk
i , allowing the tracking variables ski and pki to better follow

the perturbed function evaluations they are designed to track.
This yields a reduction in the relative function value error,
as illustrated in Fig. 1(Top).
The bottom plot of Fig. 1 illustrates the methods’ behavior in
the presence of measurement noise. Specifically, noise was
introduced by replacing each xi with wixi in the right-hand
side of lines 1–7 of Algorithm 1, where wi ∼ N (0, 0.2I2),
modeling multiplicative noise in the localization sensors. The
results in Fig. 1(Bottom) show that, in the presence of noise,
ARGFree achieves a comparable convergence rate and su-
perior steady-state accuracy relative to the exact gradient-
based method. This highlights one of the main advantages of
the proposed approach: it requires not only less information,
but also outperforms exact gradient techniques under noisy
conditions. This behavior can be attributed to the fact that,
in exact gradient-based methods, errors in the positions xi

tend to be amplified through gradient evaluations, whereas
ARGFree relies directly on loss evaluations, thus operating
directly on the performance metric to be minimized and
implicitly neglecting the effect of noise on the gradients.
Fig. 2 illustrates the paths followed by the robots. Specifi-
cally, it compares the exact gradient-based method from [8]
(center) with the modified version of ARGFree (right).
Both algorithms drive the robots to asymptotic configura-
tions (marked by ‘×’ symbols) that balance reaching their
individual targets (denoted by ‘✶’ symbols) and maintaining
proximity to the swarm barycenter (denoted by the ‘+’ sym-
bol). As expected, the trajectories generated by ARGFree
are more irregular due to the use of randomized perturba-
tions for gradient estimation; however, the robots converge
asymptotically to (visually) nearly identical configurations.
This demonstrates that the proposed approach achieves com-

9

Fig. 3. Results from the experimental implementation of ARGFree on a set of agents equipped with Raspberry Pi embedded systems. (Left) Photo of
the experimental setup. Each robot is a Balboa 32U4 platform equipped with a Raspberry Pi Zero 2 W module and a Decawave DWM1001 module for
localization. Localization is achieved via the Decawave modules, which estimate relative distances to four fixed anchors (at known positions) using range
measurements based on Time-of-Arrival (ToA) information. (Right) Paths followed by the robots during the experiment. See Section V-B for details and
discussion.

parable performance to exact gradient methods despite not
requiring gradient information for its implementation.

B. Experimental results

We now present results from an experimental implementation
of ARGFree on a set of agents equipped with embedded
communication an localization systems6. The experimental
setup, illustrated in Fig. 3, consists of Balboa 32U4 robots,
each equipped with a Raspberry Pi Zero 2 W module
and a Decawave DWM1001 ultra-wideband (UWB) module.
Inter-agent communication is implemented via the Rasp-
berry Pi’s Bluetooth 5.0 interface using Bluetooth Classic,
while localization is performed by the Decawave modules,
which estimate relative distances to fixed anchors (placed at
known positions) based on range measurements. Specifically,
distances are derived from Time-of-Arrival (ToA) data, and
the Decawave firmware performs multilateration using Time-
Difference-of-Arrival (TDoA) information to locally estimate
each agent’s position.
Simulation results of the ARGFree implementation with
α = 2×10−2 and δ = 10−3 on the described setup are shown
in Fig. 3(right). Experiments were conducted over a duration
of 2 minutes and 10 seconds, corresponding to 500 iterations,
and featured asynchronous updates with delayed position
readings from each robot. To focus on the algorithmic
performance of ARGFree without additional complexities
arising from robot motion control, the robots’ movements
were simulated. The results in Fig. 3(Right) indicate that
each robot converges to a position representing a trade-off
between its desired target ri and the evolving barycenter
σ(x). Despite the presence of noise due to randomized
perturbations, ARGFree exhibited satisfactory convergence
and robustness in this experimental setup, showcasing the

6The code used in the experiments is available at https://github.
com/speciale7/gf_dist_opt.

potential of the method in this application.

VI. CONCLUSIONS

We have proposed ARGFree, a distributed algorithm for
solving aggregative cooperative optimization problems with-
out requiring explicit gradient information. The method relies
on randomized finite-difference approximations of the cost
gradient. We established that the algorithm converges to a
neighborhood of the optimizer, whose size can be controlled
through an appropriate choice of the smoothing parame-
ter. Experimental validation on a robotic formation control
problem, conducted on a team of embedded systems built
on Segway-type robots, demonstrated the effectiveness of
the proposed method. This work opens the opportunity for
several directions of future work, including the use of single-
point and multi-point gradient approximations, and adapta-
tions of the methods in feedback optimization configurations.

