
École polytechnique de Louvain

Implementation of a robotic swarm
platform based on the Balboa
self-balancing robot

Towards cooperative target localization

Author: Romain ENGLEBERT
Supervisors: Gianluca BIANCHIN, François WIELANT
Readers: Gianluca BIANCHIN, François WIELANT, Julien HEN-
DRICKX
Academic year 2024–2025
Master [120] in Electro-mechanical Engineering



Acknowledgments

The completion of this master’s thesis represents the culmination of months of effort, but
it would not have been possible without the support, advice, and encouragement of many
people whom I would like to sincerely thank.

First, I wish to express my deep gratitude to Prof. Gianluca Bianchin, who supervised
this work and guided me throughout the project. His expertise, availability, and constant
encouragement have been invaluable at every stage, from the early design choices to the final
development guidelines. His attentive listening during our discussions and presentations, as
well as his consistently positive attitude, have been a true source of motivation throughout
this journey. I sincerely thank him for his trust and his insightful advice. It has been a
real pleasure to carry out this project under his supervision.

I also wish to express my sincere thanks to François Wielant, whose technical support
was equally essential to the success of this project. His practical and conceptual advice,
his assistance in designing the mechanical integration, as well as his help in ordering and
managing all the necessary hardware components, were invaluable throughout the project.
His dedication, availability, and proactive involvement greatly facilitated the realization of
this work, and I am deeply grateful for the support he offered throughout this adventure.

Additionally, I also want to thank Prof. Julien Hendrickx, member of my jury, for his time
and the attention given to reviewing my work.

I would also like to thank Giuseppe Speciale for our collaboration. His work on distributed
algorithms and the valuable explanations he shared with me greatly contributed to my
ability to implement them on a real-world system.

Finally, I wish to warmly thank my parents for their support throughout my studies. Their
encouragement, patience, and belief in me have been a constant source of strength and
motivation, making this achievement possible.

i



Abstract

Swarm robotics draws inspiration from natural systems to implement decentralized cooper-
ation. This thesis presents a fully embedded swarm communication platform that enables
real-world execution of distributed iterative algorithms. Built on the self-balancing Balboa
32U4 robot, it integrates a Raspberry Pi Zero 2 for computation and a Decawave DWM1001
UWB (Ultra-Wideband) module for localization, offering a modular and energy-efficient
architecture, capable of cooperative target localization.

A complete communication stack was developed on top of Bluetooth Classic, selected for its
low energy consumption and native compatibility with Linux-based systems. Rather than
relying on existing routing protocols or middleware, the stack was designed by integrating
only the key features relevant to static mesh architectures, avoiding unnecessary overhead
to ensure simplicity, efficiency, and full control. To support user interaction with the
swarm, a dedicated deployment system was also developed, enabling streamlined and
automated experiment configuration and execution. Additionally, the localization pipeline
includes calibration and filtering models that significantly enhance measurement accuracy.

Validation through real-world experiments at the communication, localization, and ap-
plication levels confirms the platform’s versatility. Demonstrated applications include
multi-consensus algorithms, an asynchronous stand-up behavior, and UWB-based cooper-
ative target localization. These results position the platform as a promising, scalable tool
for swarm robotics research.

ii



Nomenclature

Abbreviations

RPi Raspberry Pi

UWB Ultra Wide Band

FOTA Firmware Over the Air

IMU Inertial Measurement Unit

IR Infrared (sensor)

UAV Unmanned Aerial Vehicle

ML Machine Learning

FL Federated Learning

OLSR Optimized Link State Routing

DV Distance Vector (routing protocol)

LS Link State (routing algorithm)

DDS Data Distribution Service

MQTT Message Queuing Telemetry Transport (middleware)

RTPS Real-Time Publish-Subscribe (middleware)

QoS Quality of Service (middleware)

OSI Open Systems Interconnection

RF Radio Frequency

RSSI Received Signal Strength Indicator

ToF Time of Flight

ToA Time of Arrival

TDoA Time Difference of Arrival

FDoA Frequency Difference of Arrival

iii



RTT Round Trip Time

NTP Network Time Protocol

PTP Precision Time Protocol

PANS Protocol Adaptation Layer for Network Services

RAM Random Access Memory

API Application Programming Interface

TWR Two-Way Ranging

RTLS Real Time Localization System

MCU Microcontroller Unit

PCB Printed Circuit Board

NLoS Non-Line-of-Sight

RMS Root Mean Square

CPU Central Processing Unit

BATMAN Better Approach To Mobile Ad-hoc Networking

GATT Generic Attribute Profile

BLE Bluetooth Low Energy

TCP/UDP Transmission Control Protocol / User Datagram Protocol

GPIO General Purpose Input Output

P2P Peer-to-peer

ISM Industrial, Scientific, and Medical (radio band)

FHSS Frequency-Hopping Spread Spectrum

Definitions

Multi-agents
system

A system composed of multiple interacting autonomous
agents capable of cooperation or coordination.

Balboa A self-balancing mobile robot platform developed by
Pololu, often used for control experiments.

Raspberry Pi A low-cost, single-board computer commonly used for
embedded systems, robotics, and educational purposes.

UART Universal Asynchronous Receiver Transmitter; a simple
asynchronous full-duplex serial communication protocol
used for simple, low-speed (115 kHz) data exchange.

iv



SPI Serial Peripheral Interface; a master-slave synchronous
full-duplex wired communication protocol used for high-
speed communication between MCU and a few peripher-
als. It uses the lines MOSI (master output slave input),
MISO, SCLK (clock), CS (chip select).

I2C Inter-Integrated Circuit; a master-slave half-duplex wired
synchronous communication protocol with included
addressing, used to connect low-speed devices (max
400kHz). It uses the lines SDA (data) and SCL (clock).

Decawave
DWM1001

A UWB (Ultra Wideband) module by Decawave, used
for accurate indoor positioning and communication.

Broadcom
BCM2835

The system-on-chip (SoC) used in Raspberry Pi models,
integrating CPU, GPU, and RAM.

LiDAR Light Detection and Ranging; a remote sensing method
that uses laser light to measure distances for localization,
maps reconstruction or SLAM (simultaneous localization
and mapping) .

Sonar Sound Navigation and Ranging; a technique that uses
ultrasonic waves propagation to detect objects or measure
distance (ToF).

Overlay 1 software layer built on top of an existing communication
protocol to extend its functionalities without altering its
underlying structure.

Overhead Extra data and processing required to manage communi-
cation, such as headers, acknowledgments, and retrans-
missions, which do not carry the actual useful payload.

PHY Physical Layer: Handles the transmission and reception
of raw bit streams over a physical medium (e.g., radio,
cable).

IP Internet Protocol: Responsible for addressing and rout-
ing packets across networks (L3).

UDP User Datagram Protocol: A connection-less, lightweight
transport protocol with no guarantee of delivery (L4).

TCP Transmission Control Protocol: A reliable, connection-
oriented transport protocol that ensures ordered and
error-checked delivery (L4).

TLS Transport Layer Security: A cryptographic protocol that
ensures secure communication over a network (L5).

v



Baseband Responsible for the physical link setup, frequency hop-
ping, packet framing, error correction, and timing. It
handles the raw transmission of bits over the radio and
manages low-level connection control (L1-2)

L2CAP Sits above the baseband and provides logical channels
for data transmission. It enables multiplexing multiple
logical connections over a single physical link, handles
packet segmentation and reassembly (L2).

RFCOMM Transport protocol that emulates serial ports over the
Bluetooth stack. It provides a reliable communication
channel similar to TCP, and is commonly used to imple-
ment Bluetooth serial ports with Python (L4).

ZigBee A low-power wireless mesh full stack protocol based on
IEEE 802.15.4, often used in IoT networks.

Nordic nRF52 A family of low-power Bluetooth SoCs (System-on-Chips)
designed for wireless applications.

J-Link A debugging probe by SEGGER, used for flashing and
debugging ARM-based MCUs.

Anchor A fixed node in a localization system that knows its
position and helps compute the position of mobile nodes.

Tag A mobile node in a localization system whose position is
to be estimated.

Zephyr RTOS A small, scalable, open-source Real-Time Operating Sys-
tem designed for resource-constrained embedded systems.

BlueZ The official Linux Bluetooth protocol stack, used to
manage Bluetooth communications.

Sockets Programming interfaces used to enable communication
between devices over a network, using standard protocols.

ATMega 32U4 An 8-bit MCU by Atmel (now Microchip), used in many
Arduino-compatible boards.

vi



Contents

Acknowledgments i

Abstract ii

Nomenclature iii

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Background on multi-agent systems . . . . . . . . . . . . . . . . . . 3
1.2.2 Platforms for multi-agent systems . . . . . . . . . . . . . . . . . . . 5
1.2.3 Mesh Wireless Communication . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Focus on middlewares and routing technologies considered . . . . . 15
1.2.5 Localization of a swarm agent . . . . . . . . . . . . . . . . . . . . . 16

1.3 Motivations and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Structure of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Embedded architecture of a swarm agent 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Overview of the Raspberry Pi models . . . . . . . . . . . . . . . . . 25
2.2.2 Overview of the agent-level communication . . . . . . . . . . . . . . 26
2.2.3 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.5 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Localization System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Decawave DWM1001 . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.4 Error characterization, filtering, and calibration . . . . . . . . . . . 34

2.4 Power Consumption of an Agent . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.1 Autonomy Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Multi-agent communication 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vii



3.2.1 Infrared (IR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Zigbee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.3 WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.4 Bluetooth Low Energy (BLE) . . . . . . . . . . . . . . . . . . . . . 48
3.2.5 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Communication architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Low-level layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Middle-level layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 High-level layer: Framework . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.1 Mesh architecture and session management . . . . . . . . . . . . . . 53
3.4.2 Data serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.3 Asynchronous Communication . . . . . . . . . . . . . . . . . . . . . 56
3.4.4 Synchronous communication . . . . . . . . . . . . . . . . . . . . . . 57
3.4.5 Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.6 Multi-hop Unicast . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Performance analysis of the low-level layer . . . . . . . . . . . . . . . . . . 62

3.6.1 Maximum data size . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.2 Latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Applications 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Asynchronous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Stand-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Synchronous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Multi-consensus for LED synchronization . . . . . . . . . . . . . . . 70
4.3.3 Target localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Conclusions and perspectives 79

A Setup of the localization system 82

B Configuration of the agent 83

C Multi-agent deployment scripts 84
C.1 Deploy the software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
C.2 Run a program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
C.3 Run a command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
C.4 Fetch data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

References 87

viii



Chapter 1

Introduction

1.1 Context
Swarm robotics is a field that aims to design and deploy large groups of autonomous
robots capable of cooperating and self-organizing to solve collective tasks. Inspired by
natural swarms such as social insects, fish, or birds. These systems rely on simple local
interactions that give rise to emergent collective behavior. This decentralized approach
enhances robustness, fault tolerance, and flexibility in multi-robot systems. The field
emerged in the early 2000’s as an application of swarm intelligence, a broader study of
self-organized behaviors used in optimization, telecommunications, and crowd simulation.
Unlike traditional robotic systems, swarm robotics often requires a complete rethinking of
robot design, particularly in perception, control, and localization. Despite its potential,
industrial applications remain limited, as most real-world systems still rely on centralized
control rather than fully decentralized swarm algorithms.

In this context, researchers in the broader field of multi-agent systems require user-friendly
testbeds that act as flexible black-box platforms. To achieve this, the development of
a robust communication system is essential to enable new experimental approaches. In
addition, a system that provides modular communication modules, which can be assembled
to create complex behaviors, would significantly improve flexibility. The more advanced
and user-friendly the testbed, the faster researchers can test and validate novel algorithms
in a controlled environment before deploying them in real-world scenarios. To navigate
and explore their environment effectively, agents must be equipped with a diverse set of
sensors that facilitate perception, decision-making, and interaction.

More specifically, a larger research goal led by Gianluca Bianchin is to develop a decentral-
ized multi-agent system composed of multiple satellites and a central ground station that
need to be localized. In this system, satellites can communicate directly with only a subset
of other agents, forming an incomplete communication graph. Each satellite can measure
its distance from the ground station and execute a decentralized self-localization algorithm.
Based on that and a distributed optimization algorithm on top of a synchronous-messaging
module, agents are able to ultimately estimate the position of the ground station.

1



INTRODUCTION 2

This thesis addresses the design and implementation of a communication protocol tailored
for a multi-agent system composed of Balboa 32U4 robots equipped with Raspberry
Pi modules. The protocol is designed to be both efficient and adaptable, enabling the
emergence of complex swarm behaviors without requiring structural modifications as system
functionalities evolve. The communication stack will be built entirely upon Bluetooth
Classic, encompassing all layers from low-level data transmission to mesh networking and
high-level application protocols. To support decentralized navigation and coordination,
each robot will be equipped with an onboard localization system capable of estimating its
position and measuring relative distances to neighboring agents. These capabilities, when
combined with trajectory planning, enable the implementation of spatial self-organization
strategies. In order to streamline development, testing, and deployment, a suite of tools
will be developed for managing swarm-wide operations such as firmware updates, program
execution, and data collection. Finally, several swarm algorithms will be implemented and
evaluated, including a distributed target localization system. Experimental demonstrations
will highlight the platform’s flexibility and its potential for real-time, decentralized multi-
agent coordination.

