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Abstract— Feedback optimization is an increasingly popular
control paradigm to optimize dynamical systems, accounting
for control objectives that concern the system’s operation at the
steady-state. Existing feedback optimization techniques heavily
rely on centralized system and controller architectures, and
thus suffer from scalability and privacy issues when systems
become large-scale. In this paper, we propose a distributed
architecture for feedback optimization inspired by distributed
gradient descent, whereby each agent updates its local control
variable by combining the average of its neighbors with a
local negative gradient step. Under convexity and smoothness
assumptions for the cost, we establish convergence of the control
method to a critical optimization point. By reinforcing the
assumptions to restricted strong convexity, we show that our
algorithm converges linearly to a neighborhood of the optimal
point, where the size of the neighborhood depends on the choice
of the stepsize. Simulations corroborate the theoretical results.

Index Terms – Optimization algorithms, feedback optimiza-
tion, distributed control, multi-agent systems.

I. INTRODUCTION

Optimal steady-state regulation is concerned with the
problem of controlling a dynamical systems to an optimal
steady-state point, as characterized by a mathematical opti-
mization problem [1]. The classical approach to tackle this
goal relies on the principle of separation between planning
and control, whereby the optimization problem is solved be-
forehand (offline) to determine optimal system states, which
are then inputed as references to controllers responsible
for regulating the system to these states. Remarkably, a
key assumption in this approach is that disturbances are
known beforehand and fed to the optimization solver; this
allows the optimization to be solved with high precision to
generate the required reference states. Unfortunately, in most
control applications, disturbances are unknown. Often, the
main objective of a control system is to ensure optimality in
the face of unmeasurable disturbances or imprecise system
knowledge. Notably, classical batch optimization algorithms
fail [2] when are approximately known or vary after the
optimization has been solved because disturbances may
perturb optimal steady states.

Recently, several authors have studied optimal steady-
state regulation problems in a centralized setting. A list of
representative works on this topic (necessarily incomplete)
includes [3]–[9]. See also the recent developments using
zeroth order algorithms and data-driven approaches [10]–
[12]. Feedback optimization controllers have gained popu-
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larity thanks to their capability to regulate physical systems
to optimal steady-state points while rejecting constant [4] or
time-varying disturbances [7], [8]. The central idea consists
of adapting numerical optimization algorithms to operate as
feedback controllers. This is achieved by using an inexact
gradient evaluated using real-time measurements to update
control inputs without requiring the exact plant model and
disturbances. This feature endows feedback optimization
with the versatility to handle various scenarios. All of these
methods are designed to be implemented in a centralized
architecture, and thus suffer from scalability issues when sys-
tems become large-scale, as well as privacy concerns when
cost functions or feedback signals need to be maintained
private. This work departs from this existing literature by
focusing on the problem of optimal steady-state regulation
for systems with a distributed architecture. This connects our
work with the body of literature on distributed optimization.
Distributed gradient descent (DGD) was proposed in [13],
studied in [14], a diminishing stepsize was used in [15] to en-
sure exact convergence; see also [16]–[19]. Other distributed
optimization algorithms have been explored in recent years;
we refer to [20] for a comprehensive discussion. Particularly
related to our problem are the works [21]–[24]. Compare
to [21], we do not require a two-layer control architecture
and tracking controllers; in contrast to [22], we do not
approximate the system’s sensitivity matrix by its diagonal
elements, ignoring the coupling between subsystems, which
leads to a loss in accuracy; [23] focuses on systems modeled
as a static linear map, while in this work we account
for dynamics; finally, with respect to [24], we account for
performance metrics that depend on a vector quantity as
opposed to a scalar aggregate one.

This work features three main contributions. First, we
propose a distributed architecture for the optimal steady-
state regulation problem, and a distributed control algorithm
to address this problem. Our algorithm is inspired by dis-
tributed optimization approaches and combines a gradient-
descent step with a consensus operation to simultaneously
solve an optimization and seek an agreement between the
agents. Second, we present proof of convergence to a fixed
point for the controller-system state. Our technical arguments
provide guidelines on how to choose the (sufficiently small)
controller stepsize to guarantee convergence of the controlled
system. Third, we provide an explicit bound for the control
error. Precisely, we show that under restricted strong convex-
ity assumptions, the controller state converges linearly to a
neighborhood of the optimal point. In line with the existing
literature [14], the size of such a neighborhood depends on
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Fig. 1. Distributed system architecture considered in this work (cf. (2)).
Each local controller actuates the corresponding subsystem (green lines), by
using global feedback information (red lines), see (10).

the choice of the controller stepsize. Intuitively, convergence
cannot be exact since distributed controllers need to average
between moving in a direction that decreases the gradient
while maintaining an agreement with the other controllers.

The rest of the article is organized as follows. Section II
formalizes the problem of distributed optimal steady-state
regulation. Section III illustrates the proposed controller.
Section IV presents the two main contributions of this work,
being the convergence analysis and error bound for the
proposed controller. Section V validates the findings through
numerical simulations, and Section VI concludes the paper.