APPENDIX I
PROOF OF LEMMA 5

We begin by proving σ̄k = σf(xk). By multiplying by 1
N 1

⊤

both sides of (12b) and by using 1
N 1

⊤A = 1
N 1

⊤ (from
Assumption 1), we have:

σ̄k+1 = σ̄k +
1

N

N∑
i=1

(
ϕi(x

k+1
i)− ϕi(x

k
i)
)
.

By telescoping the sum:

σ̄k+1 = σ̄0 +
1

N

N∑
i=1

(
ϕi(x

k+1
i)− ϕi(x

0
i)
)

=
1

N

N∑
i=1

ϕi(x
k+1
i),

where the last identity follows from the choice of initial
conditions σ0

i = ϕi(x
0
i). The first assertion thus follows

10

https://github.com/speciale7/gf_dist_opt
https://github.com/speciale7/gf_dist_opt

by definition of σf(x) (see (1)). The proof of the remaining
assertions follows by iterating the argument.

APPENDIX II
PROOF OF LEMMA 6

We begin by recalling the following basic properties: (a)
f(x) − f(x⋆) ≤ ∇f(x)T (x − x⋆), which follows from
convexity of f(x); and (b) ∥∇f(x)∥2 ≤ 2L1 (f(x)− f(x⋆))
which follows from Lipschitz smoothness. We have:

Eu[∥x− αgδ(x)− x∗∥2]
= ∥x− x∗∥2 − 2α ⟨Eu[gδ(x)], x− x∗⟩+ α2Eu[∥gδ(x)∥2]
(9d)
≤ ∥x− x∗∥2 − 2α ⟨Eu[gδ(x)], x− x∗⟩

+ α2

[
δ2(n+ 6)3

2
L2
1 + 2(n+ 4)∥∇f(x)∥2

]
(8),(a)
≤ ∥x− x∗∥2 − 2α (fδ(x)− fδ(x

⋆))

+ α2

[
δ2(n+ 6)3

2
L2
1 + 2(n+ 4)∥∇f(x)∥2

]
(9b),(b)
≤ ∥x− x∗∥2 − 2α(f(x)− fδ(x

∗))

+ α2

[
δ2(n+ 6)3

2
L2
1 + 4(n+ 4)L1(f(x)− f(x∗))

]
(9a)
≤ ∥x− x∗∥2 − 2α (1− 2α(n+ 4)L1) (f(x)− f(x∗))

+ δ2nαL1 +
δ2(n+ 6)3

2
α2L2

1

≤ ∥x− x∗∥2 − αµ(1− 2α(n+ 4)L1)∥x− x∗∥2

+ δ2nαL1 +
δ2(n+ 6)3

2
α2L2

1,

where for the last inequality we used f(x) − f (x∗) ≥
µ/2 ∥x− x∗∥2 . This establishes that

Eu[∥x− αgδ(x)− x∗∥2] ≤ (1− βα
1)∥x− x∗∥2 + (βα

2)
2.

(37)

To conclude, notice that

Eu[∥x− αgδ(x)− x∗∥] ≤
(
Eu[∥x− αgδ(x)− x∗∥2]

)1/2
(37)
≤

√
1− βα

1 ∥x− x∗∥+ βα
2 ,

where the first bound follows by Jensen’s inequality, and the
second one from

√
a+ b ≤

√
a+
√
b for a, b ≥ 0.

REFERENCES

[1] A. Nedić and J. Liu, “Distributed optimization for control,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 1, pp.
77–103, 2018. doi: 10.1146/annurev-control-060117-105131

[2] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong,
H. Wang, Z. Lin, and K. H. Johansson, “A survey of distributed
optimization,” Annual Reviews in Control, vol. 47, pp. 278–305, 2019.
doi: 10.1016/j.arcontrol.2019.05.006

[3] G. Notarstefano, I. Notarnicola, and A. Camisa, “Distributed opti-
mization for smart cyber-physical networks,” Foundations and Trends
in Systems and Control, vol. 7, no. 3, pp. 253–383, 2019. doi:
10.1561/9781680836196

[4] A. Testa, G. Carnevale, and G. Notarstefano, “A tutorial on distributed
optimization for cooperative robotics: from setups and algorithms to
toolboxes and research directions,” Proceedings of the IEEE, 2025.
doi: 10.1109/jproc.2025.3557698/mm1

[5] A. Mehrnoosh and G. Bianchin, “Optimization of linear multi-agent
dynamical systems via feedback distributed gradient descent methods,”
arXiv preprint, Jul. 2025, arXiv:2403.18386.