The development of this communication platform raises multiple challenges. Integrating a
Raspberry Pi onto a Balboa robot and ensuring effective communication between both
components involves significant technical constraints, mainly due to hardware limitations
and the master-slave nature of the architecture. In a multi-agent context, decentralization
requires the design of a robust protocol capable of reproducing a wide range of natural
decentralized behaviors, despite being potentially less efficient than centralized alternatives.
Each communication technology presents specific trade-offs in terms of latency, architecture,
compatibility, and energy consumption, making its selection a critical design choice. A
low-level communication layer has been adopted as a foundation, with substantial effort
dedicated to developing overlays that address the system’s functional requirements. The
software architecture must remain modular and easily deployable to facilitate integration
and adaptation across diverse experimental scenarios. Accurate decentralized localization
is another core requirement, yet achieving high precision under constrained computational
resources remains particularly demanding. An onboard UWB module has been selected to
meet most of the technical criteria, but its integration introduces further complexity due
to the limited resources of the Balboa 32U4, necessitating additional post-processing to
improve measurement quality. Maintaining the real-time balancing performance of the
Balboa robot is also a key concern, as the addition of a shielded Raspberry Pi and the
localization module alters the robot’s center of gravity and inertia, affecting its dynamic
stability.



INTRODUCTION 3

1.2 Literature review
This section presents an overview of the current state of the art relevant to this work. It
begins with a discussion of foundational concepts and developments in the field of multi-
agent systems, with particular attention to existing swarm robotics platforms. The review
then examines communication strategies within swarms, with a focus on synchronous
mechanisms and routing algorithms, which form the basis for the protocols developed in
this thesis. Finally, the section explores decentralized localization approaches applicable
to resource-constrained mobile agents, providing context for the integration of onboard
positioning systems.

1.2.1 Background on multi-agent systems
Cao et al. (1995) [1] provides a foundational analysis of cooperative mobile robotics,
identifying key behaviors such as traffic control (multiple agents move within a common
environment), box pushing (collaborating environment modification), and foraging (insect-
inspired robots grabbing objects) as representative applications. It distinguishes centralized
architectures, where a single entity manages the swarm, from decentralized ones, where
agents make distributed decisions, often leading to scalable and robust emergent behaviors.
The authors also emphasize the role of differentiation: while most systems are homogeneous
for simplicity, heterogeneous systems enable more complex task distributions at the cost of
increased coordination complexity. Communication structures are categorized into three
types: environment-mediated interaction, sensing-based reaction, and explicit message
communication, each introducing specific trade-offs in terms of robustness and complexity.

In addition to architectural considerations, the study highlights the importance of agent
modeling, the ability of robots to predict or infer the states and actions of others, as a way
to improve cooperation while reducing communication overhead. Resource conflicts, arising
from competition for shared space or goals, require appropriate coordination mechanisms.
The origins of cooperation are discussed in two main paradigms: eusocial behaviors, where
simple agents collectively generate intelligent group behaviors, and cooperative strategies
where agents actively collaborate to maximize individual utility. Multi-robot path planning,
particularly the generation of non-intersecting trajectories and traffic control, remains
a significant algorithmic challenge. Finally, due to technological constraints such as
perception noise and hardware reliability and accuracy limitations, much of the early
research in swarm robotics has been conducted in simulation environments.

Schranz et al. (2020) [2] is summarizing the swarm behaviors and existing systems for
swarm research purpose. It details that swarm behaviors can be classified into four
categories, each on them is detailed into several subcategories, as summarized in Table
1.1. Several other classification works have been proposed, such as Dudek et al. (2002) [3],
based on communication, and Farinelli et al. (2004) [4], which focuses on coordination.

[2] also discusses industrial applications, which remain constrained by communication
limitations, and the risk of real-world deployment. Most industrial systems that claim to
use swarm robotics still operate under centralized control. The purpose of this work is to
decentralize communication. Obviously, decentralized systems are not the most efficient.
But it will enable us to study more real-world swarms as they are the most common, as
detailed in the context.



INTRODUCTION 4

Category Behaviors

Spatial Organization

Aggregation
Pattern Formation
Self-Assembly
Object Clustering and Assembly

Navigation

Collective Exploration
Coordinated Motion
Collective Transport
Collective Localization

Decision Making

Consensus
Task Allocation
Collective Fault Detection
Collective Perception
Synchronization
Group Size Regulation

Miscellaneous
Self-Healing
Self-Reproduction
Human-Swarm Interaction

Table 1.1: Classification of swarm behaviors. Highlighted behaviors are developed in
this thesis: Collective localization – shared frame and data exchange to localize a target.
Consensus – reaching a common decision. Collective perception – merging local data into
a global view. Synchronization – aligning oscillator phases and frequencies.

The platform developed in this thesis provides a foundation for exploring advanced research
topics in the field of multi-agent systems. As summarized by Dorigo et al. (2021) [5],
current swarm robotics research is evolving along several key axes. These include hardware
miniaturization, enabling the deployment of micro-robots in confined or hard-to-reach en-
vironments; heterogeneity, where agents possess different capabilities, roles, and behaviors;
and hybrid control architectures, which aim to combine the robustness and scalability of
decentralized systems with the global awareness of centralized ones. Additionally, machine
learning, particularly through the use of neural networks, is increasingly employed to
enhance swarm adaptability, moving beyond traditional evolutionary algorithms. Security
also constitutes a growing concern, with research focused on safeguarding swarms against
external attacks and ensuring safe task execution. Finally, human-swarm interaction (HSI)
is an emerging area, investigating new forms of communication between humans and robot
collectives through gestures, EEG signals, or augmented reality. Looking ahead, swarm
systems hold promise across a wide range of applications, including space exploration
through micro-rover swarms, surveillance of sensitive areas using coordinated drones, agri-
cultural diagnostics for early disease detection, infrastructure monitoring and maintenance,
and targeted drug delivery in medical contexts [5].



INTRODUCTION 5

An interesting concept related to swarm theory is the stigmergy, Dorigo et al. (2021) [5]
introduced it. It involves collaborating agents within a swarm, where each agent leaves a
trace in the environment that stimulates other agents. It has been demonstrated that such
robots are efficient for several tasks, including foraging, clustering (simulating the natural
grouping of individuals or objects), and even biological dynamic replication, where robots
simulate the behaviors of natural organisms such as aggregation of insects. One major work
utilizing this concept is Swarm-bots, a multi-agent system capable of self-assembly to form
cooperative structures. Swarmanoid extends Swarm-bots by incorporating heterogeneous
agents, including flying, climbing, and ground-based robots.

1.2.2 Platforms for multi-agent systems
Several research platforms have been developed to study previously mentioned swarm
behaviors and multi-agent topics. This section introduce the most recognized platforms as
well as those related to this project.

Among terrestrial robots, Kilobots, developed by M. Rubenstein and R. Nagpal (2012)
[6], is one of the most well-known. They were designed to validate collective algorithms
like SDASH on very large swarms of up to 1024 robots. Each Kilobot measure about
3cm and uses a low-cost design based on an ATMega328 MCU, costing only $14 in
parts and requiring five minutes to assemble, with an autonomy ranging from 3 to 24
hours. Communication is decentralized, using infrared signals reflected off the ground
with a wide 60° emission angle, achieving data rates up to 30 kb/s at about 10 cm range
(approximately six robot radii). A CSMA/CA mechanism is implemented to mitigate
signal collisions within dense swarms. Kilobots feature a scalable deployment system
allowing collective programming, powering on/off, and control through infrared flooding.
For instance, reprogramming 25 robots can be achieved in 35 seconds. Locomotion relies
on vibration motors, enabling movement at about 1 cm/s and rotation at 45°/s. However,
this method prevents accurate odometry. Instead, relative localization is performed by
estimating distances to neighbors through infrared signal intensity.

The Khepera IV robot, designed by K-Team and released in January 2015. It is designed
for any indoor lab application, and was thoroughly reviewed by Soares et al. [7]. It
features a Gumstix onboard computer coupled with a GS608 MCU and an extension bus
for modular expansions. Its sensor suite includes 12 infrared sensors (effective from 4 to
12 cm), 5 ultrasonic sensors (covering 20 to 300 cm with a 92° field of view), an IMU
with accelerometers and gyroscopes, two microphones, and a wide-angle color camera
equipped with a distortion model. Actuation is provided by two DC motors for differential
drive locomotion. The robot comes with the libkhepera software library, while the authors
also developed the KheperaToolbox for enhanced data handling. It includes a module for
parsing NMEA-formatted messages, a Measurement module for periodic data acquisition
supporting various data sources, an OdometryTrack module for tracking motion, and an
OdometryGoto module enabling waypoint-based navigation. Although Khepera IV robots
offer strong onboard computation and sensing, they lack a native system for simultaneous
mass programming. Deployment is done individually via SSH over Wi-Fi. Swarms typically
involve 5 to 20 robots. While basic behaviors like way-point navigation and sensing are
supported, complex swarm behaviors must be implemented by the user.



INTRODUCTION 6

The e-Puck robot, originally developed for educational purposes in signal processing,
automatic control, embedded programming, and distributed intelligent systems design,
was commercialized in 2005 and presented by Mondada et al. [8] in 2009. Its successor,
the e-Puck 2, available since 2018 at approximately €1250, features an STM32F4 MCU,
eight infrared sensors, a time-of-flight (ToF) distance sensor, an IMU, a color camera, four
microphones, and an additional infrared sensor for distance control. It offers around three
hours of autonomy. The robot’s user interface includes an in-circuit debugger connector,
an infrared receiver for remote control, a classic RS232 serial interface, and a Bluetooth
radio link enabling wireless programming and communication with a desktop computer via
the BTcom protocol. Extension headers allow the addition of peripherals such as a rotating
scanner with infrared triangulation (up to 40 cm range), a turret with three linear cameras
for wide-field optical flow, and a Zigbee module for adjustable mesh communication.
The software package provides a bootloader for Bluetooth-based programming, a low-
level hardware control library, and a monitor application for interaction with a desktop
computer.

Pickem et al. (2015) [9] present the GRITSBots, an inexpensive ($45) micro-robot designed
for multi-robot research, offering between 30 minutes and five hours of autonomy. The
robots can achieve linear speeds of up to 25 cm/s and rotational velocities up to 820
degrees per second. GRITSBots feature a wide range of capabilities, including a deployment
platform, wireless programming, and collective control. Of particular interest are the
automatic sensor calibration system using a dedicated machine, autonomous charging
behavior where robots can navigate to the charging station. The robots have demonstrated
behaviors such as rendezvous, formation control, and vehicle routing, tasks that require
accurate local sensing and reliable locomotion. Although physically centralized, it is able
to emulate decentralized behaviors such as the consensus. The use of an overhead camera
for global localization limits the maximum size of the environment. Unlike other robots,
GRITSBots do not use wheel encoders or classical odometry, instead, they rely on miniature
stepper motors, with complex signal processing required to estimate motor velocities. Six
infrared transmitters and receivers arranged every 60 degrees around the body, combined
with an accelerometer and a gyroscope, allow basic slip detection and improve velocity and
position estimation. An onboard RF transceiver provides efficient wireless communication
at 2 Mbits/s, with significantly lower power consumption (16 mA) compared to Wi-Fi (250
mA), although local peer-to-peer communication via IR has not yet been implemented. For
processing, GRITSBots use an ATmega168 microcontroller for low-level hardware control
and an ATmega328 for higher-level tasks such as communication, path planning, and
collective algorithms. Demonstrated capabilities include obstacle avoidance, autonomous
charging, and collective consensus, illustrating the platform’s suitability for multi-robot
systems research.

The Robotarium is a remotely accessible swarm robotics testbed composed of GRITSBots,
previously introduced, designed to allow users to quickly prototype and validate distributed
control strategies on physical robots without the need to set up their own hardware.
Wilson et al. published (2020) [10] and (2021) [11]. They present the system as a platform
supporting research in control algorithms, path planning, task allocation, and behavior
composition. The Robotarium offers a user-friendly interface. A simulation API, available
in both MATLAB and Python, enables users to rapidly prototype distributed control
algorithms and test their feasibility before deployment. Individuals access the Robotarium



INTRODUCTION 7

through a public web interface, following a workflow that moves from theory development
to simulation, then script submission, code validation, physical deployment, and finally
data and video feedback. Eight Vicon motion-capture cameras are mounted above the
testbed to track each robot’s position and orientation, using unique, non-symmetrical
patterns of Vicon markers. This tracking system not only enables precise localization
but also helps detect potentially harmful situations during experiments. Additionally, an
ELP camera placed above the center of the testbed provides automatic video capture of
experiments, while an Optoma EH200ST projector can project dynamic, time-varying
environmental backgrounds onto the arena during user experiments.

Pickem et al. (2017) [12] presents the Robotarium for the first time. It emphasize the
need for a safe and flexible swarm robotics platform, detailing the obstacle avoidance
strategies and validating the system through real-world user experiments. A key aspect
of the Robotarium architecture is its centralized control: while each robot runs a local
velocity controller, the user-submitted code executes on a central server, which remotely
provides velocity commands. This approach enhances robustness, simplifies data logging,
enables formal safety guarantees, and facilitates automatic maintenance.