Notation. For a symmetric matrix W , we denote its
eigenvalues by λ1(W ) ≥ λ2(W ) ≥ · · · ≥ λN (W ). We
assume that the mixing matrix W is symmetric and doubly
stochastic. The eigenvalues of W are real and sorted in
a nonincreasing order 1 = λ1(W ) ≥ λ2(W ) ≥ · · · ≥
λN (W )>− 1. Finally, we let

β := max{|λ2(W )|, |λN (W )|}. (1)

II. PROBLEM SETTING

A. System to control

Consider a structured dynamical system composed of N
subsystems Vx = {1, . . . , N}; we describe the physical
couplings between the subsystems using a directed graph
(called system graph) Gx = (Vx, Ex), where Ex ⊆ Vx × Vx.
See Fig. 1-(System Layer). Each subsystem i ∈ V is
described by a local state xk

i ∈ Rni , updating as:

xk+1
i =

∑
j∈Ni

Aijx
k
j +Biu

k
i + Eiwi, k ∈ Z≥0, (2)

where Ni denotes the set of subsystems collaborating with
i, uk

i ∈ Rmi is the local control decision, and Aij ∈
Rni×nj , B ∈ Rni×mi . In (2), wi ∈ Rri with Ei ∈ Rni×ri ,
models a constant unknown disturbance acting on subsystem
i. We will denote by n :=

∑
i ni, m :=

∑
i mi, and

r :=
∑

i ri. Further, we assume that the system’s state is
observed by means of the output signal:

yk =

N∑
i=1

Cix
k
i +Diu

k
i , (3)

where Ci ∈ Rp×ni and Di ∈ Rp×mi .

Remark 1: (Output model) The output model (3) implic-
itly requires that each subsystem is capable of measuring (or
estimating) the global system state. Although alternative out-
put models could be considered (e.g., were each subsystem
i measures yki = Cix

k
i + Diu

k
i ), the model (3) is common

to many practical applications. For example, consider a
swarm of drones where each drone monitors the surrounding
environment through an areal camera view (which overlaps
with that of its neighbors), or industrial systems, where a
Supervisory Control and Data Acquisition (SCADA) system
collects and processes all sensor measurements. □

In vector form, (2) reads as:

xk+1 = Axk +Buk + Ew,

yk = Cxk +Duk, (4)

where xk = (xk
1 , . . . , x

k
N ) ∈ Rn is the vector of states,

uk = (uk
1 , . . . , u

k
N ) ∈ Rm the vector of inputs, w =

(w1, . . . , wN ) ∈ Rr the vector of disturbances, A = [Aij ],
B = [Bij ], E = [Eij ], C = [C1, . . . , CN ], and D =
[D1, . . . , DN ] are block matrices. In what follows, we let

G(z) = C(zI −A)−1B +D,

H(z) = C(zI −A)−1E, (5)

denote the transfer functions from u to y and from w to
y, respectively. The definition (5) is intended for the values
of z ∈ C for which the inverse is defined. We will adopt
the compact notation G := G(1), H := H(1) to express
the steady-state response of the system to constant inputs;
formally, when uk = ū, wk = w̄ for all k ∈ Z≥0, we have:

lim
k→∞

yk = Gū+Hw̄.

While we make no assumption on Gx, we assume the
following for (2).

Assumption 1: (Stability and control properties of sys-
tem) The system (2) is asymptotically stable. Precisely, given
Q ≻ 0, we let P ≻ 0 be such that ATPA − P = −Q.
Moreover, (4) is controllable and observable. □

Controllability and observability are standard assumptions
to guarantee that control problems are well-defined. More-
over, because our goal here is to tackle advanced control
objectives aiming at optimizing the system operation (see (6)
shortly below), we assume that the system has been pre-
stabilized as in Assumption 1; the latter can be achieved
using well-established static state feedback techniques [25].

B. Distributed structure of the controller

We consider a setting where the system is controlled by
a group of distributed controllers, each co-located with a
local subsystem and actuating the corresponding local control
variable (see Fig. 1). The combination of a local subsystem
and the corresponding controller will hereafter be called
an agent. To control the system, the controllers collaborate
with each other; we describe their interaction topology by
adopting an undirected graph (hereafter called control graph)
G = (Vu, Eu) where Vu = Vx and Eu ⊆ Vu×Vu. See Fig. 1-
(Control Layer). A pair of controllers can collaboratively



compute a control law if and only if they are connected by
a link in Eu. Recall that a graph is connected if there exists
a path between any two nodes.

Assumption 2: (Connectivity of the control graph) The
graph G is connected. Therefore, there exists a weight matrix
W = [wij ] ∈ RN×N , associated with the communication
graph which is a symmetric and doubly stochastic matrix
with β < 1 (see (1)). □

C. Control objectives as an optimization problem

We study a control problem where the ensemble of con-
trollers seeks to collaboratively compute an input that solves

minimize
u∈Rm

N∑
i=1

Φi(u,Gu+Hw), (6)

where Φi : Rm × Rp → R, i ∈ Vx. The optimization
problem (6) describes a setting where the group of controllers
wants to determine a control input that optimizes (as mea-
sured by the cost

∑N
i=1 Φi(·, ·)) the system at steady-state

(captured by the dependence of the cost on the steady-state
output Gu+Hw). Moreover, the cost in (6) has a separable
structure, describing that each Φi(·, ·) is held locally by
agent i. We also remark that optimization problem (6) is
parametrized by w; as such, its solutions cannot be computed
using standard optimization solvers, since the disturbance w
is unknown and unmeasurable.