[6] G. Carnevale, N. Mimmo, and G. Notarstefano, “Noncon-
vex distributed feedback optimization for aggregative coopera-
tive robotics,” Automatica, vol. 167, p. 111767, 2024. doi:
10.1016/j.automatica.2024.111767

[7] G. Bianchin, M. Vaquero, J. Cortés, and E. Dall’Anese, “k-
dimensional agreement in multiagent systems,” IEEE Transactions on
Automatic Control, vol. 69, no. 12, pp. 8978–08 985, Dec. 2024. doi:
10.1109/TAC.2024.3431108

[8] X. Li, L. Xie, and Y. Hong, “Distributed aggregative optimization
over multi-agent networks,” IEEE Transactions on Automatic Control,
vol. 67, no. 6, pp. 3165–3171, 2022. doi: 10.1109/tac.2021.3095456

[9] S. Liang, P. Yi, and Y. Hong, “Distributed Nash equilibrium seeking
for aggregative games with coupled constraints,” Automatica, vol. 85,
pp. 179–185, 2017. doi: 10.1016/j.automatica.2017.07.064

[10] X. Li, X. Yi, and L. Xie, “Distributed online convex optimiza-
tion with an aggregative variable,” IEEE Transactions on Con-
trol of Network Systems, vol. 9, no. 1, pp. 438–449, 2021. doi:
10.1109/tcns.2021.3107480

[11] T. Wang and P. Yi, “Distributed projection-free algorithm for con-
strained aggregative optimization,” International Journal of Robust
and Nonlinear Control, vol. 33, no. 10, pp. 5273–5288, 2023. doi:
10.1002/rnc.6640

[12] L. Chen, G. Wen, X. Fang, J. Zhou, and J. Cao, “Achieving linear con-
vergence in distributed aggregative optimization over directed graphs,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 54, no. 7, pp. 4529–4541, 2024. doi: 10.1109/tsmc.2024.3382173

[13] G. Carnevale and G. Notarstefano, “A learning-based distributed
algorithm for personalized aggregative optimization,” in IEEE
Conf. on Decision and Control, 2022, pp. 1576–1581. doi:
cdc51059.2022.9992678

[14] R. Brumali, G. Carnevale, and G. Notarstefano, “Data-driven dis-
tributed optimization via aggregative tracking and deep-learning,”
arXiv preprint, 2025, arXiv:2503.04668.

[15] Y. Nesterov and V. Spokoiny, “Random gradient-free minimization
of convex functions,” Foundations of Computational Mathematics,
vol. 17, pp. 527–566, 2017. doi: 10.1007/s10208-015-9296-2

[16] Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms
for nonconvex multiagent optimization,” IEEE Transactions on Con-
trol of Network Systems, vol. 8, no. 1, pp. 269–281, 2020. doi:
10.1109/tcns.2020.3024321

[17] D. Hajinezhad, M. Hong, and A. Garcia, “ZONE: Zeroth-order non-
convex multiagent optimization over networks,” IEEE Transactions
on Automatic Control, vol. 64, no. 10, pp. 3995–4010, 2019. doi:
10.1109/TAC.2019.2896025

[18] E. Mhanna and M. Assaad, “Single point-based distributed zeroth-
order optimization with a non-convex stochastic objective function,”
in International Conference on Machine Learning. PMLR, 2023, pp.
24 701–24 719.

[19] J. Lu and C. Y. Tang, “Zero-gradient-sum algorithms for distributed
convex optimization: The continuous-time case,” IEEE Transactions
on Automatic Control, vol. 57, no. 9, pp. 2348–2354, 2012. doi:
10.1109/acc.2011.5991466

[20] Y. Pang and G. Hu, “Randomized gradient-free distributed optimiza-
tion methods for a multiagent system with unknown cost function,”
IEEE Transactions on Automatic Control, vol. 65, no. 1, pp. 333–340,
2019. doi: 10.1109/tac.2019.2914025

[21] D. Yuan and D. W. Ho, “Randomized gradient-free method for multi-
agent optimization over time-varying networks,” IEEE transactions on
neural networks and learning systems, vol. 26, no. 6, pp. 1342–1347,
2014. doi: 10.1109/tnnls.2014.2336806

[22] A. K. Sahu and S. Kar, “Decentralized zeroth-order con-
strained stochastic optimization algorithms: Frank–wolfe and vari-
ants with applications to black-box adversarial attacks,” Proceed-
ings of the IEEE, vol. 108, no. 11, pp. 1890–1905, 2020. doi:
10.1109/jproc.2020.3012609

