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Abstract— Feedback optimization is an increasingly popular
control paradigm to optimize dynamical systems, accounting
for control objectives that concern the system’s operation at
steady-state. Existing feedback optimization techniques heavily
rely on centralized system and controller architectures, and thus
suffer from scalability and privacy issues when systems become
large-scale. In this paper, we propose and study a distributed
architecture for feedback optimization, in which each agent
updates its local control state by combining the average of its
neighbors with a local negative-gradient step. Under convexity
and smoothness assumptions, we establish convergence of the
control method to a fixed point. By reinforcing the assumptions
to restricted strong convexity of the cost, we show that our
algorithm converges linearly to a neighborhood of the optimal
point, where the size of the neighborhood depends on the choice
of the stepsize. Simulations corroborate the theoretical results.

Index Terms – Optimization algorithms, feedback optimiza-
tion, distributed control, multi-agent systems.

I. INTRODUCTION

Optimal steady-state regulation is concerned with the
problem of controlling a dynamical systems to an optimal
steady-state point, as characterized by a mathematical opti-
mization problem [1]. The classical approach to tackle this
goal relies on the principle of separation between planning
and control, whereby the optimization problem is solved be-
forehand (offline) to determine optimal system states, which
are then inputed as references to controllers responsible for
regulating the system to these states. Remarkably, a key
assumption in this approach is that disturbances are known
beforehand and fed to the optimization solver; this allows
the optimization to be solved with high precision to generate
the required reference states. Unfortunately, in most control
applications, disturbances are unknown. In fact, often the
main objective of a control system is to ensure optimality in
the face of unmeasurable disturbances or imprecise system
knowledge. Notably, because disturbances may perturb op-
timal steady states, classical batch optimization algorithms
fail [2] when are approximately known or vary after the
optimization has been solved.

Recently, several authors have studied optimal steady-
state regulation problems in a centralized setting. A list of
representative works on this topic (necessarily incomplete)
includes [3]–[9] – see also the recent developments using
zeroth order algorithms and data-driven approaches [10]–
[12]. Feedback optimization controllers have gained popu-
larity thanks to their capability to regulate physical systems
to optimal steady-state points while rejecting constant [4] or
time-varying disturbances [7], [8] The central idea consists
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of adapting numerical optimization algorithms to operate as
feedback controllers; this is achieved by using an inexact
gradient evaluated using real-time measurements to update
control inputs without requiring the exact plant model and
disturbances. This feature endows feedback optimization
with the versatility to handle various scenarios. All of these
methods are designed to be implemented in a centralized
architecture, and thus suffer from scalability issues when sys-
tems become large-scale, as well as privacy concerns when
cost functions or feedback signals need to be maintained
private. This work departs from this existing literature by
focusing on the problem of optimal steady-state regulation
for systems with a distributed (or multi-agent) architecture.
This connects our work with the body of literature on
distributed optimization. Distributed gradient descent was
proposed in [13], studied in [14], a diminishing stepsize was
used in [15] to ensure exact convergence; see also [16]–
[19]. Particularly related to our problem are the works on
distributed optimization of nonlinear systems [20], which
however relies on a separation between optimization and
tracking control; [21], which relies on an inexact gradient
obtained by approximating the sensitivity matrix by its
diagonal elements (corresponding to a situation where the
coupling between different subsystems is ignored); [22],
which focuses on systems modeled as a static linear map.

This work features three main contributions. First, we
propose a distributed architecture for the optimal steady-state
regulation problem, and we propose a distributed control al-
gorithm to address this problem. Our algorithm is inspired by
distributed optimization approaches and combines a gradient-
descent step with a consensus operation to simultaneously
solve an optimization and seek an agreement between the
agents. Second, we present a proof of convergence to a fixed
point for the controller-system state. Our technical arguments
provide guidelines on how to choose the (sufficiently small)
controller stepsize to guarantee convergence of the controlled
system. Third, provide an explicit bound for the control error.
Precisely, we show that under restricted strong convexity
assumptions, the controller state converges linearly to a
neighborhood of the optimal point. In line with the existing
literature [14], the size of such a neighborhood depends on
the choice of the controller stepsize. Intuitively, convergence
cannot be exact since distributed controllers need to average
between moving in a direction that decreases the gradient
while maintaining an agreement with the other controllers.

The rest of the article is organized as follows. Section II
formalizes the problem of distributed optimal steady-state
regulation, Section III illustrates the proposed controller,
Section IV presents the two main contributions of this work,
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Fig. 1. Distributed system architecture considered in this work (cf. (2)).
Each local controller actuates the corresponding subsystem (green lines), by
using global feedback information (red lines), see (9).

being the convergence analysis and error bound for the
proposed controller. Section V validates the findings through
numerical simulations, and Section VI concludes the paper.