Remark 2: (Practical relevance of (6)) Allowing the local
costs Φi(·, ·) in (6) to depend on the global system input
u and on the global steady-state output Gu + Hw allows
our framework to describe a variety of problems where
each agent has a personalized metric of system performance
(namely, Φi(·, ·)), but altogether the group seeks to strike
a balance between these heterogeneous objectives (by min-
imizing their sum, as in (6)). Examples of this setting are
energy systems, where each subsystem may measures system
optimality using a different performance measure.

Moreover, notice that a special case of (6) is:

minimize
u∈Rm

N∑
i=1

Φ̃i(ui, Gu+Hw), (7)

where Φ̃i : Rmi × Rp → R now depends only on the
local actuation variable ui (instead of the global one). We
stress that our framework is general enough to account for
this setting as a special case. This formulation describes,
for example, problems where the ensemble of agents would
like to optimize the global system operation (as described
by Gu + Hw), while minimizing the local control effort.
Returning to the swarm of drones example (see Remark 1),
each drone may seek to reduce its local power consumption,
while ensuring that the entire swarm reaches a desired
configuration, which is measured by the global y. □

We will denote in compact form

Φ(u, y) :=

N∑
i=1

Φi(u, y).

Assumption 3: (Lipschitz and convexity of the cost) For
all i, (u, y) 7→ Φi(u, y) is proper closed convex, lower
bounded, and Lipschitz differentiable with constant LΦi . □

Assumption 3 is standard in optimization. This assumption
allows us to derive the following inequality1:

∥ΠT(∇Φ(u, y)−∇Φ(u′, y′))∥ ≤ LΦ

∥∥∥∥[uy
]
−
[
u′

y′

]∥∥∥∥ , (8)

where ΠT :=
[
Im GT

]
, which holds for all y, y′ ∈ Rn,

u, u′ ∈ Rm, and LΦ := ∥Π∥
∑

i LΦi
. In what follows, we

denote the set of optimizers of (6) by

A∗ := {(u∗, x∗) : (u∗, x∗) is a first-order optimizer of (6)},

and we assume that this set is nonempty and closed.

III. DISTRIBUTED CONTROLLER DESIGN

A centralized algorithm to solve the steady-state regulation
problem (6) has been studied in [12] and continuous-time
counterparts [4], [7], [8]. In [12], the authors propose a
gradient-type controller

uk+1 = uk − ηΠT∇Φ(uk, yk), (9)

where η > 0 denotes a scalar stepsize, being a design param-
eter. The controller (9) implements a gradient-type iteration
to solve the optimization (6), modified by replacing the true
gradient ΠT∇Φ(uk, Guk +Hw) with a measurement-based
version ΠT∇Φ(uk, yk), which avoids the need to measure
w. Unfortunately, (9) is inapplicable to our setting since

(i) (9) does not respect the distributed nature of the
controller considered here (cf. Section II-B), and

(ii) (9) requires centralized knowledge of the gradients
{∇Φi}i∈Vu

, which is impractical in our case since
each Φi is known only locally.

With this motivation, we next propose a distributed version
of (9) that can be implemented in our control architecture (cf.
Fig. 1). We propose an algorithm where each agent i ∈ Vu

holds a local copy uk
(i) ∈ Rm of uk, and updates it as:

uk+1
(i) =

N∑
j=1

wiju
k
(j) − ηΠT∇Φi(u

k
(i), y

k). (10)

In this control model, each agent i updates its local state u(i)

by performing two steps, (i) it computes a weighted average
of its neighbors’ states

∑N
j=1 wiju

k
(j) to seek a consensus

between the agents, and (ii) it applies −ΠT∇Φi(u
k
(i), y

k)

to decrease Φi(u
k
(i), y

k). We remark that this control law
is distributed in the sense that each agent i requires only
knowledge of the local ∇Φi. Note that each agent needs to
know the steady-state map (i.e., G) and measure the global
output feedback signal yk. In line with the literature on
distributed optimization, we call (10) Feedback Distributed
Gradient Descent (FDGD) algorithm.

1The notation ∇Φ(u, y) indicates ∇Φ(u, y) =
(∇uΦ(u, y),∇yΦ(u, y)) ∈ Rm+p.



Remark 3: (Relationship with distributed optimization
algorithm) The algorithm (10) is inspired from the DGD al-
gorithm for distributed optimization [14]. Although other al-
gorithms could be considered (e.g., EXTRA, gradient track-
ing [20], etc.), we leave an investigation of these approaches
as the scope of future works. Finally, we also observe that
DGD is the preferable method in certain circumstances, such
as under drifts in the network topology [26]. □

IV. CONVERGENCE ANALYSIS AND ERROR BOUNDS

In this section, we study the convergence of (10) when
applied to control the system (4). In the remainder, we
employ the following notations of stacked vectors: uk

(1:N) :=

(uk
(1), u

k
(2), . . . , u

k
(N)) ∈ RmN and

γ(uk
(1:N), y

k) :=

 ΠT∇Φ1(u
k
(1), y

k)
...