Rezeck et al. (2023) [13] presents Hero 2.0, a robot designed for swarm robotics re-
search. It is built around an ESP8266 MCU, equipped with eight infrared sensors for
obstacle detection, differential drive wheels reaching speeds of 25 cm/s, wheel encoders
for odometry, an IMU to enhance motion estimation, a camera, and onboard displays.
Hero 2.0 communicates using TCP/IP protocols and integrates with ROS for higher-level
communication. Regarding localization, Hero 2.0 uses gray-coded patterns placed on
the floor, allowing the robots to determine their position and orientation by decoding
the patterns with onboard photodiodes. This system offers zero latency compared to
traditional camera-based tracking systems and physical decentralization. However, for the
same resolution, it costs approximately 700 USD. Programming and interaction rely on a
FOTA system managed through ROS, operating in two distinct modes. Configuration
mode: robots act as access points (AP mode) while the laptop acts as a client, allowing
firmware updates and setup. Communication mode: a central laptop operates as an access
point, with robots connecting as clients. Although physically centralized, this network
topology simulates decentralized communication and enables real-time user interaction
with the swarm. The behaviors demonstrated by Hero 2.0 cover several classical challenges
in swarm robotics. Flocking behavior: Robots coordinate their motion to maintain a
cohesive group, while avoiding collisions and aligning their velocities. Mapping task: The
robots collaboratively explore an environment to build a map, typically by sharing local
observations. Decentralized coverage: Robots autonomously spread out across a given area
to maximize coverage without overlaps. Transportation tasks: Multiple robots coordinate
to move an object that would be too large or heavy for a single agent. Lastly, [13] mentions
the future addition of UWB sensors for indoor absolute localization as an improvement,
which will be implemented in this project.

Barcis et al. (2019, 2020) [14, 15] proposed a unified mathematical model for synchro-
nization and swarming, where each swarmalator coordinates both its internal phase and
spatial position. While their model lies beyond the scope of this project, their choice
of the Balboa 32U4 robot is relevant. Unlike limited platforms such as Kilobots, the
Balboa, paired with a Raspberry Pi 3B+, offers sufficient computational power to run



INTRODUCTION 8

complex tasks and ROS, with accurate state estimation via its onboard IMU and motor
encoders. In this project, we use the Raspberry Pi Zero 2. Their implementation also
highlights the visual appeal of the Balboa’s self-balancing behavior in swarm scenarios.
They modified the vendor-provided low-level controller (LLC), replacing the USB interface
with a UART link to allow remote MCU reprogramming and custom protocols. In contrast,
this project uses I2C to interface the Raspberry Pi and the LLC, freeing the USB port for
debugging but requiring significant architectural changes and controller retuning. Barcis et
al. employed ROS 2 and eProsima Fast RTPS middleware, with multi-hop communication
via the Babel routing protocol. This thesis opts for a custom lightweight middleware and
communication stack, prioritizing flexibility and low power consumption without ROS.
Their indoor experiments relied on centralized OptiTrack-based localization, while a fully
decentralized onboard UWB modules is adopted in this thesis. To streamline deployment,
they used an Ansible-based system for remote program management. Here, a simpler,
custom deployment solution will be developed for easier customization and use.

(a) (b) (c)

(d) (e) (f)

Figure 1.1: (a) Kilobots [16], (b) Khepera IV [7], (c) Hero 2.0 [13], (d) E-puck 2 [8] (e)
GRITSBots [9], (f) Sandsbots [15].



IN
T

RO
D

U
C

T
IO

N
9

Table 1.2: Summary of existing swarm robotic agents.

Robot Architecture Communication Computer Sensors Deployment

Kilobot [6]
(2012)

Decentralized IR (7cm) Atmega328 Proximity, light IR flooding FOTA

Khepera IV [7]
(2015)

Both Bluetooth Gumstix and
GS608

IR, ToF, mics, camera, IMU,
odometers

Individual SSH FOTA

E-puck 2 [8]
(2018)

Both Wi-Fi, Bluetooth STM32 Light, camera, ToF, mic,
odometers, extensions (LiDAR,
turret, Zigbee)

IR flooding FOTA

GRITSBots [9]
(2015)

Centralized RF ATmega168 /
328

Optitrack, stepper motors, IR,
IMU

Scalable FOTA

Sandsbots
(Balboa) [15, 14]
(2020)

Decentralized com.,
centralized loc.

Babel (WiFi
Ad-Hoc) + DDS

RPi 3b+,
ATMega32U4

IMU, magnetometer, encoders,
and optitrack

Custom Ansible-based
FOTA

Hero 2.0 [13]
(2023)

Decentralized Wi-Fi and IR ESP8266 Odometry, IR, IMU, camera,
displays, photodiodes for
global loc.

ROS based FOTA

Balboa Decentralized Bluetooth based
custom stack

RPi Zero 2,
ATMega32U4

IMU, magnetometer, encoders,
UWB, displays

SSH scalable FOTA



INTRODUCTION 10

1.2.3 Mesh Wireless Communication
Mesh wireless networks enable distributed communication among nodes without the need
for centralized infrastructure. These networks can adopt various topological models,
each offering specific advantages depending on the application. In a 1:1 (point-to-point)
configuration, two devices communicate exclusively, offering simplicity and robustness but
limited scalability in multi-agent contexts. The 1:m (one-to-many) model allows a single
node to broadcast data to multiple recipients, which is useful for command distribution.
Conversely, the m:1 (many-to-one) model supports data aggregation from multiple nodes to
a central unit, facilitating centralized control or logging. Finally, the m:m (many-to-many)
architecture enables each node to communicate with several others, forming a flexible
mesh structure well-suited for decentralized coordination in swarm systems.

For swarm communication, a m:m communication model is essential. There are two
categories of multi-hop networks. The first are mobile ad-hoc networks (MANET) which
are composed out of dynamic, fast changing topologies. The second are static network
topologies like mesh networks. In the context of this project, static mesh topologies are
preferred, and there is no requirement for dynamic routing. The 7-layer OSI model serves
as a reference framework to structure communication protocols:

1. Physical Layer: responsible for the physical transmission of raw bits over a
communication medium. It involves hardware elements like cables, switches, and
connectors, as well as signal transmission (electromagnetic, light, or radio signals).

2. Data Link Layer: ensures reliable data transfer between devices on the same
network. It handles error detection, framing of data packets, and provides addressing
(such as MAC addresses). Technologies like Ethernet and WiFi work at this layer.

3. Network Layer: responsible for routing data between different networks. It handles
logical addressing (like IP) and select the optimal path for data transmission.

4. Transport Layer: The transport layer provides end-to-end communication between
devices. It ensures reliable data transfer, error correction, and flow control. TCP
and UDP are the main protocols in this layer.

5. Session Layer: The session layer manages sessions between communication devices.
It ensures that the session is established, maintained, and terminated correctly,
providing synchronization and dialogue management during communication.

6. Presentation Layer: This layer is responsible for translating data between the
application layer and transport layer. It can handle data encryption, compression,
and transformation to ensure that data is in a format the application can process.

7. Application Layer: The application layer provides the interface and protocols
that allow users and software applications to interact with the network. This layer
includes protocols like HTTP, FTP, and DNS.

Table 1.3 summarizes the OSI model and some examples related to mesh communication
technologies discussed in the next section, including this project.



IN
T

RO
D

U
C

T
IO

N
11

Table 1.3: Examples of protocol stacks mapped to OSI layers

OSI Layer BATMAN,
OLSR, Babel

DDS MQTT ZigBee BLE Mesh Balboa

7. Application — DDS MQTT ZigBee App
Profile

Mesh Model Balware
framework

6. Presentation — Type serialization — — Foundation
Model

Balware type
serialization

5. Session — DDS session TLS session — Access Layer Balware session
4. Transport — UDP TCP — Transport Layer Balware overlays
3. Network OLSR / Babel — — ZigBee NWK Network Layer Balmesh
2. Data Link BATMAN /

IEEE 802.11
— — IEEE 802.15.4 BLE (L2CAP) RFCOMM /

L2CAP
1. Physical IEEE 802.11 — — ZigBee PHY BLE PHY Bluetooth PHY



INTRODUCTION 12

Mesh routing protocols:

Routing protocols at the network layer are responsible for dynamically establishing multi-
hop paths between nodes in a decentralized manner and can be broadly classified into
four main categories [17]. Proactive (table-driven) protocols, such as OLSR and Babel,
maintain up-to-date routing information to all nodes at all times, reducing latency but
potentially adding unnecessary overhead in dynamic or sparse networks. Reactive (on-
demand) protocols like AODV and DSR create routes only when needed, minimizing
idle overhead but introducing initial delays. Hybrid protocols, exemplified by Babel,
combine both approaches by using proactive routing within local zones and reactive routing
between them. Finally, hierarchical (cluster-based) protocols such as CBRP and ZRP
divide the network into zones or clusters, improving scalability and routing efficiency
through a multi-level decision structure. Here are some of the existing routing protocols
and their classification:

• ZigBee is a full stack, developed in the early 2000’s for low-power personal area
networks. Its routing protocols is hierarchical, including a central coordinator, and
based on AODV, a reactive routing protocol. Ramya et al. (2011) [18] is a study of
this technology. Based on IEEE 802.15.4 for the physical and data link layers, it
adds a network layer with its own mesh routing protocol and an application layer
with profiles for home automation, metering, etc. ZigBee is popular in industrial and
home IoT. It operates without IP, favoring low-energy, short-range communication
with high reliability in dense mesh topologies. Its data rate is limited to 250 kbps and
it requires dedicated hardware, but it has low latency and low power consumption.

• B.A.T.M.A.N (Better Approach To Mobile Ad-hoc Networking) is used
and presented for the Starling1 project in Sanchez et al. (2021) [17] and in Davoli et
al. (2019) [19]. Performances are analyzed in Liu et al. (2018) [20] and in Sailash
et al. (2015) [21]. It is a decentralized proactive routing protocol introduced in
the mid-2000’s to replace OLSR with a lower latency and overhead and addressing
the loop issue due to asymmetrical links. It runs over layer 2, in contrast with
most other routing protocols that run on layer 3, and uses a periodic flooding -
broadcasting packets known as OriGinator messages (OGM), corresponding to a
12 byte UDP payload (for a total packet size equal to 52 bytes, including IP and
UDP headers) - to announce node presence for dynamic routing and link quality
evaluation through the Transmission Quality (TQ) path metric. It uses Dijkstra
algorithm to find shortest routes based on the weights of the links based on the TQ.
BATMAN is highly adaptive and well-suited for mobile and unstable environments.
It is not designed for fixed mesh topology.

• Babel is a modern hybrid distance-vector (DV), link-state (LS) routing protocol
introduced in 2011. Chroboczek, J. (2011) [22] describes it thoroughly. Babel is
designed for unstable networks by minimizing routing issues like loops and black-holes
during reconvergence. After a mobility event, it usually stays loop-free and quickly
restores connectivity, even if not optimally. This often requires no packet exchange.
It then gradually converges to an optimal state using sequenced routes, inspired by
DSDV.



INTRODUCTION 13

• Bluetooth Low Energy Mesh (BLE Mesh), standardized in 2017, is a complete
communication stack tailored for low-power IoT devices. It offers limited bandwidth
but ensures good scalability for small payloads, making it suitable for sensor networks.
The protocol uses a decentralized model with managed flooding, TTL-based relaying,
and message caching. Baert et al. (2018) [23] provide an overview and performance
assessment, reporting an average round-trip time of approximately 25 ms per hop.
BLE operates over 40 channels, with three dedicated to advertising and scanning,
and 37 used in connected mode for data exchange. The mesh architecture includes
provisioners (e.g., Raspberry Pi) that configure nodes, relays that selectively forward
messages, friends that buffer data for low-power nodes, proxies for BLE compatibility,
and standard nodes as participants in the network.

These routing technologies are summarized in Table 1.4.

Table 1.4: Comparison of routing protocols

Protocol Routing
type

Latency
(RTT)

Consumption Hardware Data rate

BATMAN Proactive
(DV)

∼ 20 ms (1
hop), 3-4 s
(3-4 hops) @
64 bytes [24]

Moderate RPi ∼ 45, 10
Mbps @ 2,
8 nodes
[25]

OLSR Proactive
(LS)

∼ 5-25 ms (1
hop), 2-3 s
(3-4 hops) @
64 bytes [24]

High RPi 50, 6 Mbps
@ 2, 8
nodes [25]

ZigBee Hierarchical
(DV)

∼ 20
ms/hop @
50 bytes [26]

Very Low RF
module

250 kbps @
1 hop [18]

Babel Hybrid
(DV + LS)

∼ 10-120 ms Moderate RPi 57, 7 Mbps
@ 2, 8
nodes [25]

BLE Mesh Managed
Flooding

∼ 25 ms /
hop [23]

Low nRF52 2 Mbps
[23]

Balmesh Predefined ∼ 60 ms /
hop @ 50
bytes

Low RPi 25 Kbps @
1 hop

Middlewares:

Middleware solutions operate above the transport layer and simplify the development of
distributed applications by abstracting message exchange and synchronization.