Notation. For a symmetric matrix W , we denote its
eigenvalues by λ1(W ) ≥ λ2(W ) ≥ · · · ≥ λn(W ). We
assume that the mixing matrix W = [wij ] is symmetric and
doubly stochastic. The eigenvalues of W are real and sorted
in a nonincreasing order 1 = λ1(W ) ≥ λ2(W ) ≥ · · · ≥
λn(W )> − 1. Let the second-largest eigenvalue magnitude
of W be:

β := max{|λ2(W )|, |λn(W )|}. (1)

II. PROBLEM SETTING

A. System structure and problem formulation

Consider a distributed system composed of N subsystems
Vx = {1, . . . , N}; we describe the physical couplings be-
tween interacting subsystems using a directed graph (called
system graph) Gx = (Vx, Ex) where Ex ⊆ Vx × Vx. See
Fig. 1-(System Layer). Each subsystem i ∈ V is described
by a local state xk

i ∈ Rni , which updates for k ∈ Z≥0 as:

xk+1
i =

∑
j∈Ni

Aijx
k
j +Biu

k
i + Eiwi, (2)

where Ni denotes the set of in-neighbors of i, uk
i ∈ Rmi is

the local control decision, and Aij ∈ Rni×nj , B ∈ Rni×mi .
In (2), wi ∈ Rri with Ei ∈ Rni×ri , models a constant
unknown disturbance acting on subsystem i. In what follows,
we let n :=

∑
i ni, m :=

∑
i mi, and r :=

∑
i ri. We

assume that the local controllers have access to global output
measurements of the system state, of the form:

yk =

n∑
i=1

Cix
k
i +Diu

k
i , (3)

where Ci ∈ Rpi×ni and Di ∈ Rpi×mi ; we let p :=
∑

i pi.

In vector form, (2) reads as:

xk+1 = Axk +Buk + Ew,

yk = Cxk +Duk, (4)

where xk = (xk
1 , . . . , x

k
n) ∈ RN is the vector of states,

uk = (uk
1 , . . . , u

k
N ) ∈ Rm is the vector of inputs, w =

(w1, . . . , wN ) ∈ Rr is the vector of disturbances, and A =
[Aij ], B = [Bij ], C = [C1, . . . , CN ], D = [D1, . . . , DN ],
and E = [E1, . . . , EN ] are block matrices. In what follows,
we use the notation

G(z) = C(zI −A)−1B +D,

H(z) = C(zI −A)−1E, (5)

to denote the transfer functions from u to y and from w to
y, respectively. The definition (5) is intended for the values
of z ∈ C for which the inverse is defined. In what follows,
we will adopt the compact notation

G := G(1), H := H(1).

While we make no assumption on Gx, we assume the
following for (2).

Assumption 1: (Stability and control properties of sys-
tem) The system (2) is asymptotically stable. Precisely, given
Q ≻ 0, we let P ≻ 0 be such that ATPA − P = −Q.
Moreover, (4) is controllable and observable. □

Controllability and observability are standard assumptions
to guarantee that control problems are well defined; when A
is not Schur stable, it can be pre-stabilized using standard
static state feedback techniques. Since the disturbance w is
constant, at steady-state, x, u, and y have constant values
xss, uss, and yss (by Assumption 1), with

yss = Guss +Hw.

In this work, we study a control problem where the
ensemble of controllers seeks to collaboratively optimize the
system at steady-state:

minimize
u∈Rm

N∑
i=1

Φi(u,Gu+Hw), (6)

where Φi is assumed to be private and locally known only
by agent i. We remark that solutions to the optimization (6)
cannot be computed explicitly since w is unknown. We make
the following assumptions on the optimization.

Assumption 2: (Lipschitz and Convexity of cost) For all
i, (u, y) 7→ Φi(u, y) is proper closed convex, lower bounded,
and Lipschitz differentiable with constant LΦi . □
Assumption 2 is standard in optimization. By defining ΠT :=[
Im GT

]
, this assumption guarantees that there exists LΦ

such that

∥ΠT(∇Φ(u, y)−∇Φ(u′, y′))∥ ≤ LΦ

∥∥∥∥[uy
]
−
[
u′

y′

]∥∥∥∥ , (7)

for all y, y′ ∈ Rn and u, u′ ∈ Rm. Further, in what follows
we denote the set of optimizers of (6) by:

A∗ := {(u∗, x∗) : (u∗, x∗) is a first-order optimizer of (6)}.



We assume that this set is nonempty and closed. We will
further denote in compact form:

Φ(u, y) :=

n∑
i=1

Φi(u, y).