ΠT∇ΦN (uk
(N), y

k)

 ∈ RmN .

In vector form, the system (4) controlled by (10) reads as:

xk+1 = Axk +BSuk
(1:N) + Ew, (11a)

yk = Cxk +DSuk
(1:N),

uk+1
(i) =

∑
j∈Ni

wiju
k
(j) − ηΠT∇Φi(u

k
(i), y

k), i ∈ Vu,

(11b)

where S ∈ Rm×mN is given by:

S = diag([Im1
, 0, . . . ], [0, Im2

, 0, . . . ], . . . [0, . . . , 0, ImN
]).

A. Asymptotic convergence

The following result shows that, under a suitable choice
of the stepsize η, the state of (11) converges asymptotically.

Theorem 4.1: (Convergence of the state sequences) Let
Assumptions 1-3 hold, W be such that β < 1, and the
stepsize η ≤ η̄ := min{η1, η2, η3}, where

η1 =
1− 2µ+ λN (W )

LΦ
, η2 =

µ

λ1(P )L2
h

, (12)

η3 =
µλn(Q)

L2
Φ

4 + L2
h(∥ATP∥2 + λn(Q)λ1(P )) + LhLΦ∥ATP∥

,

with µ an arbitrary constant, 0 < µ ≤ 1− (1−λN (W ))+ηLΦ

2 ,
and Lh = ∥(I − A)−1BS∥. Then, the sequences xk, uk

(i)

generated by (11) converges. □
Proof: We will prove this claim by using La Salle’s In-

variance Principle [25, Thm 4.4]. For clarity of presentation,
the proof is organized into four main steps.

1) Change of variables and storage function. Let h(u) =
(I − A)−1BSu+(I − A)−1Ew, and consider the new co-
ordinate x̃k = xk − h(uk

(1:N)), which shifts the equilibrium
point of (11a) to the origin. Inspired by singular-perturbation
reasoning [25, Sec. 11], consider the storage function:

U(u(1:N), x̃) :=
d

η
Vu(u(1:N)) + (1− d)Vx(x̃), (13)

for each x̃ ∈ Rn, u(1:N) ∈ RmN , where d ∈ (0, 1) and

Vu(u(1:N)) = −1

2

N∑
i,j=1

wiju
T
(i)u(j)

+

N∑
i=1

(
1

2
∥u(i)∥2 + ηΦi(u(i), Gu(i) +Hw)

)
,

Vx(x̃) = x̃TPx̃. (14)

Notice that Vu is Lipschitz differentiable with constant
LVu

≤(1 − λN (W )) + ηLΦ and it is convex (since all Φi

are convex and
∑N

i=1 ∥u(i)∥2 −
∑N

i,j=1 wiju
T
(i)u(j) is also

convex due to λ1(W ) = 1). Next, we introduce the quantity

Ṽu(u(1:N), x̃) = −1

2

N∑
i,j=1

wiju
T
(i)u(j) (15)

+

N∑
i=1

(
1

2
∥u(i)∥2 + ηΦi(u(i), Cx̃+GSu(i) +Hw)

)
,

and

Fc(u(1:N), x̃) :=

∇u(1)
Ṽu(u(1:N), x̃)

...
∇u(N)

Ṽu(u(1:N), x̃)

 .

With this notation, (11b) and (15) can be re-expressed as:

uk+1
(1:N) = uk

(1:N) − Fc(u
k
(1:N), x̃

k),

Vu(u(1:N)) = Ṽu(u(1:N), 0), (16)

by using yk = C(x̃k + h(uk
(1:N)) +DSuk

(1:N).

2) Bounding the variation of Vu(·). We have:

Vu(u
k+1
(1:N)) ≤ Vu(u

k
(1:N)) +∇Vu(u

k
(1:N))

T(uk+1
(1:N) − uk

(1:N))

+
LVu

2
∥uk+1

(1:N) − uk
(1:N)∥

2

= Vu(u
k
(1:N))−∇Vu(u

k
(1:N))

TFc(u
k
(1:N), x̃

k)

+
LVu

2
∥Fc(u

k
(1:N), x̃

k)∥2

≤ Vu(u
k
(1:N))− ∥Fc(u

k
(1:N), x̃

k)∥2

+ ∥Fc(u
k
(1:N), x̃

k)∥∥∇Vu(u
k
(1:N))

T − Fc(u
k
(1:N), x̃

k)∥

+
LVu

2
∥Fc(u

k
(1:N), x̃

k)∥2

≤ Vu(u
k
(1:N))−

(
1− LVu

2

)
∥Fc(u

k
(1:N), x̃

k)∥2

+ ∥Fc(u
k
(1:N), x̃

k)∥∥∇Vu(u
k
(1:N))

T − Fc(u
k
(1:N), x

k)∥
≤ Vu(u

k
(1:N))− µ∥Fc(u

k
(1:N), x

k)∥2

+ ηLΦ∥Fc(u
k
(1:N), x

k)∥∥x̃k∥ (17)

where the first row follows by convexity and Lipschitz
differentiability of Vu, the second row follows by application
of (16), the third row follows by adding and subtracting
Fc(u

k
(1:N), x̃

k) to ∇Vu(u
k
(1:N)) and using the triangle in-

equality, and the last row follows by Lipschitz differentia-
bility of Φ and definition of µ.