INTRODUCTION 14

• DDS (Data Distribution Service), implemented by vendors like eProsima (Fast
DDS), is a decentralized publish-subscribe middleware spanning OSI layers 5 to
7 [27, 28]. It uses the RTPS protocol over UDP to enable reliable, deterministic
communication in IP networks. Nodes publish data on topics that others subscribe
to. DDS offers advanced features such as Quality of Service (QoS) policies, automatic
discovery, strongly typed messages via IDL, and topic persistence. QoS controls
delivery parameters like reliability, latency, and durability, allowing late-joining
subscribers to receive recent data. Since the 2010s, DDS has been widely adopted in
real-time robotics, avionics, automotive systems, and platforms like ROS 2.

• MQTT (Message Queuing Telemetry Transport) is a lightweight application-
layer protocol introduced in 1999 and widely adopted in IoT. Its architecture and
performance are discussed in Thangavel et al. (2014) [29]. MQTT relies on a
centralized broker model over TCP/IP and mainly operates at OSI layers 5 to
7. Unlike DDS, it is not peer-to-peer and requires an always-available broker to
route messages between publishers and subscribers. While simpler and more energy-
efficient than DDS, its reliability is ensured through three Quality of Service (QoS)
levels. QoS 0 delivers messages at most once with no acknowledgment, QoS 1 ensures
delivery at least once with confirmation, and QoS 2 guarantees exactly-once delivery
using a four-step handshake. MQTT is widely used in smart home systems, telemetry,
and mobile applications due to its minimal overhead and ease of implementation.

Table 1.5: Comparison of middleware solutions

Middleware Base layer Functionalities Architecture Power
consumption

eProsima
DDS

RTPS (5–7
OSI)

Pub-sub, discovery,
QoS policies,
asynchronous +
synchronous
messaging

Decentralized
(but physically,
depends on the
routing)

High

MQTT TCP (4–7
OSI)

Lightweight pub-sub,
broker-based,
event-driven, QoS
levels

Centralized Low

ZigBee stack Full-stack Routing, addressing,
security, application
objects

Decentralized
(but
coordinator)

Very low

Balware Balmesh (4-7
OSI)

Flooding, multi-hop
unicast, synchronous
iterative algorithms,
asynchronous periodic
algorithms

Decentralized
(but laptop
configuration)

Very low



INTRODUCTION 15

These middlewares are summarized in the Table 1.5. In summary, technologies like BLE
Mesh and ZigBee include their own routing protocols and do not rely on IP, which makes
them suitable for constrained devices but harder to integrate with IP-based middleware
such as DDS. BATMAN, OLSR, and Babel provide flexible IP routing and can serve
as the foundation for middleware like DDS or MQTT. Babel, in particular, offers a
good compromise between adaptability and efficiency in dynamic wireless environments.
Middleware protocols enable data exchange and algorithmic synchronization across nodes
but differ greatly in architecture, functionalities, and suitability depending on the protocol
sub-layers.

1.2.4 Focus on middlewares and routing technologies considered
The previous section shown different routing protocols and middlewares. It concludes that
the custom protocol designed in this project incorporates specific middleware features,
such as synchronous communication, and routing mechanisms like flooding and multi-hop
unicast, this section provides a focus on the state of the art of these mechanisms. These
components will be implemented at the middle layer of the architecture.

Routing mechanisms

Flooding is a fundamental routing technique in which a message is broadcast to all
neighboring nodes, which in turn rebroadcast it to their own neighbors, continuing
recursively until the message has propagated throughout the entire network. This approach
is robust due to its inherent redundancy, ensuring high reliability even in the presence
of node failures or unreliable links. However, this redundancy also introduces significant
overhead, including unnecessary transmissions, packet collisions, and increased energy
consumption, a phenomenon commonly referred to as the "broadcast storm problem."

To mitigate these drawbacks, numerous studies have proposed optimized flooding algo-
rithms designed to reduce the number of transmissions while preserving full network
coverage and reliability. Most of these techniques involve selecting a limited subset of
nodes, known as relay nodes, to forward the messages. Determining the optimal set of
relay nodes is an NP-hard problem. Therefore, various heuristics have been introduced to
approximate optimal solutions. One notable example is the Multi-point Relaying (MPR)
technique, which uses two-hop neighborhood information to elect neighbor nodes—typically
those with high connectivity—as relays. This method is implemented in Bluetooth Mesh
(BLE Mesh) networks [23]. Another approach is the tree-based flooding protocol proposed
by Frank et al. (2008) [30], which constructs a lightweight, rooted tree spanning the entire
network using a Breadth-First Search (BFS) algorithm. By restricting message forwarding
to this structure, the protocol achieves efficient dissemination with minimal overhead.
However, these methods fall outside the scope of this thesis.

There exists also multicast, a communication method where a message is delivered from one
sender to multiple specific receivers simultaneously. In wireless sensor networks, multicast
routing protocols aim to efficiently deliver messages to a group of nodes without flooding
the entire network, optimizing bandwidth and energy usage. This mechanism will not be
implemented in this thesis.



INTRODUCTION 16

Multi-hop unicast is a routing strategy where a message is sent from a source to a specific
destination through a sequence of intermediate nodes. Each node forwards the message to
the next hop based on a routing table or predefined path. This approach is more efficient
than flooding but requires maintaining routing information.

Synchronous messaging

Synchronous messaging is a communication mechanism in which nodes in a network send
and receive messages simultaneously, often relying on precise time synchronization. This
mechanism is particularly useful in wireless sensor networks for coordinated actions. For
instance, it is included in eProsima RTPS [27]. Basic synchronization can be achieved either
using hardware clocks or using clock-independent overhead. However, clock-synchronization
methods are non-optimal because they are limited by clock drift and the needed time
margin. Logical synchronization protocols, by contrast, use minimal timing by aligning
nodes communication schedules through well thought message overhead, but this overhead
increase a bit the power consumption.

The most efficient synchronous messaging algorithm ever designed is Glossy. It is presented
in Ferrari et al. (2011) [31]. It is a low-latency flooding and network-wide time synchro-
nization mechanism for wireless sensor networks. It operates at physical layer on specific
radio hardware. It enables constructive interference by carefully timed transmissions,
allowing all nodes to receive and forward packets nearly simultaneously. Glossy achieves
high reliability and microsecond-level synchronization.

Chaos, builds on top of Glossy, presented in Landsiedel et al. (2013) [32], and introduces
a data-centric approach. Glossy is used for the physical layer synchronous messaging
while Chaos adds a user-defined merge operator, which allows users to freely program
various merge operators, from simple aggregates to complex computations taking tens of
thousands of clock cycles to execute This has very low latency and energy consumption
for mesh communication. LWB (Low-power Wireless Bus), designed in 2012, is presented
in Mager et al. (2019) [33]. It is another communication protocol built on top of Glossy.
It provides a shared-bus abstraction, and hides the complexity of the underlying networks.

In Lim et al. (2013) [34], FlockLab is a hardware testbed that supports synchronized
communication experiments in sensor networks. It integrates tightly with tools like Glossy
and Chaos and allows for real-time monitoring and debugging of distributed protocols.

1.2.5 Localization of a swarm agent
In this section, we focus on non-collaborative localization strategies for individual swarm
agents. We exclude cooperative schemes (where agents share and fuse each other’s
estimates). Localization technologies can be classified into architecture, environment
and sensor type. For this project we will prefer decentralized absolute (⇒ exteroceptive)
technologies in non-controlled environments. Even though proprioceptive sensors yield
only relative localization (drift-prone odometry, IMU), they remain essential for later
sensor fusion. For instance, Xu et al. (2022) [35] present a visual-inertial UWB state
estimation system for aerial swarms and achieve sub-centimeter accuracy by combining
two exteroceptive sensors with a single proprioceptive sensor.



INTRODUCTION 17

• Centralized (external infrastructure): motion-capture systems such as Opti-
Track.

• Decentralized (on-board only): the agent relies solely on its own sensors, further
distinguished by:

– Controlled / non-controlled environment: the ground could be patterned
like a QR code such as a photodiode can detect its absolute position,

– Proprioceptive / exteroceptive sensing: a sensor can measure its own
properties such as speed (odometry) or acceleration (IMU) for instance.

– Absolute localization (agent↔ environment) / relative localization (agent
↔ agent). Note that absolute localization ⇒ exteroceptive sensor and relative
localization ⇏ proprioceptive sensor (e.g., all exteroceptive between 2 agents
give relative localization)

Existing localization technologies, the multi-agent platforms that employ them, and their
classification are summarized in Table 1.6. Note that it is difficult to represent the
classification on a 2D table, then the classes are ordered according to their importance:
decentralization is more important than non-controlled environment.

Table 1.6: Classification of localization technologies associated with existing robot swarms.

Centralized Decentralized

Controlled Non-controlled

Proprioceptive Exteroceptive

OptiTrack [15] Ground patterns
[13], GPS [15],
camera

IMU [13, 7, 8],
odometers [13, 7, 8],
stepper motor [9]

Sonar (ToF) [8, 7],
LiDAR, IR [6], RF
(This project)

On-board exteroceptive ranging primitives

Ranging primitives refer to the conversion of signals into distance estimates, which are
subsequently used for localization. Below are some of the most common technologies.

• Received Signal Strength Indicator (RSSI): This basic technique estimates
distance by correlating received signal power with distance. However, it is highly
sensitive to multi-path effects, which significantly limits its accuracy, typically to
within a few meters. Sadowski et al. (2018) [36] investigated localization using
RSSI-based range measurements with WiFi, BLE 4.0, ZigBee, and LoRaWAN. Their
results indicate that the signal attenuation follows a logarithmic model: while tens
of centimeters accuracy can be achieved at distances below 1 m, the error increases
to several meters at greater ranges. Cao et al. (2021) [37] presents a BLE Mesh
network-which is capable of exploiting the space, time, and frequency diversities in
measurements- that is also used for RSSI-based localization.



INTRODUCTION 18

• Time-of-Flight (ToF): Two-Way Ranging (TWR) is a kind of ToF measurement.
It estimates distance based on the total round-trip time (RTT) of a packet between
two devices:

d = c · (RTT− Reply Time) (1.1)

Where d is the distance, c is the speed of light, and Reply Time is the processing
delay. ToF provides better accuracy than RSSI but typically requires additional
hardware.

• Time-of-Arrival (ToA): It is one of the most accurate technique available. It
measures the absolute time at which a packet is received. Unlike ToF, ToA eliminates
the uncertainty of the reply delay. However, it requires clock synchronization between
devices with sub-microsecond precision. Clock synchronization is non-trivial and
may involve protocols like NTP, PTP, or other synchronization strategies such as
[38].

• Angle-of-Arrival (AoA): Another advanced technology, it estimates the direction
of an incoming signal. This requires a specific receiver with an array of antennas and
complex signal processing. Girolami (2023) [39] presents this method thoroughly
and show the specific hardware required.

• Frequency-Difference-of-Arrival (FDoA): This Doppler effect based technique
estimates range and relative motion by measuring Doppler shifts between received
signals from moving sources. It’s more commonly used in radar or satellite tracking,
and is not suitable for short-range indoor localization in robotics due to hardware
and processing complexity.

• Vision (e.g., AprilTags): Computer vision techniques can be used to detect
AprilTags, placed in the controlled environment, and deduce the robot position based
on the tags locations. Pandey et al. developed such system for UAV, it is presented
and validated in (2024) [40]. They got an accuracy of 60-90%. It highlights that
AprilTags outperform LiDAR and Sonar in terms of setup simplicity, scalability, and
cost-effectiveness. However, it is less efficient where environmental conditions vary
widely or where tags could be occluded. It suggests to combine it with a LiDAR or
a sonar for a more versatile and accurate solution.

Localization techniques

Absolute localization can be achieved based on range measurements, between a mobile
agent and a set of fixed anchors. Below are some of the most common techniques.

• Multilateration (ToF, RSSI): Measure the distance di from the agent to each
anchor i. In an N -dimensional space we need at least N +1 anchors (e.g. 3 anchors in
2D, 4 in 3D). Geometrically, each measurement defines a circle (2D) or a sphere (3D)
centered at the anchor. the agent’s position is found at their common intersection,
which is often found using least squares. Cannizzaro et al. (2019) [41] explains
multilateration in detail and compares the 2D localization accuracy with 3 and 4
beacons using BLE, showing that the difference is not significant, and that, using 4
beacons may even worsen the the accuracy according to the environment.



INTRODUCTION 19

• AoA & Range: An AoA sensor at an anchor measures the bearing θi toward the
agent, while a range measurement (RSSI, ToA or ToF) gives a distance di. In 2D,
a single anchor with both θ and d suffices to pinpoint the location (intersection of
a ray and a circle). In 3D, one anchor yields a circle of possible solutions, so at
least two anchors—each providing (θi, di)—are required for a unique solution. In
Taponecco et al. (2011) [42], a joint ToA/AoA estimator is proposed for UWB
indoor localization under line-of-sight conditions, using an antenna array and simple
demodulation circuitry. Results show good accuracy, with ranging errors around 10
cm and angular errors near 1°, depending on signal bandwidth.