To describe the collaborative nature of the controllers,
we will adopt an undirected graph (hereafter called control
graph) Gu = (Vu, Eu) where Vu = Vx and Eu ⊆ Vu×Vu. See
Fig. 1-(Control Layer). A pair of agents can collaboratively
compute a control law if and only if they are connected by
means of a communication link in Eu. Recall that a graph is
connected if there exists a path between any two nodes. We
make the following assumption on the control graph.

Assumption 3: (Connectivity of the control graph) The
graph Gu is connected. □

Under Assumption 3, there exists W = [wij ] ∈ Rn×n,
such that (i, j) ̸∈ Eu, implies wij = 0 and that is symmetric
and doubly stochastic with β < 1 (see (1)).

III. DISTRIBUTED CONTROLLER DESIGN

A centralized version to solve the steady-state regulation
problem (6) has been studied in [12] and continuous-time
counterparts [4], [7], [8]. In [12], the authors propose a
gradient-type controller:

uk+1 = uk − ηΠT∇Φ(uk, yk), (8)

where η > 0 denotes a scalar stepsize, being a design param-
eter. The controller (8) implements a gradient-type iteration
to solve the optimization (6), modified by replacing the true
gradient ΠT∇Φ(uk, Guk+Hw) with a measurements-based
version ΠT∇Φ(uk, yk), which avoids the need to measure w.

Unfortunately, implementing (8) requires a centralized
knowledge of the gradients {∇Φi}i∈Vu

, which is impractical
in our case since each Φi is known only locally. Departing
from this, we next propose a distributed version of (8) that
can be implemented in our control architecture (cf. Fig. 1).
We propose an algorithm where each agent i ∈ Vu holds a
local copy uk

(i) ∈ Rm of uk, and updates it as:

uk+1
(i) =

N∑
j=1

wiju
k
(j) − ηΠT∇Φi(u

k
(i), y

k). (9)

In this control model, each agent i updates its local state u(i)

by performing two steps: (i) it computes a weighted average
of its neighbors’ states

∑n
j=1 wiju

k
(j) to seek a consensus

between the agents, and (ii) it applies −ΠT∇Φi(u
k
(i), y

k)

to decrease Φi(u
k
(i), y

k). We remark that this control law
is distributed in the sense that each agent i requires only
knowledge of the local ∇Φi (rather than of all gradients
{∇Φi}i∈Vu

). Notice also that each agent requires measures
of the global output feedback signal yk; we leave a general-
ization of the approach to the use of local output feedback
signals as the scope of future works. See Fig. 1 for an
illustration of the control architecture.

IV. CONVERGENCE ANALYSIS AND ERROR BOUNDS

In this section, we study the convergence of (9) when
applied to control the system (4). In the remainder, we
employ the following notations of stacked vectors: uk

(1:N) :=

(uk
(1), u

k
(2), . . . , u

k
(N)) ∈ Rmn and

γ(uk
(1:N), y

k) :=

Π
T(∇Φ1(u

k
(1), y

k))
...

ΠT∇Φn(u
k
(N), y

k))

 ∈ Rmn.

In vector form, the system (4) controlled by (9) reads as:

xk+1 = Axk +BSuk
(1:N) + Ew, (10a)

yk = Cxk +DSuk
(1:N),

uk+1
(i) =

∑
j∈Ni

wiju
k
(j) − ηΠT∇Φi(u

k
(i), y

k), i ∈ Vu,

(10b)

where S ∈ Rm×mn is given by:

S = diag([Im1 , 0, . . . ], [0, Im2 , 0, . . . ], . . . [0, . . . , 0, Imn ]).

A. Asymptotic convergence

The following result shows that, under a suitable choice
of the stepsize η, the state of (10) converges asymptotically.

Theorem 4.1: (Convergence of the state sequences) Let
Assumptions 1-2 hold, W be such that β < 1, and the
stepsize η ≤ η̄ := min{η1, η2, η3}, where

η1 =
1− 2µ+ λn(W )

LΦ
, η2 =

µ

λ1(P )L2
h

, (11)

η3 =
µλn(Q)

L2
Φ

4 + L2
h(∥ATP∥2 + λn(Q)λ1(P )) + LhLΦ∥ATP∥

,

with µ an arbitrary constant, 0 < µ ≤ 1 − (1−λn(W ))+ηLΦ

2 ,
and Lh = ∥(I − A)−1BS∥. Then, the sequences xk, uk

(i)

generated by (10) converges. □
Proof: We will prove this claim by using La Salle’s In-

variance Principle [23, Thm 4.4]. For clarity of presentation,
the proof is organized into four main steps.