3) Bounding the variation of Vx(·). In the variables x̃k,
the plant dynamics (11a) read as:

x̃k+1 = Ax̃k + h(uk
(1:N))− h(uk+1

(1:N)).

We have:

Vx(x̃
k+1) = (x̃k)TATPAx̃k

+ 2(x̃k)TATP (h(uk
(1:N))− h(uk+1

(1:N)))

+ (h(uk
(1:N))− h(uk+1

(1:N)))
TP (h(uk

(1:N))− h(uk+1
(1:N)))

≤ Vx(x̃
k)− (x̃k)TQx̃k + λ1(P )∥h(uk

(1:N))− h(uk+1
(1:N))∥

2

+ 2∥ATP∥∥x̃k∥∥h(uk
(1:N))− h(uk+1

(1:N))∥

≤ Vx(x̃
k)− λn(Q)∥x̃k∥2 + λ1(P )L2

h∥uk
(1:N) − uk+1

(1:N)∥
2

+ 2Lh∥ATP∥∥x̃k∥∥uk
(1:N) − uk+1

(1:N)∥

= Vx(x̃
k)− λn(Q)∥x̃k∥2 + λ1(P )L2

h∥Fc(u
k
(1:N), x

k)∥2

+ 2Lh∥ATP∥∥x̃k∥∥Fc(u
k
(1:N), x

k)∥, (18)

where the second row follows from Assumption 1, the third
row from Lipschitz continuity of h, and the last row by
application of (16).

4) Combining the bounds. By combining (17) and
(18), we conclude U(uk+1

(1:N), x̃
k+1) − U(uk

(1:N), x̃
k) ≤

−ξ(uk
(1:N), x̃

k)TΛξ(uk
(1:N), x̃

k), where

ξ(uk
(1:N), x̃

k) =

[
∥Fc(u

k
(1:N), x̃

k)∥
∥x̃k∥

]
and

Λ =

[
dµ
η − (1− d)λ1(P )L2

h α

α (1− d)λn(Q)

]
,

where α := − 1
2 (dLΦ+2(1−d)Lh∥ATP∥). It is guaranteed

that Λ ≻ 0 when η ∈ (0, η̄), η̄ = min{η̄1, η̄2}, where

η̄2 =
dµ

(1− d)λ1(P )L2
h

,

η̄3 =
d(1− d)µλn(Q)

d2L2
Φ

4 + (1− d)2L2
hρ+ d(1− d)LhLΦ∥ATP∥

,

with ρ := ∥ATP∥2+λn(Q)λ1(P ). By making the following
choice for the free variable d :

d =
L2
h(∥ATP∥2 + λn(Q)λ1(P ))− LΦLh

2

√
ρ

L2
h(∥ATP∥2 + λn(Q)λ1(P ))− L2

Φ

4

,

we obtain the largest value of η̄3 that guarantees decrease
of the storage function. For the sake of simplicity, we
choose d = 0.5, yielding the choice η2 and η3 in (12).
To conclude, since U(uk

(1:N), x̃
k) strongly decreases along

the trajectories of (11) and its minimum is the point
(∥Fc(u

k
(1:N), x̃

k)∥, ∥x̃k∥) = (0, 0), by La Salle’s invariance
principle the claim follows.

Theorem 4.1 shows that under a sufficiently small choice
of the stepsize η, the sequences xk, uk

(i) of the system and
controller states, converge asymptotically to a fixed point, re-
spectively. Notice that this convergence claim is not straight-
forward, since the proposed controller (10) incorporates two

simultaneous steps, a consensus one and a gradient step. As
such, this update may oscillate or fail to converge when η
is chosen inadequately. The upper bounds η1, η2, η3 depend
on the various parameters of the system (4) and optimization
problem (6). Importantly, notice that the imposed bounds on
µ guarantee that η̄ > 0 is well-defined. Finally, we notice that
a sufficiently small choice for η also guarantees that there a
choice of µ that satisfies 0 < µ ≤ 1− (1−λN (W ))+ηLΦ

2 (e.g.,
ηLΦ < 1 + λN (W )).

Before proceeding, we present an instrumental result that
will be used in the remainder. Based on the definition of
uk
(1:N) and γ(uk

(1:N), y
k), we rewrite (10) as:

uk+1
(1:N) = (W ⊗ I)uk

(1:N) − η γ(uk
(1:N), y

k), (19)

where ⊗ denotes the Kronecker product.
Proposition 4.2: (Bounded gradient) Let the assumptions

of Theorem 4.1 hold. Moreover, assume that the initial
conditions of the controller satisfy u0

(i) = 0, ∀i ∈ V. Then,
for all k ∈ Z≥0, (19) satisfies:

∥γ(uk
(1:N), y

k)∥ ≤ σ, (20)

where σ :=

√
2LΦ

(∑N
i=1 Φi(u0

(i), y
0)− Φopt

)
Here,

Φopt =
∑N

i=1 Φ
opt
i , with Φopt

i = Φi(u
opt
(i), y

opt) and
(uopt

(i), y
opt) = argminu,y Φi(u, y).