[23] D. Wang, J. Zhou, Z. Wang, and W. Wang, “Random gradient-
free optimization for multiagent systems with communication noises
under a time-varying weight balanced digraph,” IEEE Transactions on

11

http://dx.doi.org/10.1146/annurev-control-060117-105131
http://dx.doi.org/10.1016/j.arcontrol.2019.05.006
http://dx.doi.org/10.1561/9781680836196
http://dx.doi.org/10.1109/jproc.2025.3557698/mm1
http://dx.doi.org/10.1016/j.automatica.2024.111767
http://dx.doi.org/10.1109/TAC.2024.3431108
http://dx.doi.org/10.1109/tac.2021.3095456
http://dx.doi.org/10.1016/j.automatica.2017.07.064
http://dx.doi.org/10.1109/tcns.2021.3107480
http://dx.doi.org/10.1002/rnc.6640
http://dx.doi.org/10.1109/tsmc.2024.3382173
http://dx.doi.org/cdc51059.2022.9992678
http://dx.doi.org/10.1007/s10208-015-9296-2
http://dx.doi.org/10.1109/tcns.2020.3024321
http://dx.doi.org/10.1109/TAC.2019.2896025
http://dx.doi.org/10.1109/acc.2011.5991466
http://dx.doi.org/10.1109/tac.2019.2914025
http://dx.doi.org/10.1109/tnnls.2014.2336806
http://dx.doi.org/10.1109/jproc.2020.3012609

Systems, Man, and Cybernetics: Systems, vol. 50, no. 1, pp. 281–289,
2017. doi: 10.1109/tsmc.2017.2757265

[24] O. Bilenne, P. Mertikopoulos, and E. V. Belmega, “Fast optimization
with zeroth-order feedback in distributed, multi-user MIMO systems,”
IEEE Transactions on Signal Processing, vol. 68, pp. 6085–6100,
2020. doi: 10.1109/tsp.2020.3029983

[25] N. Mimmo, G. Carnevale, A. Testa, and G. Notarstefano, “Ex-
tremum seeking tracking for derivative-free distributed optimiza-
tion,” IEEE Transactions on Control of Network Systems, 2024. doi:
10.1109/TCNS.2024.3510368 (Early access).

[26] Y. Huang and J. Hu, “Zeroth-order learning in continuous games via
residual pseudogradient estimates,” IEEE Transactions on Automatic
Control, 2024. doi: 10.1109/tac.2024.3479874 (Early access).

[27] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis,
“Convergence in multiagent coordination, consensus, and flocking,”
in IEEE Conf. on Decision and Control, 2005, pp. 2996–3000. doi:
10.1109/cdc.2005.1582620

[28] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transac-
tions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004. doi:
10.23919/ecc.2007.7068297

[29] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of con-
sensus problems in multi-agent coordination,” in American Con-
trol Conference, Portland, OR, Jun. 2005, pp. 1859–1864. doi:
10.1109/acc.2005.1470239

[30] B. Gharesifard and J. Cortés, “Distributed strategies for generating
weight-balanced and doubly stochastic digraphs,” European Journal
of Control, vol. 18, no. 6, pp. 539–557, 2012. doi: 10.3166/ejc.18.539-
557

[31] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1985. ISBN 0521386322

12

http://dx.doi.org/10.1109/tsmc.2017.2757265
http://dx.doi.org/10.1109/tsp.2020.3029983
http://dx.doi.org/10.1109/TCNS.2024.3510368
http://dx.doi.org/10.1109/tac.2024.3479874
http://dx.doi.org/10.1109/cdc.2005.1582620
http://dx.doi.org/10.23919/ecc.2007.7068297
http://dx.doi.org/10.1109/acc.2005.1470239
http://dx.doi.org/10.3166/ejc.18.539-557
http://dx.doi.org/10.3166/ejc.18.539-557

	Introduction
	Problem setting
	Problem formulation
	Preliminaries

	Algorithm design and convergence guarantees
	The ARGFree algorithm
	Convergence guarantees for ARGFree

	Convergence analysis of the algorithms
	Bound for E[xk+1-x*]
	An auxiliary bound for E[xk+1-xk]
	Bound for E[k+1-J k+1]
	Bound for E[sk+1-J sk+1]
	Bound for E[zk+1-J zk+1]
	Bound for E[pk+1-J pk+1]
	Proof of Theorem 7
	Proof of Theorem 8

	Numerical and experimental validation on robotic formation control problems
	Numerical simulations
	Experimental results

	Conclusions
	Appendix I: Proof of Lemma 5
	Appendix II: Proof of Lemma 6
	References