1) Change of variables and storage function. Let h(u) =
(I − A)−1BSu+(I − A)−1Ew, and consider the new co-
ordinate x̃k = xk − h(uk

(1:N)), which shifts the equilibrium
point of (10a) to the origin. Inspired by singular-perturbation
reasonings [23, Sec. 11], consider the storage function:

U(u(1:N), x̃) :=
d

η
Vu(u(1:N)) + (1− d)Vx(x̃), (12)

for each x̃ ∈ Rn, u(1:N) ∈ Rnm, where d ∈ (0, 1) and

Vu(u(1:N)) = −1

2

N∑
i,j=1

wiju
T
(i)u(j)

+

N∑
i=1

(
1

2
∥u(i)∥2 + ηΦi(u(i), Gu(i) +Hw)

)
,

Vx(x̃) = x̃TPx̃. (13)



Notice that Vu is Lipschitz differentiable with constant
LVu≤(1 − λn(W )) + ηLΦ and it is convex (since all Φi

are convex and
∑N

i=1 ∥u(i)∥2 −
∑N

i,j=1 wiju
T
(i)u

T
(j) is also

convex due to λ1(W ) = 1). Next, we introduce the quantity

Ṽu(u(1:N), x̃) = −1

2

N∑
i,j=1

wiju
T
(i)u(j) (14)

+

N∑
i=1

(
1

2
∥u(i)∥2 + ηΦi(u(i), Cx̃+GSu(i) +Hw)

)
,

and

Fc(u(1:N), x̃) :=

∇u1
Ṽu(u(1:N), x̃)

...
∇un

Ṽu(u(1:N), x̃)

 .

With this notation, (10b) and (14) can be re-expressed as:

uk+1
(1:N) = uk

(1:N) − Fc(u
k
(1:N), x̃

k),

Vu(u(1:N)) = Ṽu(u(1:N), 0), (15)

by using yk = C(x̃k + h(uk
(1:N)) +DSuk

(1:N).

2) Bounding the variation of Vu(·). We have:

Vu(u
k+1
(1:N)) ≤ Vu(u

k
(1:N)) +∇Vu(u

k
(1:N))

T(uk+1
(1:N) − uk

(1:N))

+
LVu

2
∥uk+1

(1:N) − uk
(1:N)∥

2

= Vu(u
k
(1:N))−∇Vu(u

k
(1:N))

TFc(u
k
(1:N), x̃

k)

+
LVu

2
∥Fc(u

k
(1:N), x̃

k)∥2

≤ Vu(u
k
(1:N))− ∥Fc(u

k
(1:N), x̃

k)∥2

+ ∥Fc(u
k
(1:N), x̃

k)∥∥∇Vu(u
k
(1:N))

T − Fc(u
k
(1:N), x̃

k)∥

+
LVu

2
∥Fc(u

k
(1:N), x̃

k)∥2

≤ Vu(u
k
(1:N))−

(
1− LVu

2

)
∥Fc(u

k
(1:N), x̃

k)∥2

+ ∥Fc(u
k
(1:N), x̃

k)∥∥∇Vu(u
k
(1:N))

T − Fc(u
k
(1:N), x

k)∥
≤ Vu(u

k
(1:N))− µ∥Fc(u

k
(1:N), x

k)∥2

+ ηLΦ∥Fc(u
k
(1:N), x

k)∥∥x̃k∥ (16)

where the first row follows by convexity and Lipschitz
differentiability of Vu, the second row follows by application
of (15), the third row follows by adding and subtracting
Fc(u

k
(1:N), x̃

k) to ∇Vu(u
k
(1:N)) and using the triangle in-

equality, and the last row follows by Lipschitz differentia-
bility of Φ and definition of µ.

3) Bounding the variation of Vx(·). In the variables x̃k,
the plant dynamics (10a) read as:

x̃k+1 = Ax̃k + h(uk
(1:N))− h(uk+1

(1:N)).

We have:

Vx(x̃
k+1) = (x̃k)TATPAx̃k

+ 2(x̃k)TATP (h(uk
(1:N))− h(uk+1

(1:N)))

+ (h(uk
(1:N))− h(uk+1

(1:N)))
TP (h(uk

(1:N))− h(uk+1
(1:N)))

≤ Vx(x̃
k)− (x̃k)TQx̃k + λ1(P )∥h(uk

(1:N))− h(uk+1
(1:N))∥

2

+ 2∥ATP∥∥x̃k∥∥h(uk
(1:N))− h(uk+1

(1:N))∥

≤ Vx(x̃
k)− λn(Q)∥x̃k∥2 + λ1(P )L2

h∥uk
(1:N) − uk+1

(1:N)∥
2

+ 2Lh∥ATP∥∥x̃k∥∥uk
(1:N) − uk+1

(1:N)∥

= Vx(x̃
k)− λn(Q)∥x̃k∥2 + λ1(P )L2

h∥Fc(u
k
(1:N), x

k)∥2

+ 2Lh∥ATP∥∥x̃k∥∥Fc(u
k
(1:N), x

k)∥, (17)

where the second row follows from Assumption 1, the third
row from Lipschitz continuity of h, and the last row by
application of (15).