• Time-Difference-of-Arrival (TDoA). Each anchor records the time ti at which it
receives a signal from the agent. The differences ∆tij = ti−tj define hyperbolic curves
(2D) or surfaces (3D). At least 3 anchors (2 independent time-differences) are needed
for 2D localization, 4 anchors in 3D. Kaun et al. (2012) [43] studied this method
and compared it to ToA-based trilateration. It shows no major accuracy difference
but unlike ToA, TDoA does not require the agent’s clock to be synchronized with
the anchors, only the anchors must share a common time base.

• Fingerprinting: This method relies on collecting ranging primitive (e.g., RSSI)
at known reference locations to create a database or radio map. During position
estimation, the agent compares its measurements to the database to estimate its
position, often using k-nearest neighbors or other machine learning techniques.
Fingerprinting is well-suited for complex indoor environments where propagation
is affected by multi-path and obstacles. Unlike range-based methods, it does not
require precise modeling of the signal, but its accuracy depends heavily on the density
and quality of the reference data. In Cannizzaro et al. (2019) [41], results using
trilateration were not great using multilateration due to RSSI low accuracy, then
fingerprinting methods such as kNN, SVM and MLP were compared and reached an
accuracy twice lower.

On-board localization systems for non-controlled environment

• RF (with active anchors):

– Wi-Fi: The 802.11 b/g/n standard is embedded on the Raspberry Pi and
supports RSSI-based multilateration. While Time-of-Flight (ToF) measure-
ments are possible with 802.11mc (Round-Trip Time, RTT), this feature is not
supported by standard Raspberry Pi hardware. Sadowski et al. (2018) [36]
report a power consumption of approximately 200 mW for WiFi RSSI-based
localization on a Raspberry Pi 3, which is relatively high, for a poor accuracy
of a few meters. This result is mainly due to multi-path, NLoS conditions, and
the short available bandwidth of WiFi.

– BLE: Version 4.2 is support by the Raspberry Pi Zero 2, enabling RSSI-based
localization and basic ToF multilateration. BLE 5.1 introduces more advanced
localization capabilities, including Angle of Arrival (AoA), Time of Flight (ToF),
Time of Arrival (ToA), and Time Difference of Arrival (TDoA), but requires
newer hardware such as the nRF52840 SoC. Integration with the Raspberry



INTRODUCTION 20

Pi would require an external USB dongle, applicable to both tags and anchors.
BLE is significantly more energy-efficient than WiFi, with Sadowski et al. (2018)
[36] reporting power consumption below 1 mW, although their measurements
were performed on hardware different from that used in this thesis. BLE 4.2
RSSI-based multilateration offers accuracy comparable to WiFi systems, while
more advanced techniques based on BLE 5.1 like ToF, ToA, and AoA can
achieve localization precision up to 50 cm.

– UWB (Ultra-Wideband): Its wide bandwidth allows the transmission of
short pulses in the time domain, enhancing range measurements resolution and
thus position accuracy up to 10 cm. Localization is typically achieved using
TWR or ToA combined with multilateration or fingerprinting, or TDoA in more
advanced setups. Some existing modules, like the Decawave DWM1001 (TWR
with multilateration), are compatible with the Raspberry Pi and can operate
as black boxes, abstracting the localization process from the host system. For
instance, Poulose et al. (2020) [44] proposed a deep learning method based
on convolutional neural networks (CNNS) and fingerprinting using ToA range
measurements, aiming to mitigate the effects of multipath propagation and
Non-Line-of-Sight conditions (NLoS) conditions.

• Acoustic (with active anchors):

– Sonar: A low-power directional solution for ToF-based distance sensing. To
achieve localization here is a potential solution. Time Division Multiple Access
(TDMA) assigns distinct time slots to each active anchor to emit ultrasonic
pulses sequentially, avoiding signal collisions. For this to work, anchors must
be precisely time-synchronized to respect their slots. Robots listen for these
pulses and identify the source by timing. Ultrasonic signals typically have
a narrow directional cone ( 15°), so anchor placement must ensure sufficient
coverage. NLoS conditions from obstacles or reflections can delay or block
signals, reducing localization accuracy and reliability.

• Optical (with passive anchors):

– LiDAR: Enables high-precision ToF sensing against reflective surfaces, at the
cost of high power usage and computational complexity. Localization can then
be derived with multilateration or fingerprinting.

– IR Rangefinder: Also based on ToF, but with limited range (a few centime-
ters). Suitable for short-distance obstacle detection or fine localization.

These systems are summarized and characterized regarding the hardware of this project in
Table 1.7.



IN
T

RO
D

U
C

T
IO

N
21

Table 1.7: Comparative overview for possible non-controlled, on-board, absolute localization systems. The chosen setup for this project is
highlighted.

Wi-Fi BLE UWB
(DWM1001)

LiDAR Sonar

Range sensing RSSI RSSI ToF, ToA, AoA TWR, TDoA ToF ToF

Localization Multilateration Multilateration Multilateration,
TDoA,
AoA+ToA

Multilateration,
TDoA

Multilateration Multilateration

Hardware 802.11 chip (RPi) BLE 4.2 (RPi) BLE 5.1 (USB
Dongle)

DWM1001 LD19P HC SR-04

Accuracy ∼20-50 @ 1, 1-5
m @ >3 m [36]

∼10-50 @ 1m, 1-3
m @ >3 m [36]

∼50 cm ∼10 cm ∼1 cm >3 mm

Range 70 m [36] 60 m [36] 30 m 100 m 12 m 2-3 m

Price - - < 10 € 30 € / module 100 € ∼ 1 €

Update rate Very high [36] High [36] High [36] 10 Hz 10 Hz 10 Hz

Power
requirements

∼ 200 mW [36] <1mW [36] <1mW [36] 100 mW [45] 900 mW 75 mW

Notes Very simple but multi-path sensitive Anchors also need
to be BLE 5.1
compatible

Hardware
integration and
interface need
to be designed

Orientation, line-of-sight, and sur-
face dependent.



INTRODUCTION 22

1.3 Motivations and Objectives
The goal of this thesis is to develop a decentralized swarm robotic communication platform
using Balboa 32U4 robots, augmented with embedded localization capability. Within
the communication protocol, a main focus is put on the ability for the swarm to run
distributed iterative algorithms based on synchronous-messaging.

The system must operate in a fully decentralized manner, including self-localization without
relying on external infrastructure such as motion capture systems or GPS. Among several
on-board systems for absolute localization in non-controlled environments, the Decawave
DWM1001 UWB module was selected for its favorable trade-offs. It is currently one of
the best option on the market, with an announced accuracy below 10 cm. Its software
and hardware integration as well as an accurate calibration model will be designed in this
thesis.

This work builds upon a lightweight and fully controllable communication backbone based
on Bluetooth Classic, chosen for its low power consumption, native compatibility with the
Raspberry Pi, and suitability for embedded swarm systems. On top of this physical layer,
a full communication stack is developed, starting with a static mesh network layer. A key
feature of the stack is its synchronous transport protocol, specifically designed to support
distributed iterative algorithms with timing control, similar to systems like Glossy, but
implemented in software on general-purpose Linux-based hardware.

In contrast to established routing protocols such as BATMAN or Babel, which are designed
for dynamic IP networks and introduce significant overhead, our approach emphasizes
simplicity and low energy consumption in static topologies. Unlike BLE Mesh, which
lacks native support on Raspberry Pi and restricts access to lower communication layers,
Bluetooth Classic offers greater flexibility for implementing custom protocols. Middleware
solutions like eProsima (DDS) or MQTT, while powerful, often introduce unnecessary
complexity and latency for static mesh networks, due to features such as QoS control that
are not critical in tightly controlled swarm systems.

The final objective is to demonstrate the system’s ability to support a real-world dis-
tributed application: cooperative target localization based on a gradient-tracking algorithm.
By leveraging the previously introduced calibration model, the goal is to achieve high
localization accuracy, showcasing the system’s robustness under real conditions. This
application furthermore serves as a proof of concept for the effectiveness of the proposed
communication architecture.



INTRODUCTION 23

1.4 Structure of the manuscript
This manuscript is organized into three main parts, each corresponding to a fundamental
layer of the developed system:

• Chapter 2: Embedded architecture of a swarm agent: This part presents
the hardware and software architecture of an individual swarm agent. Based on
the Balboa 32U4 robot, it details the selection of the Raspberry Pi model and its
integration via a communication interface with the robot. It also discusses design
decisions and constraints related to the embedded localization system, including
post-processing techniques developed to significantly enhance accuracy. Finally, the
power consumption and autonomy of the agent are analyzed.

• Chapter 3: Multi-agent communication: This section focuses on the devel-
opment of a modular and RPi-compatible mesh communication protocol built on
Bluetooth Classic. It introduces a low-level socket-based infrastructure that trans-
forms 1:1 Bluetooth links into a bidirectional mesh architecture supporting multiple
processes. A middle-level communication layer implements modular overlays, includ-
ing flooding, multi-hop unicast, asynchronous and synchronous messaging, with a
particular focus on the latter. Finally, the performance of the designed communica-
tion stack is analyzed.

• Chapter 4: Applications: The final part highlights the relevance and flexibility of
the proposed architecture through the implementation of several distributed applica-
tions on the highest layer of the stack. These include state-based behaviors such as
collective stand-up, iterative consensus, multi-process LED synchronization, and a
distributed target localization algorithm using UWB modules. Each application is
examined in terms of implementation details, communication logic, and performance
results.



Chapter 2

Embedded architecture of a swarm
agent

2.1 Introduction
The Balboa 32U4 is a self-balancing robot developed by the company Pololu. It includes
differential wheels, encoders, an IMU, magnetometer, and an ATMega32U4 MCU. Origi-
nally designed for teaching control theory, it offers expansion features such as level shifters,
GPIO extenders, etc. This robot serves as the basis for each agent in our swarm. A
detailed model and advanced control strategies were presented by Aurélien Soenen in his
master’s thesis [46].

Figure 2.1: Swarm agent based on Balboa. a Raspberry Pi Zero 2W has been added, a
Decawave DWM1001 on the right and a OLED screen on the left. The wiring is custom
made.

24



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 25

Each Balboa robot is coupled with a Raspberry Pi, forming an autonomous swarm agent.
The Balboa is responsible for low-level operations such as motor control, LED signaling,
button handling, and sensor access. In contrast, the Raspberry Pi handles high-level
tasks including swarm communication, algorithm execution, and data logging. This
chapter presents the integration of these components and evaluates their communication
performance.

To enable collective behaviors—such as exploration, coordinated navigation, and localiza-
tion, each agent must perform self-localization without relying on centralized infrastructure.
The selected solution, based on the Decawave DWM1001 UWB module, is detailed, along
with the post-processing techniques applied to enhance its performance.

The chapter concludes with a power consumption analysis, assessing the energy usage
of individual components and estimating the system’s autonomy based on empirical
measurements.

2.2 Raspberry Pi
This section provides a detailed evaluation of the available Raspberry Pi models in
terms of their suitability for the intended application. It further examines various wired
communication bus for establishing an interface between the Raspberry Pi and the Balboa,
highlighting the respective advantages and limitations of each approach. The subsequent
parts present the hardware and software integration, along with a performance assessment.

2.2.1 Overview of the Raspberry Pi models
First, several Raspberry Pi models have been evaluated for integration into the swarm.
The goal was to find the best trade-off between processing power, energy consumption,
wireless capabilities, and weight. Table 2.1 compares the most relevant models considered.

Table 2.1: Comparison between available Raspberry Pi models

Criterion RPi 2 RPi 4 RPi 5 RPi Zero 2 W

Bluetooth USB dongle 5.0 5.0 4.2

WiFi USB dongle 802.11ac 802.11ac 802.11n

Weight 45g 46g 48g 11g

Consumption 3.5W 6W (idle), 13W 7W (idle), 15W 1.5W

Price €35 €40 (1GB) €60 (2GB) €20

RAM 1GB 1/2/4/8GB 2/4/8/16GB 512MB

Connectivity 4× USB 2.0,
HDMI, audio
jack

2× USB 3.0, 2×
USB 2.0, 2×
micro HDMI

2× USB 3.0, 2×
USB 2.0, micro
HDMI, RTC

1× micro USB
(OTG), mini
HDMI



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 26

The Raspberry Pi 2 offers low power consumption and sufficient computational resources
for basic applications. However, it lacks onboard WiFi and Bluetooth, requiring external
USB dongles for connectivity. This setup increases both cost and complexity, making it
less suitable for a compact and efficient swarm setup.

The Raspberry Pi 4 and 5 provide significantly greater processing power and memory
options, making them suitable for more demanding applications, such as image processing
or AI-based tasks. They support modern wireless standards (Bluetooth 5.0 and WiFi
802.11ac), which improves connection stability and range compared to older models such
as 802.11n. The Raspberry Pi 5 includes a RTC (real-time clock) usable with an external
battery, it could be useful for some distributed applications requiring synchronized clocks
where no internet connection is available. However, their higher power consumption and
weight can negatively impact the balance and autonomy of the robot. A heavier board
shifts the center of gravity, making self-balancing more difficult, although still manageable
with appropriate control tuning.

The Raspberry Pi Zero 2 W offers a highly favorable compromise. Its compact size and
low weight are ideal for balancing applications, and while its computational power is more
limited, it remains sufficient for distributed algorithms such as those used in this project.
Although it only supports Bluetooth 4.2 and WiFi 802.11n, these versions are adequate
for the communication protocols implemented in this project, which require only moderate
data rates and have limited range demands. The reduced number of connectors is not an
issue here, as all required I/O is managed via GPIO in this project.