Proof: To prove (20), we rewrite

N∑
i=1

Φi(u
k
(i), y

k) ≤ η−1Ṽ (uk
(1:N), x̃

k) (21)

≤ η−1Ṽ (u0
(1:N), x̃

0) =

N∑
i=1

Φi(u
0
(i), y

0)

where the first inequality follows from (15) and by using∑N
i=1 ∥u(i)∥2 −

∑N
i,j=1 wiju

T
(i)u(j) ≥ 0 (which holds since

β < 1), the second inequality holds from Ṽu(u
k+1
(1:N), x̃

k+1) ≤
Ṽu(u

k
(1:N), x̃

k) (which follows by iterating the steps in (17)
applied to Ṽu(u

k+1
(1:N), x̃

k+1) instead of Vu(u
k+1
(1:N))), and the

last identity follows from (14) using u0
(1:N) = 0.

Moreover, recall that for any differentiable convex function
g with minimizer u∗, y∗, and Lipschitz constant Lg , we have
g(ua, ya) ≥ g(ub, yb)+∇gT(ub, yb)

[
ua − ub ya − yb

]T
+

1
2Lg

∥∇g(ua, ya)−∇g(ub, yb)∥2 and ∇g(u∗, y∗) = 0. Then,
∥∇g(u, y)∥2 ≤ 2Lg(g(u, y) − g∗), where g∗ := g(u∗, y∗).
Using this inequality and (21), we obtain

∥γ(uk
(1:N), y

k)∥2 =

N∑
i=1

∥ΠT∇Φi(u
k
(i), y

k)∥2 (22)

≤
N∑
i=1

2LΦ(Φi(u
k
(i), y

k)− Φo
i )

≤ 2LΦ

(
N∑
i=1

Φi(u
0
(i), y

0)− Φopt

)
,



where Φopt =
∑N

i=1 Φ
opt
i , with Φopt

i = Φi(u
opt
(i), y

opt) and
(uopt

(i), y
opt) = argminu,y Φi(u, y). Note that uopt

(i), y
opt exist

because of Assumption 3 and 2.
Proposition 4.2 ensures that the sequence of gradients

γ(uk
(1:N), y

k) is uniformly bounded. This result will be key
in the subsequent section when characterizing the control
error. Interestingly, unlike [16]–[18] that assume bounded
gradient, in our analysis our choice of stepsize ensures that
gradient remains bounded. We conclude by noting that when
the initial conditions u0

(1:N) are nonzero, a uniform bound of
the form (20) can still be proven by adjusting the step (22),
σ needs to be modified to account for additional error terms.

B. Control error bounds

While Theorem 4.1 certifies that the states sequences
converge asymptotically, it remains to quantify explicitly the
controller performance. This is the focus of this section.

In line with the existing literature [14], to establish a
liner rate of convergence, we will restrict our focus on
cost functions that are restricted strongly convex; recall that
f : dom f → R is restricted strongly convex [27] with
modulus νf if

(∇f(z)−∇f (z∗))T(z − z∗) ≥ νf ∥z − z∗∥2 , (23)

for all z ∈ dom f, z∗ = ProjZ∗(z), where ProjZ∗(z) is the
projection of z onto the solution set Z∗ such that ∇f (z∗) =
0. The following result is instrumental.

Lemma 4.3: [27, Lemma 6] Suppose that f is restricted
strongly convex with modulus νf and ∇f is Lipschitz
continuous with constant Lf . Then, we have

(z − z∗)T(∇f(z)−∇f(z∗)) (24)

≥ c1∥∇f(z)−∇f(z∗)∥2 + c2∥z − z∗∥2,

where z∗ is as in (23). Moreover, for any θ ∈ [0, 1],

c1 =
θ

Lf
, c2 = (1− θ)νf . (25)

Remark 4: Notice that, if f is strongly convex with mod-
ulus νf , then it is also restricted strong convexity with the
same modulus [27]. In this case, (24) holds with

c1 =
1

νf + Lf
, c2 =

νfLf

νf + Lf
. (26)

□
The following is the second main result of this paper.
Theorem 4.4: (Control error bounds) Let the assumptions

of Proposition (4.2) hold. If (u, y) 7→ Φ(u, y) is restricted
strongly convex with modulus νΦ, then, for (11) it holds:

∥uk
(i) − u∗k∥ ≤ ck3∥u0

(i) − u∗0∥+ c4√
1− c23

+
ησ

1− β
, (27)

where

c23 = 1− ηc2 + ηδ − η2δc2, c24 = η3(η + δ−1)
L2
Φσ

2

(1− β)2
,

(u∗k, x∗k) := ProjA∗(ūk, xk), σ is as in (20), δ > 0 is an
arbitrary constant, and c1 and c2 are as in (25) with νf =

νΦ/N. Moreover, if Φ(u, y) is strongly convex, then c1 and
c2 are as in (26). □

Proof: We begin by proving (27). It will be convenient
to measure the control error relative to the average controller
state: ūk := 1

N

∑N
i=1 u

k
(i). We have

∥uk
(i) − u∗k∥ ≤ ∥uk

(i) − ūk∥+ ∥ūk − u∗k∥. (28)

For presentation purposes, the proof is organized into two
main steps.
1) Bound for ∥uk