4) Combining the bounds. By combining (16) and
(17), we conclude U(uk+1

(1:N), x̃
k+1) − U(uk

(1:N), x̃
k) ≤

−ξ(uk
(1:N), x̃

k)TΛξ(uk
(1:N), x̃

k), where

ξ(uk
(1:N), x̃

k) =

[
∥Fc(u

k
(1:N), x̃

k)∥
∥x̃k∥

]
and

Λ =

[
dµ
η − (1− d)λ1(P )L2

h α

α (1− d)λn(Q)

]
,

where α := − 1
2 (dLΦ+2(1−d)Lh∥ATP∥). It is guaranteed

that Λ ≻ 0 when η ∈ (0, η̄), η̄ = min{η̄1, η̄2}, where

η̄2 =
dµ

(1− d)λ1(P )L2
h

,

η̄3 =
d(1− d)µλn(Q)

d2L2
Φ

4 + (1− d)2L2
hρ+ d(1− d)LhLΦ∥ATP∥

,

with ρ := ∥ATP∥2+λn(Q)λ1(P ). By making the following
choice for the free variable d :

d =
L2
h(∥ATP∥2 + λn(Q)λ1(P ))− LΦLh

2

√
ρ

L2
h(∥ATP∥2 + λn(Q)λ1(P ))− L2

Φ

4

,

we obtain the largest value of η̄3 that guarantees de-
crease of the storage function. For the sake of simplic-
ity, we choose d = 0.5, yielding the choice η2 and
η3 in (11). To conclude, since U(uk

(1:N), x̃
k) strongly de-

creases along the trajectories of (10) and its minimum is
the point(∥Fc(u

k
(1:N), x̃

k)∥, ∥x̃k∥) = (0, 0), by La Salle’s
invariance principle the claim follows.

Theorem 4.1 shows that under a sufficiently small choice
of the stepsize η, the sequences of states xk, uk

(i) of, respec-
tively, the system and controller states, converge asymptot-
ically to a fixed point. Notice that this convergence claim
is not straightforward, since the proposed controller (9)
incorporates two simultaneous steps: a consensus one and
a gradient step. As such, this update may oscillate or fail to
converge when η is chosen inadequately. The upper bounds
η1, η2, η3 depend on the various parameters of the system (4)



and optimization problem (6). Importantly, notice that the
imposed bounds on µ guarantee that η̄ > 0 is well-defined.

Before proceeding, we present an instrumental result that
will be used in the remainder. Based on the definition of
uk
(1:N) and γ(uk

(1:N), y
k), we rewrite (9) as:

uk+1
(1:N) = (W ⊗ I)uk

(1:N) − η γ(uk
(1:N), y

k), (18)

where ⊗ denotes the Kronecker product.
Proposition 4.2: (Bounded gradient) Let the assumptions

of Theorem 4.1 hold. Moreover, assume that the initial
conditions of the controller satisfy u0

(i) = 0, ∀i ∈ V. Then,
for all k ∈ Z≥0, (18) satisfies:

∥γ(uk
(1:N), y

k)∥ ≤ σ, (19)

where σ :=

√
2LΦ

(∑N
i=1 Φi(u0

(i), y
0)− Φopt

)
Here,

Φopt =
∑N

i=1 Φ
opt
i , with Φopt

i = Φi(u
opt
(i), y

opt) and
(uopt

(i), y
opt) = argminu,y Φi(u, y).

Proof: To prove (19), we rewrite
N∑
i=1

Φi(u
k
(i), y

k) ≤ η−1Ṽ (uk
(1:N), x̃

k) (20)

≤ η−1Ṽ (u0
(1:N), x̃

0) =

N∑
i=1

Φi(u
0
(i), y

0)

where the first inequality follows from (14) and by using∑N
i=1 ∥u(i)∥2 −

∑N
i,j=1 wiju

T
(i)u

T
(j) ≥ 0 (which holds since

β < 1), the second inequality holds from Ṽu(u
k+1
(1:N), x̃

k+1) ≤
Ṽu(u

k
(1:N), x̃

k) (which follows by iterating the steps in (16)
applied to Ṽu(u

k+1
(1:N), x̃

k+1) instead of Vu(u
k+1
(1:N))), and the

last identity follows from (13) using u0
(1:N) = 0.