In conclusion, the final swarm configuration is composed of 4 Raspberry Pi Zero 2 W units
to prioritize energy efficiency and mechanical simplicity, and 2 Raspberry Pi 4 (2GB) units
for prototyping and testing more computationally intensive applications in the future.

2.2.2 Overview of the agent-level communication
Various options for the wired communication bus between the Raspberry Pi and the Balboa
32U4 are reviewed and compared, considering the constraints imposed by the available
hardware.

UART

UART (Universal Asynchronous Receiver-Transmitter) is a full-duplex serial communica-
tion protocol used to transmit and receive data between two electronic devices. It operates
asynchronously, meaning there is no shared clock signal between the transmitter and
receiver, with each side synchronizing its data at its own rate. The maximum baud rate of
the ATMega32U4 is approximately 115 Kbps.

Either the native UART or the USB port can be used. But using a USB-UART connection
would prevent using the Balboa’s USB port for other purposes, such as serial debugging or
operating with the motors disabled. In addition, since the Raspberry Pi is shield-mounted
on the Balboa, its TX/RX pins are physically inaccessible. We could still solder wires
directly onto the Raspberry Pi or design a custom GPIO extender PCB with pin headers to
place between the Balboa and the Raspberry Pi, but this solution is not ideal. The Balboa
operates at 5V, while the Raspberry Pi uses 3.3V. Therefore, a level shifter is needed



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 27

between the Balboa’s TX and the Raspberry Pi’s RX. There is a general-purpose level
shifter available on the Balboa that we could use. However, we will need this level shifter
later on for the Decawave module. Note that it is the chosen solution of Sandbots[15],
which is also based on Balboa 32U4.

SPI

SPI (Serial Peripheral Interface) is a full-duplex synchronous serial communication protocol
used to transfer data between a master device and one or more peripheral devices. It
operates with a shared clock signal, allowing for faster data transfer, with a throughput
around 10 Mbps, compared to asynchronous protocols like UART.

The unavailability of the Raspberry Pi pins remains constraining. Moreover, the SPI bus
requires four wires: MOSI, MISO, CLK, and CS. Among them, three need a level shifter
(MOSI, CS, CLK). We would need external level shifters, which is impractical.

I2C

I2C (Inter-Integrated Circuit) is a synchronous serial communication protocol used to
connect multiple devices using only two wires: one for the clock signal (SCL) and one for
data (SDA). It allows for communication between a master device and multiple peripheral
devices, with each device having a unique address.

This is the communication method recommended by Pololu, and a level shifter is already
included on the Balboa between the ATMega32U4 and the Raspberry Pi. Therefore, no
additional hardware is needed. However, the IMU required for balancing is also connected
to this I2C bus. Initially, the Balboa acts as its master. This configuration needs to
be revised, as I2C does not support multiple masters. The best solution would be to
move the balancing control loop to the Raspberry Pi instead of the Balboa. In this case,
the Raspberry Pi would directly read the IMU data, and send/request data to/from the
Balboa.

Table 2.2: Comparison between wired buses for Raspberry Pi - Balboa interface.

Criterion I2C SPI UART

Rate 100 Kbps 10 Mbps 115 Kbps

Hardware integration Easy Complex Medium

Software development Difficult Easy Easy

Connection SDA/SCL MOSI/MISO/CS USB or TX/RX

Architecture 1 master 1+ master P2P

Other advantages Level-shifter included Fast, full-duplex Asynchronous

Other drawbacks Shared bus with IMU,
then software refac-
toring needed

USB and general purpose level shifter
unavailable, Raspberry Pi GPIO are in-
accessible



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 28

The main characteristics of each wired communication bus are summarized in Table 2.2.
Among the available options, I2C emerges as the most suitable solution for interfacing the
Raspberry Pi with the Balboa. It is the only bus that does not require extra hardware and
offers a data rate sufficient for most foreseeable applications, as discussed in Section 2.2.5.
However, its integration entails substantial software refactoring, as previously mentioned.

2.2.3 Hardware
The I2C wiring is embedded on the Balboa, as illustrated in Figure 2.2. A dual-channel
level shifter separates the I2C bus into two voltage domains: 3.3 V and 5 V. This is necessary
because the Raspberry Pi and the IMU operate at 3.3 V, while the Balboa’s ATmega MCU
and the OLED display require 5 V. The components related to the Decawave module are
discussed in Section 2.3.

Figure 2.2: Agent hardware architecture. The Raspberry Pi acts as the I2C master and
controls three slaves: the IMU, the OLED, and the Balboa. The DWM1001 is connected
to the Balboa via UART, only one level shifter is required (and available), since the Balboa
can read 3.3 V signals. Numbers in parenthesis indicate the number of wires used. All
components are powered by the main power circuit, except for the OLED display. This
diagram is not exhaustive.

2.2.4 Implementation
The software architecture has been refactored and extended beyond the standard Balboa
library to enable communication with the Raspberry Pi. Originally, the Balboa managed
the IMU directly and executed the balancing control loop onboard. All peripheral interfaces
on the Raspberry Pi, as well as their interconnections, are summarized in Figure 2.3. The
Decawave-related components will be detailed in Section 2.3.

In the new architecture, the Raspberry Pi acts as the I2C master and can request data
from, or send commands to, its slaves. A custom data structure has been implemented on
the Balboa to handle the variables exchanged via the I2C bus. Since the Balboa is no longer
the IMU master, it cannot directly retrieve IMU measurements to perform balancing.



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 29

Consequently, the control loop has been ported from the Balboa to the Raspberry Pi. The
Raspberry Pi now communicates with the IMU via an I2C interface and performs the
control computations.

Figure 2.3: I2C communication within an agent. The Raspberry Pi is the I2C master
of the IMU, OLED, and Balboa. The Balboa runs a loop that updates slave.buffer
with Decawave measurements, encoder readings, and button states. It also sets motor
outputs and LED states based on values written to this buffer. The Decawave module is
interfaced via UART and its measurements are post-processed in the DWM() function on
the Raspberry Pi. The balancing control loop is implemented in Balancer(), while IMU()
and OLED() are I2C interfaces.

The Broadcom BCM2835 MCU of the Raspberry Pi has a known hardware bug affecting
its I2C implementation: improper handling of clock stretching can lead to communication
failures or data corruption with some slave devices. This issue prevents the use of standard
Arduino I2C libraries on the Raspberry Pi. A detailed explanation of the bug is available
in [47]. To mitigate this, the company Pololu provides a custom I2C library [48] that
dynamically reduces the data rate when necessary. While this results in slower communica-
tion, it significantly improves reliability. The actual data rates achieved will be discussed
in the next section.

2.2.5 Performance analysis
Benchmarking the agent’s communication shows that, with the I2C bus set to 100 kHz,
the Raspberry Pi achieves read and write speeds of approximately 21 kbit/s and 53 kbit/s,
respectively. These values are lower than the theoretical value because of the discussed
clock stretching issue.



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 30

The balancing controller, originally running on the Balboa, has been ported to the
Raspberry Pi and operates at a loop frequency of 100 Hz. At each iteration, the Raspberry
Pi performs the following transactions:

• Reads encoder values from the Balboa: 4 bytes

• Reads IMU measurements directly from the IMU: 12 bytes

• Sends motor speed commands to the Balboa: 4 bytes

This results in a total communication load of:

Read: 100 · 8 · (4 + 12) = 12.8 kbit/s, Write: 100 · 8 · 4 = 3.2 kbit/s

These values remain well below the observed maximum throughput, leaving ample room for
additional, less frequent data exchanges, such as LED states, button inputs, or Decawave
data.

The company Pololu also recommends keeping the I2C buffer size under 64 bytes. In this
project, the total buffer size is 28 bytes, broken down as follows:

• Motor speeds: 2 × 4 bytes

• Encoder values: 2 × 4 bytes

• LEDs: 3 × 1 byte

• Buttons: 3 × 1 byte

• Position: 2 × 2 bytes

• Distance: 2 bytes

In conclusion, both the data throughput (12.8 kbit/s read, 3.2 kbit/s write) and the buffer
size (28 bytes) meet the constraints imposed by the 100 kHz I2C bus when using the
PololuRPiSlave library.

2.3 Localization System
Equipping each agent with an embedded self-localization system enables a wide range
of swarm behaviors, particularly those related to navigation, coordination, and spatial
organization. For the purposes of this project, the system must be capable of measuring
inter-agent distances ranging from 0.1 m to 4 m, with as high accuracy as possible. Ideally,
the positioning error should remain below 10 cm. Additionally, since the system must be
integrated onto the Balboa robot, the sensing technology must be omnidirectional and
mechanically integrable without compromising the robot’s balancing stability.



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 31

In Chapter 1, localization systems has been categorized as centralized, proprioceptive, or
environment-based, see Table 1.6. In our context, we require an on-board, decentralized,
and absolute localization system, which implies an exteroceptive approach suitable for
operation in a non-controlled environment. Among the feasible techniques, range estimation
can be achieved through WiFi RSSI, BLE (RSSI, ToF, or ToA), UWB (ToF or ToA), sonar,
or LiDAR, summarized in Table 1.7. However, both LiDAR and sonar are unsuitable in
this case: they are directional, difficult to integrate mechanically, and may interfere with
the robot’s ability to balance properly due to their size and mounting requirements.

Considering these constraints, we adopt the Decawave UWB module as the localization
solution, owing to its superior accuracy among the remaining candidates. Nevertheless, its
integration introduces several challenges, particularly in terms of hardware and software
interfaces design, that will be addressed in the following sections. Furthermore, in order
to improve the reliability and accuracy of the distance measurements, a post-processing
step including calibration and filtering will be designed and implemented.

2.3.1 Decawave DWM1001
The Decawave DWM1001 is presented in a more detailed way in this section, in order to get
a better evaluation of its integration process. The Decawave DWM1001-DEV is composed
of an UWB antenna, a microprocessor (Nordic nRF52832) and a J-Link allowing us to
program the microprocessor. We can either use a custom firmware or the one provided by
Decawave, which is called PANS API. It contains all needed function in order to setup
(with a mobile application) and use the localization system. It is possible to communicate
with the embedded MCU by using UART bus, SPI bus or BLE.

Figure 2.4: Decawave DWM1001 as an anchor. The height of the support corresponds to
the height of the tag on the Balboa.

Each module can be configured either as a tag (see Figure 2.1) or an anchor (see Figure
2.4). The position of the tags are to be determined based on their measured distance with
the anchors that are located at known position. This distance is measured either using
Two-Way Ranging (TWR, a form of ToF) or ToA. Based on that, the firmware from the
Decawave MCU performs repectively multilateration or TDoA to compute the position of
tags. However, only the TWR-multilateration is implemented in the PANS API.



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 32

The integration of the module is not trivial due to the fact that the Raspberry Pi pins are
not available and the Balboa operates at 5V while the Decawave uses 3.3V logic. Moreover,
the communication interface between the agent and the Decawave need to be designed,
based on the PANS API. The whole design have been thought in detail and reveals to be
possible without any external hardware. It will be explained thoroughly in the next few
sections.

2.3.2 Hardware
The connection options between the Decawave module and the other components of the
agent, along with their limitations are presented in this section. On the Balboa robot,
the Raspberry Pi is mounted in a shielded position with no access to its GPIO pins. As
such, connecting the Decawave module directly to the Pi would require either soldering
onto the board or designing a custom GPIO extender between the Pi and the Balboa,
both solutions being impractical and undesirable. To avoid external hardware and risky
modifications, the most viable solution is to connect the Decawave module directly to the
Balboa’s MCU, which has accessible extension headers. Note that the Decawave operates
at 3.3 V logic, while the Balboa uses 5 V. To protect the Decawave, a level shifter are
required on signals from the Balboa to the Decawave. Fortunately, the Balboa can read
3.3 V signals, a single channel level shifter is enough.

This project uses the PANS API, which allows communication with the Decawave module
via UART, SPI, or BLE. Since BLE is already used for swarm communication, using it
for the Decawave could cause conflicts. A wired interface is therefore preferred, either
SPI or UART. SPI requires three level-shifted signals (SCLK, MOSI, and CS), whereas
UART only needs level shifting on the Balboa’s TX line. Conveniently, the Balboa
includes a bi-directional, single-channel level shifter, making UART the simplest and most
hardware-efficient option. The final hardware configuration is shown in Figure 2.2.

2.3.3 Implementation
The implementation of the Decawave interface, enabling communication between the
Raspberry Pi and the Decawave module, is presented in this section. As outlined in the
previous hardware discussion, two interfaces are required.

First, the I2C interface between the Balboa and the Raspberry Pi, implemented in the
DWM() class (see Figure 2.5). Its integration within the system is also depicted in
Figure 2.3. The existing I2C interface described in Section 2.2.3 has been extended to
include Decawave measurements. The Raspberry Pi retrieves these measurements via I2C
and performs post-processing (detailed in the next section) within the DWM() class.