(i) − ūk∥. By expanding (19) in time:

uk
(1:N) = −η

k−1∑
s=0

(W k−1−s ⊗ I)γ(us
(1:N), y

s). (29)

Next, let ūk
(1:N) = (ūk, · · · , ūk) ∈ RmN , and notice that

ūk
(1:N) =

1
N ((1N1TN )⊗ I)uk

(1:N). As a result,

∥uk
(i) − ūk∥ ≤ ∥uk

(1:N) − ūk
(1:N)∥

= ∥uk
(1:N) −

1

N
((1N1TN )⊗ I)uk

(1:N)∥

= ∥ − η

k−1∑
s=0

(W k−1−s ⊗ I)γ(us
(1:N), y

s)

+ η

k−1∑
s=0

1

N
((1N1TNW k−1−s)⊗ I)γ(us

(1:N), y
s)∥

= ∥ − η

k−1∑
s=0

(W k−1−s ⊗ I)γ(us
(1:N), y

s)

+ η

k−1∑
s=0

1

N
((1N1TN )⊗ I)γ(us

(1:N), y
s)∥

= η∥
k−1∑
s=0

((
W k−1−s − 1

N
1N1TN

)
⊗ I

)
γ(us

(1:N), y
s)∥

≤ η

k−1∑
s=0

∥W k−1−s − 1

N
1N1TN∥∥γ(us

(1:N), y
s)∥

= η

k−1∑
s=0

βk−1−s∥γ(us
(1:N), y

s)∥, (30)

where the fourth row holds because W is doubly stochastic.
From ∥γ(uk

(1:N), y
k)∥ ≤ σ and β < 1, it follows that

∥uk
(i) − ūk∥ ≤ η

k−1∑
s=0

βk−1−s∥γ(us
(1:N), y

s)∥ ≤
k−1∑
s=0

βk−1−sσ

≤ ησ

1− β
. (31)

2) Bound for ∥ūk − u∗k∥. We will denote in compact form:

ēk := ūk − u∗k.

To bound this term, let

g(uk
(1:N), y

k) =
1

N

N∑
i=1

ΠT∇Φi(u
k
(i), y

k),

ḡ(uk
(1:N), y

k) =
1

N

N∑
i=1

ΠT∇Φi(ū
k, yk).



We are interested in g(uk
(1:N), y

k) because −ηg(uk
(1:N), y

k)

updates ūk. To see this, by taking the average of (10) over
i and noticing W = [wij ] is doubly stochastic, we obtain

ūk+1 =
1

N

N∑
i=1

uk+1
(i)

=
1

N

N∑
i,j=1

wiju
k
(j) −

η

N

N∑
i=1

ΠT∇Φi(u
k
(i), y

k)

= ūk − ηg(uk
(1:N), y

k). (32)

Before proceeding notice that the following bound holds:

∥ΠT(∇Φi(u
k
(i), y

k)−∇Φi(ū
k, yk))∥ ≤ LΦ∥uk

(i) − ūk∥

≤ ησLΦ

1− β

by Assumptions 3, 2, and (8), and where the last inequality
follows from (31). Moreover, we also have:

∥g(uk
(1:N), y

k)− ḡ(uk
(1:N), y

k)∥

= ∥ 1

N

N∑
i=1

ΠT(∇Φi(u
k
(i), y

k)−∇Φi(ū
k, yk))∥

≤ 1

N
LΦ

N∑
i=1

∥uk
(i) − ūk∥

≤ ησLΦ

1− β
. (33)

Recalling that (u∗k+1, x∗k+1) = ProjA∗(ūk+1, xk+1) and
ēk+1 = ūk+1 − u∗k+1, we have

∥ēk+1∥2 ≤ ∥ūk+1 − u∗k∥2

= ∥ūk − u∗k − ηg(uk
(1:N), y

k)∥2

= ∥ēk − ηḡ(uk
(1:N), y

k) + η(ḡ(uk
(1:N), y

k)− g(uk
(1:N), y

k))∥2

= ∥ēk − ηḡ(uk
(1:N), y

k)∥2 + η2∥ḡ(uk
(1:N), y

k)− g(uk
(1:N), y

k)∥2

+ 2η(ḡ(uk
(1:N), y

k)− g(uk
(1:N), y

k))T(ēk − ηḡ(uk
(1:N), y

k))

≤ (1 + ηδ)∥ēk − ηḡ(uk
(1:N), y

k)∥2

+ η(η + δ−1)∥ḡ(uk
(1:N), y

k)− g(uk
(1:N), y

k)∥2.

The first inequality holds since u∗
k+1 is the projection of ūk+1

onto the optimality set, and thus for any other optimizer û∗
k+1

we have |û∗
k+1− ūk+1| ≥ |u∗

k+1− ūk+1|. The last inequality
follows from ±2aTb ≤ δ−1∥a∥2+δ∥b∥2 for any σ ≥ 0. Next,
we shall bound ∥ēk − ηḡ(uk

(1:N), y
k)∥2. Applying Lemma

(4.3), we have

∥ēk − ηḡ(uk
(1:N), y

k)∥2 = ∥ēk∥2 + η2∥ḡ(uk
(1:N), y

k)∥2

− 2ηēkTḡ(uk
(1:N), y

k) ≤ ∥ēk∥2 + η2∥ḡ(uk
(1:N), y

k)∥2

− ηc1∥ḡ(uk
(1:N), y

k)∥2 − ηc2∥ēk∥2

= (1− ηc2)∥ēk∥2 + η(η − c1)∥ḡ(uk
(1:N), y

k)∥2.