Moreover, recall that for any differentiable convex function
g with minimizer u∗, y∗, and Lipschitz constant Lg , we have
g(ua, ya) ≥ g(ub, yb)+∇gT(ub, yb)[(ua−ub), (ya−yb)]

T+
1

2Lg
∥∇g(ua, ya)−∇g(ub, yb)∥2 and ∇g(u∗, y∗) = 0. Then,

∥∇g(u, y)∥2 ≤ 2Lg(g(u, y) − g∗), where g∗ := g(u∗, y∗).
Using this inequality and (20), we obtain

∥γ(uk
(1:N), y

k)∥2 =
N∑
i=1

∥ΠT∇Φi(u
k
(i), y

k)∥2 (21)

≤
N∑
i=1

2LΦ(Φi(u
k
(i), y

k)− Φo
i )

≤ 2LΦ

(
N∑
i=1

Φi(u
0
(i), y

0)− Φopt

)
,

where Φopt =
∑N

i=1 Φ
opt
i , with Φopt

i = Φi(u
opt
(i), y

opt) and
(uopt

(i), y
opt) = argminu,y Φi(u, y). Note that uopt

(i), y
opt exist

because of Assumption 2 and 3.
Proposition 4.2 ensures that the sequence of gradients

γ(uk
(1:N), y

k) is uniformly bounded. This result will be key in
the subsequent section when characterizing the control error.
Interestingly, unlike [16]–[18] that assume bounded gradient,
in our analysis our choice of stepsize ensures that gradient
remains bounded.

We conclude by noting that when the initial conditions
u0
(1:N) are nonzero, a uniform bound of the form (19) can

still be proven by adjusting the step (21), but σ needs to be
modified to account for additional error terms.

B. Control error bounds

While Theorem 4.1 certifies that the states sequences
converge asymptotically, it remains to quantify explicitly the
controller performance. This is the focus of this section.

In line with the existing literature [14], to establish a
liner rate of convergence, we will restrict our focus on
cost functions that are restricted strongly convex; recall that
f : dom f → R is restricted strongly convex [24] with
modulus νf if

(∇f(z)−∇f (z∗))T(z − z∗) ≥ νf ∥z − z∗∥2 , (22)

for all z ∈ dom f, z∗ = ProjZ∗(z), where ProjZ∗(z) is the
projection of z onto the solution set Z∗ such that ∇f (z∗) =
0. The following result is instrumental.

Lemma 4.3: [24, Lemma 6] Suppose that f is restricted
strongly convex with modulus νf and ∇f is Lipschitz
continuous with constant Lf . Then, we have

(z − z∗)T(∇f(z)−∇f(z∗)) (23)

≥ c1∥∇f(z)−∇f(z∗)∥2 + c2∥z − z∗∥2,

where z∗ is as in (22). Moreover, for any θ ∈ [0, 1],

c1 =
θ

Lf
, c2 = (1− θ)νf . (24)

Remark 1: Notice that, if f is strongly convex with mod-
ulus νf , then it is also restricted strong convexity with the
same modulus [24]. In this case, (23) holds with

c1 =
1

νf + Lf
, c2 =

νfLf

νf + Lf
. (25)

□
The following is the second main result of this paper.
Theorem 4.4: (Control error bounds) Let the assumptions

of Proposition (4.2) hold. If (u, y) 7→ Φ(u, y) is restricted
strongly convex with modulus νΦ, then, for (10) it holds:

∥uk
(i) − u∗k∥ ≤ ck3∥u0

(i) − u∗0∥+ c4√
1− c23

+
ησ

1− β
, (26)

where

c23 = 1− ηc2 + ηδ − η2δc2, c24 = η3(η + δ−1)
L2
Φσ

2

(1− β)2
,

(u∗k, x∗k) := ProjA∗(ūk, xk), σ is as in (19), δ > 0 is an
arbitrary constant, and c1 and c2 are as in (24) with νf =
νΦ/N. Moreover, if Φ(u, y) is strongly convex, then c1 and
c2 are as in (25). □

Proof: We begin by proving (26). It will be convenient
to measure the control error relative to the average controller
state: ūk := 1

n

∑n
i=1 u

k
(i). We have:

∥uk
(i) − u∗k∥ ≤ ∥uk

(i) − ūk∥+ ∥ūk − u∗k∥. (27)

For presentation purposes, the proof is organized into two
main steps.



1) Bound for ∥uk
(i) − ūk∥. By expanding (18) in time:

uk
(1:N) = −η

k−1∑
s=0

(W k−1−s ⊗ I)γ(us
(1:N), y

s). (28)

Next, let ūk
(1:N) = (ūk, · · · , ūk) ∈ Rnm, and notice that

ūk
(1:N) =

1
n ((1n1

T
n)⊗ I)uk

(1:N). As a result,

∥uk
(i) − ūk∥ ≤ ∥uk

(1:N) − ūk
(1:N)∥

= ∥uk
(1:N) −

1

n
((1n1

T
n)⊗ I)uk

(1:N)∥

= ∥ − η

k−1∑
s=0

(W k−1−s ⊗ I)γ(us
(1:N), y

s)

+ η

k−1∑
s=0

1

n
((1n1

T
nW

k−1−s)⊗ I)γ(us
(1:N), y

s)∥

= ∥ − η

k−1∑
s=0

(W k−1−s ⊗ I)γ(us
(1:N), y

s)