Second, the UART interface on the Balboa is implemented through the function shown
in Figure 2.5, and detailed in Algorithm 1. The UART-based PANS API offered by
Decawave can operate in two modes: shell mode and generic mode. The former allows for
human-readable command input via a terminal, whereas the latter uses binary TLV (Type-
Length-Value) messages, offering greater efficiency and better integration into embedded
systems. For this project, the generic mode is used.



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 33

Figure 2.5: Block diagram of both interfaces involved in Decawave communication. The
Balboa queries the Decawave module via UART at 10 Hz using the interface developed on
the Balboa. The Raspberry Pi then reads the result over I2C via the Balboa() interface,
before applying post-processing in DWM() class.

The operating principle is straightforward: a TLV-formatted binary request corresponding
to a specific PANS API command is sent over UART from the Balboa to the Decawave
module. The Decawave responds with a binary message containing the requested data.

Figure 2.6: Excerpt from the Decawave API guide [49] showing the use of dwm_loc_get().

The TLV format begins with a one-byte type field, followed by a one-byte length field, and
then a variable-length value field (0 to 253 bytes), as specified by the length field. This
format is shown in Figure 2.6, which is an excerpt from the Decawave API documenta-
tion [49].



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 34

Following an in-depth review of the Decawave UART API documentation [50], the
dwm_loc_get() command was selected, as it provides both the current tag’s position and
the distances to all visible anchors. Algorithm 1 outlines its implementation on the Balboa:
the function sends the appropriate binary request and parses the response, extracting only
the tag’s position and the distance to the anchor matching the target UWB address.

Algorithm 1 dwmLocGet(): Retrieve position and distance data from DWM1001
Require: Serial connection to the DWM1001
Ensure: Position and distance data stored in slave.buffer

Send command 0x0C/00 over serial
Read incoming bytes from serial into rx_data
data_cnt ← 0
if rx_data[data_cnt] = 0x40 then

error ← rx_data
data_cnt ← data_cnt +3

end if
if rx_data[data_cnt] = 0x41 then

data_cnt ← data_cnt +2
(x, y, z, qf)← rx_data
slave.buffer ← (x, y, z, qf)
data_cnt ← data_cnt +13

end if
if rx_data[data_cnt] = 0x49 then

(length, anchor_number)← rx_data
data_cnt ← data_cnt +3
for i← 0 to anchor_number do

if length > 0 then
(uwb_addr, d, qf)← rx_data
slave.buffer ← (d, qf)
data_cnt ← data_cnt +4
(x, y, z, qf)← rx_data

end if
data_cnt ← data_cnt +13

end for
end if

2.3.4 Error characterization, filtering, and calibration
The measurements performed by the Decawave are not limitless. In this section, the accu-
racy and precision of the position estimation are analyzed and post-processing techniques
such as calibration and filtering are designed in order to improve accuracy and precision
of the measurements.

Accuracy is defined as the ability to provide average measurement nearby the actual value,
it is limited by systematic bias. Here are the main biases that affects the accuracy of the
measurements:



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 35

• Anchor position accuracy: anchor position measurement is limited.

• Non-Line-of-Sight conditions (NLoS): fixed obstacles may introduce a bias.

• Orientation: the beam may be omnidirectional, it is not perfectly isotropic. Mea-
surements vary with the orientation of the antenna.

The precision corresponds to the variability of several measurements in identical conditions.
Here are the main biases that affects the precision of the position estimation of the tags:

• Reply time accuracy: TWR algorithm need an estimation of the reply time of the
receiver, but it has a small variability.

• Hardware bias: device-to-device bias due to delays, connections, etc.

• Random noise on range measurements: due to interferences, thermal noise, etc.

• Non-Line-of-Sight conditions (NLoS): Fixed obstacles may introduce a systematic
bias. But the obstacle presence may not be systematic, in this case the precision is
affected.

The precision could be improved by using filtering techniques that smooth the measure-
ments, and reject outliers, while the accuracy could be improved with a calibration that
remove the systematic biases by designing a sensor model. Ideally, we would process
the distances on which the multilateration is based, consequently the position accuracy
would be improved as well. However, we do no have access inside the PANS API, then we
distinguish the position error, and distance error, both will be post-processed differently.

Filtering

Filtering techniques aim to improve precision through a two-step process:

1. Outlier removal
Some measurements may be heavily biased. These are detected and removed using
the Interquartile Range (IQR) method. A value is considered an outlier if it lies
outside the following bounds:

IQR = Q3−Q1, LB = Q1− 1.5 · IQR, UB = Q3 + 1.5 · IQR, (2.1)

where Q1 and Q3 are the 25th and 75th percentiles of the dataset, respectively. LB
and HB designate the lower bound and the upper bound, respectively.

2. Moving average
To smooth out rapid variations and to keep distance estimation as close to the
measurement’s mean as possible, a moving average is applied. The filtered value at
each step, m̄t, is the average of the previous N measurements, mt−i, where N is the
window size.

m̄t = 1
N

N−1∑
i=0

mt−i. (2.2)



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 36

High-frequency variations can cause issues. For instance, in a trajectory planning
algorithm, position ripple may cause the robot to oscillate. In a localization algorithm,
it can delay convergence or even prevent it entirely. However, more the signal is
smoothed, more the setting time increases, slowing the dynamic of the system.

Figure 2.7 illustrates the effect of distance filtering. Outliers are removed, and the ripple is
effectively reduced. Regarding position filtering, the distance between each measurement
and the centroid of the sample is computed and the IQR technique is applied as well.
Since the measurements are ideally clustered near the centroid, only an upper bound is
applied to retain those that lie within a certain radius, effectively defining a circular area
of acceptance.

(a) (b)

Figure 2.7: (a) Distribution of raw distance measurements. (b) Illustration of moving
average on raw distance measurements. Window size is 15 and actual distance is 50 cm.
Measurements have been performed at three different positions.

Figure 2.8: Window size reduced to 3 to better follow moving agents.

If the agents are moving, a smaller window size may be needed to reduce position estimation
latency. However, this increases sensitivity to ripple. Figure 2.8 shows results with a
reduced window size of 3 for a static agent.



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 37

Calibration setup

Calibration consists in comparing the estimated positions or distances to their correspond-
ing ground truth values over a range of tag placements. The sensor’s transfer function or
the predictor is derived using linear regression. For optimal accuracy, calibration should
be repeated whenever the anchors are repositioned, in order to cancel the accuracy loss
due to it.

To achieve this, a precise setup was arranged on a 2×2 m table, with three anchors and one
target fixed at known positions. Markers were distributed on the ground to indicate the
locations where accurate calibration measurements should be taken, as shown in Figure 2.9.
For each distance or position, the Decawave tag was rotated by 90° between sequences of
approximately ten measurements per orientation.

Figure 2.9: Position of the agent for measurements. A video demonstration is available
here, showcasing the measurement process. A specific program, available on the project’s
GitHub, is controlled via the Balboa’s buttons and starts and stops measurements between
each position and robot orientation.

Further improvements could be made by developing a specific calibration model for each
agent, in order to account for device-to-device variations. Additionally, a more suitable
model could be chosen to better reflect the system’s inherent non-linearity. Incorporating
accelerometer and gyroscope data to factor in the agent’s orientation within the model is
another promising avenue for enhancing estimation accuracy.

Distance calibration

Distance calibration is performed using a simple one-dimensional linear regression. The
sensor’s transfer function is estimated using the least squares method applied to the
measurements and their ground truth. The residual sensor model error after calibration is
defined as the difference between the predicted measure from the sensor model and the
filtered measurements at a given actual distance. These are shown in Figure 2.10, and the
corresponding equations are provided below.

https://uclouvain-my.sharepoint.com/:f:/g/personal/romain_englebert_student_uclouvain_be/EtbAcfAIeeVOoKPKic-fJjoBO-4nR24EMeOsN6qEfi7CbA?e=CDttRo
https://github.com/trebelge0/Balboa_network.git


CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 38

Let N the number of distinct distances tested, m the measured distance, m̂ its model-based
estimation, d the actual distance, and d̂ the estimated true distance. The uncalibrated
sensor model is simply:

m̂ = d. (2.3)
The calibrated model, obtained from linear regression, becomes:

m̂ = 1.056d + 6.299. (2.4)

With the residual model error being:

er = m̂−m. (2.5)

Finally, the filtered residual model error is denoted ēr

Figure 2.10: Top: Colored dots are raw measurements; black dots are filtered values. The
red line represents the calibrated sensor model m̂ = 1.056d + 6.299, while the blue line
corresponds to the uncalibrated one m̂ = d. Bottom: Dots represents the sensor model
residual error er for each measurement. Outliers are highlighted with a red cross. The
green curve represents ēr.

Figure 2.10 shows a good fit between the linear regression sensor model and the measure-
ments, confirming its suitability. Next, we quantify the model’s quality through error
metrics. The mean model error mostly reflects systematic bias and can be significantly
reduced through calibration:

ēr,av = 1
N

N∑
i=0

ēr(di). (2.6)



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 39

In contrast, the root-mean-square (RMS) error of the sensor model gives an indication of
the average spatial deviation, regardless of distance. ēr, the filtered residual model error
(see 2.5), is centered in order to capture only deviation effect.

ēr,RMS =

√√√√ N∑
i=0

(ēr(di)− ēr,av)2. (2.7)

This metric reflects the overall model accuracy. Although it could be further reduced using
more complex (nonlinear) models, this might result in over-fitting. In a linear model, the
reduction in ēr corresponds to an offset correction, while the decrease in ēr,RMS reflects an
improved slope adjustment that better captures the trend of the data.

The error metrics before and after calibration are summarized in Table 2.4. The calibrated
model’s statistics correspond to er = 1.056d + 6.299−m, i.e., the green line in Figure 2.10,
while the uncalibrated one corresponds to er = d− xm. On the training set, ēr is nearly
canceled and ēr,RMS fall from 3.02 down to 2.12 cm.

Table 2.3: RMS and mean error of the sensor model before and after calibration

Metric Uncalibrated Model Calibrated Model

ēr,RMS 3.02 cm 2.12 cm

ēr,av 11.51 cm 0.072 cm

Finally, we can estimate the true distance from a measurement by inverting the sensor
model:

d̂ = 0.946m− 5.96, (2.8)

and the associated estimation error is defined as:

ee = d̂− d. (2.9)

.

Figure 2.11: Cumulative error distribution for the distance estimator.



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 40

To evaluate the accuracy improvement thanks to processing, Figure 2.11 shows the
cumulative distribution of the distance estimation error with and without calibration. It
indicates that 90% of the estimates fall within 4 cm of the true distance for the calibrated
model, while this value reach 19 cm without calibration, a reduction of 79% in error.

Position Calibration

Position calibration is also performed using linear regression, applied to the same set of
measurements used for distance calibration, but this time focusing on positional data.
While distance calibration initially derives a sensor model, position calibration is solely
used to obtain a position predictor. However, by inverting Equation 2.10, a sensor model
could theoretically also be derived from this predictor. Figure 2.12 illustrates the raw
measurements at each training position, the filtered data, the resulting calibrated positions,
and the ground truth.

Figure 2.12: Position calibration on a 2D map. Raw measurements are shown in grey. A
dashed circle is drawn at their centroid, with its radius corresponding to the IQR bound.
Ground truth positions are indicated by three-pointed stars. Outliers are marked in red,
and calibrated positions in green.

Let p denote the actual position, p̂ its estimated value, and m the measured position. The
2D linear regression model obtained by calibration for position estimation is:

p̂ = A ·m + b =

 0.935 0.003

−0.011 0.945

 ·m +

4.624

5.086

 . (2.10)



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 41

The estimation error is defined as:

ee = ∥p̂− p∥ (2.11)

The estimation error after calibration, denoted ee,cal, is computed using the estimated
position p̂ from the linear model. The uncalibrated error, ee,raw, corresponds to the case
where p̂ = x. Figure 2.13 shows both the calibrated error and the ratio ee,cal

ee,raw
, which

represents the error gain. A ratio close to 0 indicates significant improvement through
calibration, while a value near 1 means little to no improvement, and values above 1
indicate degradation.

We observe that the residual error after calibration ranges from 1 to 9 cm, with higher
values near the anchor located at coordinates (50, 100), this anchor will later serve as a
target for localization. The increased error in this region might stem from the non-standard
anchor configuration used. While anchors are often arranged in a rectangular pattern, our
system is expected to operate in arbitrary configurations to support localization anywhere
in the area.

The heatmap of ee,cal
ee,raw

shows that calibration reduces the error down to 40% across most
of the map. However, two local regions exhibit an error increase of up to 140%. These
variations are attributed to the system’s inherently non-linear nature, compounded by
other non-linearities such as multi-path effects, measurement noise, and occasional NLoS
conditions, despite careful mitigation during data collection. While these could be addressed
with more sophisticated non-linear models, the calibrated error remains sufficiently low for
our requirements, and more complex models risk overfitting, especially given the limited
measurement precision.

Figure 2.13: Residual error after calibration (ee,cal), and ratio of calibrated to uncalibrated
error ( ee,cal

ee,raw
), representing the error gain.

The definitions of RMS and mean from Equations 2.7 and 2.6 are naturally extended to
two dimensions. The overall average spatial error over the full map is estimated using the
RMS of ee,cal, with the mean value also computed. The corresponding values are reported



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 42

in Table 2.4. We observe that the spatial averaged error of the calibrated estimator fell
down to 0 and its RMS value is reduced by 35 %, highlighting the good fit of the model.