We shall pick η ≤ c1 so that η(η− c1)∥ḡ(uk
(1:N), y

k)∥2 ≤ 0.

Then, from the last two inequality arrays, we have

∥ēk+1∥2 ≤ (1 + ηδ)(1− ηc2)∥ēk∥2

+ η(η + δ−1)∥ḡ(uk
(1:N), y

k)− g(uk
(1:N), y

k)∥2

≤ (1− ηc2 + ηδ − η2δc2)∥ēk∥2

+ η3(η + δ−1)
L2
Φσ

2

(1− β)2
.

Where the second inequality follows from (33). Note that if
Φ is restricted strongly convex, then c1c2 = θ(1−θ)νΦ

LΦ
< 1

because θ ∈ [0, 1] and νΦ < LΦ; if Φ is strongly convex,
then c1c2 = µΦLΦ

(µΦ+LΦ)2 < 1. Therefore, we have c1 < 1/c2.
When η < c1, (1 + ηδ)(1− ηc2) > 0.

Using

∥ēk∥2 ≤ ck3∥ē0∥2 +
1− c2k3
1− c23

c24 ≤ ck3∥ē0∥2
c24

1− c23
,

we get

∥ēk∥ ≤ ck3∥ē0∥+
c4√
1− c23

. (34)

The claim thus follows by combining (31) and (34)
Theorem 4.4 shows that the local agents states converge

geometrically until reaching a neighborhood of the optimal
solution. The size of this neighborhood depends on two
quantities: ησ

1−β , which measures the asymptotic error due
to an inexact agreement (namely, ∥uk

(i) − ūk∥ where ūk :=
1
N

∑N
i=1 u

k
(i)), and c4√

1−c23
, which quantifies the asymptotic

error between the average and the optimizer (namely, ∥ūk −
u∗k∥). We conclude with the following remark, which relates

c4√
1−c23

explicitly with η and β.

Remark 5: (Refinement of bound (27)) In (27), by choos-
ing δ = c2

2(1−ηc2)
, we have c3 =

√
1− ηc2

2 ∈ (0, 1) and

c4√
1− c23

=
ηLΦσ

1− β

√√√√η(η + 2(1−ηc2)
c2

)
ηc2
2

=
ηLΦσ

1− β

√
4

c22
− 2

c2
η

≤ 2ηLΦσ

c2(1− β)
= O

(
η

1− β

)
.

In this case, the local agent states converge geometrically to
an O

(
η

1−β + ησ
1−β

)
neighborhood of the solution set A∗ □

V. SIMULATION RESULTS

In this section, we report our numerical results. We con-
sider a circular network consisting of N = 15 agents. The
elements of the system matrices B, C, and E are randomly
drawn from the normal distribution and A is chosen as
a Schur stable matrix with random entries and circulant
structure. We choose ni = 1, ∀i, so that n = N. We choose
the mixing matrix W with the same circular structure as A
using the Metropolis weight selection. We apply (11) to:

minimize
u∈Rm

1

2

(
∥u∥2R + ∥Gu+Hw − yref∥2Q

)
, (35)

where Q = Ip and R = 0.001Im are the multiplied identity
matrices of the corresponding dimension. We set the desired



(a) Comparison of the proposed distributed algorithm for the prob-
lem (35) with different stepsizes.

(b) Inputs of the system with η = 2× 10−4.

(c) Outputs of the system with η = 2× 10−4.

Fig. 2. Error ēk = 1
N

∑N
i=1 u

k
(i)

− u∗k , inputs, and outputs of the
proposed decentralized algorithm with different stepsizes, where u∗k =
ProjA∗ ( 1

N

∑N
i=1 u

k
(i)

).

output to yref = 0.51p, where 1p is a vector of all ones.
We further scale A to let ∥A∥2 = 0.2. The disturbance w is
generated from the standard uniform distribution.

Fig. 2(a) illustrates the error ēk for three different choices
of stepsize. The simulations show that ēk reduces geomet-
rically until reaching an O(η)-neighborhood of the opti-
mal point, thus validating the conclusions of Theorem 4.4.
Moreover, it shows that a smaller η causes the algorithm
to converge slowly, but more accurately. Fig. 2(b) and (c),
illustrate the inputs and outputs of the system. Notice that the
optimizer is a point that strikes a balance between tracking
yref = 0.51p and minimizing the control effort ∥u∥2R.

VI. CONCLUSIONS

We developed a distributed controller for solving optimal
steady-state regulation problems with constant disturbance
rejection. The distributed architecture ensures scalability and
maintains the privacy of individual cost functions. We proved
convergence under convexity and smoothness assumptions,
and geometric convergence to a neighborhood of the optimal
solution under restricted strong convexity, in line with the
existing literature on distributed optimization [14]. Future
work may explore local output feedback, exact convergence
algorithms, constrained optimization, and nonlinear system
generalizations.
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