+ η

k−1∑
s=0

1

n
((1n1

T
n)⊗ I)γ(us

(1:N), y
s)∥

= η∥
k−1∑
s=0

((
W k−1−s − 1

n
1n1

T
n

)
⊗ I

)
γ(us

(1:N), y
s)∥

≤ η

k−1∑
s=0

∥W k−1−s − 1

n
1n1

T
n∥∥γ(us

(1:N), y
s)∥

= η

k−1∑
s=0

βk−1−s∥γ(us
(1:N), y

s)∥, (29)

where the fourth row holds because W is doubly stochastic.
From ∥γ(uk

(1:N), y
k)∥ ≤ σ and β < 1, it follows that

∥uk
(i) − ūk∥ ≤ η

k−1∑
s=0

βk−1−s∥γ(us
(1:N), y

s)∥ ≤
k−1∑
s=0

βk−1−sσ

≤ ησ

1− β
. (30)

2) Bound for ∥ūk − u∗k∥. We will denote in compact form:

ēk := ūk − u∗k.

To bound this term, let

g(uk
(1:N), y

k) =
1

n

N∑
i=1

ΠT∇Φi(u
k
(i), y

k),

ḡ(uk
(1:N), y

k) =
1

n

N∑
i=1

ΠT∇Φi(ū
k, yk).

We are interested in g(uk
(1:N), y

k) because −ηg(uk
(1:N), y

k)

updates ūk. To see this, by taking the average of (9) over i

and noticing W = [wij ] is doubly stochastic, we obtain

ūk+1 =
1

n

N∑
i=1

uk+1
(i)

=
1

n

N∑
i,j=1

wiju
k
(j) −

η

n

N∑
i=1

ΠT∇Φi(u
k
(i), y

k)

= ūk − ηg(uk
(1:N), y

k). (31)

Before proceeding notice that the following bound holds:

∥ΠT(∇Φi(u
k
(i), y

k)−∇Φi(ū
k, yk))∥ ≤ LΦ∥uk

(i) − ūk∥

≤ ησLΦ

1− β

by Assumptions 2, 3, and (7), and where the last inequality
follows from (30). Moreover, we also have:

∥g(uk
(1:N), y

k)− ḡ(uk
(1:N), y

k)∥

= ∥ 1
n

N∑
i=1

ΠT(∇Φi(u
k
(i), y

k)−∇Φi(ū
k, yk))∥

≤ 1

n
LΦ

N∑
i=1

∥uk
(i) − ūk∥

≤ ησLΦ

1− β
. (32)

Recalling that (u∗k+1, x∗k+1) = ProjA∗(ūk+1, xk+1) and
ēk+1 = ūk+1 − u∗k+1, we have

∥ēk+1∥2 ≤ ∥ūk+1 − u∗k∥2

= ∥ūk − u∗k − ηg(uk
(1:N), y

k)∥2

= ∥ēk − ηḡ(uk
(1:N), y

k) + η(ḡ(uk
(1:N), y

k)− g(uk
(1:N), y

k))∥2

= ∥ēk − ηḡ(uk
(1:N), y

k)∥2 + η2∥ḡ(uk
(1:N), y

k)− g(uk
(1:N), y

k)∥2

+ 2η(ḡ(uk
(1:N), y

k)− g(uk
(1:N), y

k))T(ēk − ηḡ(uk
(1:N), y

k))

≤ (1 + ηδ)∥ēk − ηḡ(uk
(1:N), y

k)∥2

+ η(η + δ−1)∥ḡ(uk
(1:N), y

k)− g(uk
(1:N), y

k)∥2.

The first inequality holds since u∗
k+1 is the projection of ūk+1

onto the optimality set, and thus for any other optimizer û∗
k+1

we have |û∗
k+1− ūk+1| ≥ |u∗

k+1− ūk+1|. The last inequality
follows from ±2aTb ≤ δ−1∥a∥2+δ∥b∥2 for any σ ≥ 0. Next,
we shall bound ∥ēk − ηḡ(uk

(1:N), y
k)∥2. Applying Lemma

(4.3), we have

∥ēk − ηḡ(uk
(1:N), y

k)∥2 = ∥ēk∥2 + η2∥ḡ(uk
(1:N), y

k)∥2

− 2ηēkTḡ(uk
(1:N), y

k) ≤ ∥ēk∥2 + η2∥ḡ(uk
(1:N), y

k)∥2

− ηc1∥ḡ(uk
(1:N), y

k)∥2 − ηc2∥ēk∥2

= (1− ηc2)∥ēk∥2 + η(η − c1)∥ḡ(uk
(1:N), y

k)∥2.

We shall pick η ≤ c1 so that η(η− c1)∥ḡ(uk
(1:N), y

k)∥2 ≤ 0.



Then, from the last two inequality arrays, we have

∥ēk+1∥2 ≤ (1 + ηδ)(1− ηc2)∥ēk∥2

+ η(η + δ−1)∥ḡ(uk
(1:N), y

k)− g(uk
(1:N), y

k)∥2

≤ (1− ηc2 + ηδ − η2δc2)∥ēk∥2

+ η3(η + δ−1)
L2
Φσ

2

(1− β)2
.

Where the second inequality follows from (32). Note that if
Φ is restricted strongly convex, then c1c2 = θ(1−θ)νΦ

LΦ
< 1

because θ ∈ [0, 1] and νΦ < LΦ; if Φ is strongly convex,
then c1c2 = µΦLΦ

(µΦ+LΦ)2 < 1. Therefore, we have c1 < 1/c2.
When η < c1, (1 + ηδ)(1− ηc2) > 0.

Using

∥ēk∥2 ≤ ck3∥ē0∥2 +
1− c2k3
1− c23

c24 ≤ ck3∥ē0∥2
c24

1− c23
,

we get

∥ēk∥ ≤ ck3∥ē0∥+
c4√
1− c23

. (33)

The claim thus follows by combining (30) and (33)
Theorem 4.4 shows that the local agents states converge

geometrically until reaching a neighborhood of the optimal
solution. The size of this neighborhood depends on two
quantities: ησ

1−β , which measures the asymptotic error due
to an inexact agreement (namely, ∥uk

(i) − ūk∥ where ūk :=
1
n

∑n
i=1 u

k
(i)), and c4√

1−c23
, which quantifies the asymptotic

error between the average and the optimizer (namely, ∥ūk −
u∗k∥). We conclude with the following remark, which relates

c4√
1−c23

explicitly with η and β.

Remark 2: (Refinement of bound (26)) In (26), by choos-
ing δ = c2

2(1−ηc2)
, we have c3 =

√
1− ηc2

2 ∈ (0, 1) and

c4√
1− c23

=
ηLΦσ

1− β

√√√√η(η + 2(1−ηc2)
c2

)
ηc2
2

=
ηLΦσ

1− β

√
4

c22
− 2

c2
η

≤ 2ηLΦσ

c2(1− β)
= O

(
η

1− β

)
.

In this case, the local agent states converge geometrically to
an O

(
η

1−β + ησ
1−β

)
neighborhood of the solution set A∗ □

V. SIMULATION RESULTS

In this section, we report our numerical results. Consider
a system consisting of three agents with the dynamics of
A, B, and C matrices randomly chosen from the normal
distribution. As for A, we consider generating a network con-
sisting of N agents with N(N−1)

2 κ edges that are uniformly
randomly chosen, where N = 3 and κ = 0.5. We choose
ni = 1, ∀i, so that n = N. The same setting is used for the
control layer network except that in this case, we choose
the mixing matrix W so that it is symmetric and doubly
stochastic. Moreover, we make sure that Gu is connected.
We apply (10) to the problem

minimize
u∈Rm

1

2

(
∥u∥2R + ∥Gu+Hw − yref∥2Q

)
, (34)

(a) Comparison of the proposed decentralized algorithm for the problem
(34) with different fixed stepsizes.

(b) Outputs of the system with η = 2× 10−3.

(c) Outputs of the system with η = 5× 10−3.

Fig. 2. Error ēk = 1
n

∑n
i=1 u

k
(i)

− u∗k and outputs of the proposed
decentralized algorithm with different stepsizes.

where Q = Im, R = 0.001Ip, and yref = 0.5Ip. Notice that
the cost function in (34) is strongly convex in this case.

Fig. 2(a) illustrates the convergence of the error ēk related
to two different stepsizes. Note that ēk reduces linearly
until reaching an O(η)-neighborhood, thus validating the
conclusions of Theorem 4.4. Moreover, it shows that a
smaller η causes the algorithm to converge slower. Fig. 2(b)
and (c), illustrate that the outputs of the system reach the
desired output.

VI. CONCLUSIONS

We proposed a distributed controller to solve optimal
steady-state regulation problems while rejecting constant
disturbances. The controller follows a distributed architec-
ture; as such, the approach scales well with the system
size and can be applied in cases where the individual cost
functions need to be maintained private. Under convexity and
smoothness assumptions, we showed that the controller state
converges; under restricted strong convexity assumptions,
we showed that the controller converges geometrically to
a neighborhood of the optimal solution, in line with the



existing literature on distributed optimization [14]. Our work
opens the opportunity for several future works, including
scenarios where the output feedback signals are also local,
an investigation of algorithms that can ensure exact conver-
gence, the study of constrained optimization objectives, and
a generalization to nonlinear systems.
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