Table 2.4: RMS and mean position error before and after calibration

Metric Uncalibrated Model Calibrated Model

¯eRMS 5.17 cm 3.51 cm

ēr,av 1.31 cm 0 cm

Finally, the global calibration effect is assessed with the cumulative distribution of the
position error, shown in Figure 2.14. We observe that 90% of the measurements originally
exhibit an error below 15 cm, which improves to under 8 cm after calibration, a reduction
of 47%.

Figure 2.14: Cumulative distribution of the position estimation error.

2.4 Power Consumption of an Agent
The agent is composed of several hardware components that each contribute to the total
power consumption. To estimate the system’s autonomy, current measurements were taken
at the battery output. The measurements were taken using a multimeter in series with
the batteries, with one cell placed outside the enclosure as shown in Figure 2.15b.



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 43

Table 2.5: Average measured current from the batteries when they were at 7.54V. Each
column add an additional component, keeping the previous.

Balboa

Raspberry Pi

Decawave

Actuators

Current 33 mA 140-190 mA 230 mA 300 - 420 mA

Power 249 mW 1.05 - 1.43 W 1.73 W 2.26 - 3.16 W

To understand how consumption is distributed across components, we combined theoretical
values from datasheets with experimental measurements. Measurements were performed
in various configurations, with each column of Table 2.5 adding one component to the
previous setup. The voltage during testing was 7.54 V, the resulting consumption per
block is illustrated on Figure 2.15a.

(a) (b)

Figure 2.15: Power consumption analysis. (a) Consumption stack sorted. (b) Current
measurement setup.

• Balboa (ATMega32U4 + onboard components): According to its datasheet
[51], the ATMega32U4 consumes typically 10–15 mA at 5 V (50–75 mW). The rest
of the measured power (approx. 200 mW) is attributed to the Balboa’s supporting
components (regulators, sensors, etc.).

• Raspberry Pi Zero 2 W: Literature reports a typical current draw of 120 mA
(600 mW) with Wi-Fi enabled and HDMI disabled [52]. Experimentally, we observe
an increase from 249 mW to 1.05–1.43 W when the Pi is active and running consensus
algorithms via I2C. This corresponds to a net power draw of 750–1180 mW.



CHAPTER 2. EMBEDDED ARCHITECTURE OF A SWARM AGENT 44

• Decawave DWM1001: Its average power consumption is 100 mW, peaking at
250 mW during reception [45]. When added to the system running localization
at 10 Hz, the total power rises to 1.73 W, suggesting a Decawave contribution of
200 mW.

• Actuators (Motors): Power draw from motors varies with speed, torque, and
activity. Our setup does not allow measurement during balancing, so values were
taken with the robot running unloaded at different speeds. The observed increase
(1.43 W) is a rough estimation, as real conditions include lower speed but higher
torque and IMU polling. For accurate profiling, embedded power monitoring would
be required.

2.4.1 Autonomy Estimation
Assuming a 6-cell AA NiMH battery pack (1.2 V nominal per cell, 2400 mAh capacity):

Total energy = 7.2 V× 2.4 Ah = 17.28 Wh,

Estimated autonomy = 17.28 Wh
3.16 W ≈ 5.46 hours.

This is an optimistic upper bound. In real scenarios, losses from voltage regulators and
fluctuating loads (e.g., CPU/motor peaks) reduce autonomy. A more realistic value lies
between 4.5 and 5 hours under typical operating conditions. The uncertainty stems
mainly from imprecise motor power characterization.

2.5 Summary
This chapter described the upgraded architecture of the swarm agent. The Raspberry Pi
Zero 2 was selected for its compact size, energy efficiency, and sufficient computational
power. Although limited to legacy Bluetooth and Wi-Fi, these are adequate for the
intended applications.

The Raspberry Pi communicates with the Balboa via the I2C bus, chosen for its no extra
hardware requirement and sufficient throughput. It now also handles real-time balancing,
having taken over the IMU acquisition and control loop previously managed by the Balboa.

For localization, the Decawave DWM1001 UWB module was integrated, offering sub-10
cm accuracy. Due to GPIO limitations, it is interfaced with the Balboa via UART using
the PANS API, and computed positions are forwarded to the Raspberry Pi over I2C.
Calibration and filtering significantly improved accuracy: 90% of distance errors decreased
by 79% (to max. 4 cm), and 90% of position errors by 47% (to max. 8 cm).

Finally, power consumption measurements show an average draw of 3 W during operation,
leading to an estimated autonomy of 4.5–5 hours.



Chapter 3

Multi-agent communication

3.1 Introduction
Establishing reliable and efficient wireless communication within a swarm of mobile agents
requires the design of a robust and well-adapted communication system. This chapter first
compares possible solutions involving technologies explored in the literature review. Then,
the chosen architecture and its implementation are detailed, followed by a performance
analysis.

The swarm initially consists of six agents, with the option to scale up. Each agent
communicates with a limited set of neighbors, forming a mesh topology where nodes
represent agents and edges represent communication links. As agents are battery-powered,
low consumption is needed, low latency is preferred to increase convergence rate while
running iterative algorithms. For the Balboa’s balancing ability, solution without additional
hardware are preferred. Since the goal is to run distributed algorithms rather than exchange
large data files, messages are typically small, just a few dozen of bytes

A core requirement in this context is decentralization: no central entity should manage
communication. While this increases complexity and may reduce overall efficiency, it
enables bio-inspired behaviors. Such systems are easy to simulate, but challenging to
deploy in real-world conditions due to constraints like latency and synchronization.

Our approach begins with a low-level protocol, Bluetooth Classic, that offers compatibility,
flexibility, and low energy consumption. This protocol is extended to support mesh and
multi-process communication. On top of this, routing mechanisms such as flooding and
unicast, and transport algorithms such as (a)synchronous messaging enable the construction
of complex algorithms.

Finally, efficient swarm deployment is essential. But some communication protocols make
this task harder than others. Firmware updates, agent-specific program, and data retrieval
would otherwise be quite time-consuming. To address this, all agents connect to a central
computer running dedicated deployment tools, then they are free to run without this
computer.

45



CHAPTER 3. MULTI-AGENT COMMUNICATION 46

3.2 Overview
In the literature review, existing routing protocols (e.g., BATMAN, Babel), some mid-
dleware (e.g., eProsima Fast RTPS (DDS)) and some full stack (e.g., BLE Mesh, ZigBee)
communication protocols have been detailed, see Tables 1.3, 1.4, and 1.5. In this section,
solutions based on these technologies as well as on other lower-level protocols (e.g., IR,
Classic Bluetooth, WiFi, BLE), encountered in other multi-agents systems, are compared
regarding this project’s requirements.

3.2.1 Infrared (IR)
Infrared is not considered a suitable candidate for this project due to its very short range,
very small throughput, sensitivity to ambient light, and strict line-of-sight requirements.
However, its main advantage is its lightness and simplicity. That is why it is often used
in swarms with at least hundreds of agents such as the well known Kilobot [6], but it is
obviously not adapted with a ten agent swarm spread on several meters.

3.2.2 Zigbee
We have shown in the literature review that Zigbee offers very good efficiency, with low
power consumption and latency. But there are three reasons that make it unsuitable for
this project. First, it uses additional hardware, even though it is small, the balancing
capability and the mobility of the robot may be negatively affected. Second, it is a full
stack that do no include synchronous messaging, we could implement it on the top but it
would be better to design it closer to the hardware. Finally, we have no control on the
mesh topology, and the overhead due to the routing mechanism use energy for something
we don’t need.

3.2.3 WiFi
WiFi offers high bandwidth and long communication range, making it a solid candidate
for data-intensive distributed systems. However, traditional router-based architectures
introduce a central coordinator, which contradicts the decentralization objective of this
project.

Ad-Hoc WiFi provides a decentralized communication model in which each Raspberry Pi
broadcasts its own access point, forming a star-like topology. Although it can serve as a
low-level base for a fully custom stack, this mode requires substantial configuration and
development efforts. Notably, internet access must be bridged through a specific node, and
deployment tools relying on centralized connectivity become incompatible, unless agents
temporarily switch to a router-based mode (e.g., via physical interaction like a button
press) to enable provisioning via a central device.

Due to these constraints, adopting an existing mesh routing protocol along with a mid-
dleware appears to be a more efficient solution, at the cost of no control on the mesh
topology. Among the available mesh protocols, the literature review identifies BATMAN
(Better Approach To Mobile Adhoc Networking) as one of the most effective options. It
operates at Layer 2 (data link), creating a virtual interface bat0 for mesh communication.
IP addressing (Layer 3) can be handled either manually or dynamically using DHCP. On



CHAPTER 3. MULTI-AGENT COMMUNICATION 47

top of this, synchronous communication mechanisms can be built using standard transport
protocols (TCP/UDP) through Python sockets. Access to the routing table from Python
is possible using system calls to the batctl utility. A middleware such as eProsima Fast
DDS could alternatively be used to implement high-level communication features (Layers 5
to 7), including Quality of Service (QoS), message synchronization, and publish/subscribe
semantics.

Importantly, BATMAN-based networks are generally easier to deploy than basic Ad-Hoc
setups, as any computer can join the mesh as a node without specific configuration. A
deployment tool, as described in Section 3.5 and Appendix C, can be implemented using
SSH over the mesh network leveraging BATMAN IP addresses.

The following table 3.1 summarizes the imagined WiFi-based communication architec-
ture and provides a comparison between the custom protocol stack and an equivalent
implementation using eProsima DDS:

Table 3.1: Architecture of the synchronous messaging system built on top of BATMAN-adv,
and optional mapping with eProsima DDS

Layer Custom middleware eProsima DDS

L7: Application Custom framework for
distributed iterative algo-
rithms

DDS application logic

L6: Presentation Serialization handled in
Python (e.g., struct)

DDS serialization

L5: Session / Messaging Synchronous messaging
layer with retries, time-
outs, routing-table access
via batctl

Publish/Subscribe mid-
dleware with QoS policies,
discovery, reliability

L4: Transport Python sockets using UDP

L3: Network Static or dynamic IP addresses over bat0

L2: Data Link BATMAN-adv

L1: Physical Wi-Fi

In conclusion, while WiFi brings substantial capabilities in terms of bandwidth, range,
and mesh support through BATMAN, the not necessary routing algorithm that implies
additional overhead, the limited control over the mesh topology and the relatively high en-
ergy consumption limit a bit its relevance for small, energy-efficient swarm with predefined
topology. But it remains suitable for this project.



CHAPTER 3. MULTI-AGENT COMMUNICATION 48

3.2.4 Bluetooth Low Energy (BLE)
While BLE Mesh is supported on dedicated MCU (such as Nordic’s nRF52 family, often
running Zephyr RTOS), it is not natively supported on Raspberry Pi using standard
Linux Bluetooth stacks (e.g. BlueZ). Therefore, implementing BLE mesh on a swarm
of Raspberry Pi would require each Raspberry Pi to be coupled with a separate BLE
Mesh-capable MCU and a UART or SPI bridge, adding significant integration complexity
and energy consumption.
For these reasons, although BLE Mesh offers excellent decentralized communication, it is
currently impractical to use it directly on Raspberry Pi-based platforms without external
hardware and its low-energy advantage is not longer applicable due to additional hardware
requirement.

Bluetooth Low Energy (BLE) is a low-power wireless technology particularly suited for
short-range communication and energy-constrained devices. Unlike Wi-Fi, it offers a low
throughput and range but enables power-efficient and lightweight communication, which
makes it attractive for swarm robotics or embedded sensing tasks. BLE relies on Generic
Attribute Profile (GATT) at L5-7, which defines how devices expose and interact with
structured data via services and characteristics.

However, GATT introduces several limitations when attempting to design a flexible, sym-
metric, and scalable communication system. It enforces a strict client/server architecture,
where only the server (peripheral) can expose data and the client (central) can initiate
transactions. This asymmetry prevents the design of a true peer-to-peer or multi-hop
communication model, making it ill-suited for creating a decentralized mesh topology
(BLE Mesh is based at the top of BLE’s L2 so it does not use GATT but its own protocol).
For these reasons, the BLE-based GATT stack is not retained for this project.

3.2.5 Bluetooth
Bluetooth Classic enables point-to-point (1:1) communication and supports multiple
simultaneous connections, up to seven in theory. It was not designed for swarms with too
many connections, but it could work with a swarm composed of thousand of agents with
less than 7 connections each. Beside of that, it requires prior pairing and a connection
delay applies at the start of a program.

The transport layer relies on RFCOMM protocol, which emulate a bidirectional serial
port. To use it, Bluetooth sockets, available in Python, enable direct communication via a
socket API, allowing each agent to act as both server and client using multi-threading.
This makes it possible to create a physically decentralized mesh with predefined topology.
The low-level nature of this protocol, along with its high compatibility and low energy
consumption, provides great flexibility. However, this comes at the cost of increased
development complexity. Indeed, communication layer from L3 to L7 should be developed
as Bluetooth Classic is not initially made for mesh communication.

A key advantage of Bluetooth is its coexistence with WiFi, which remains available for
internet connection without gateway, and deployment tasks such as individual access, data
collection or firmware updates. Combined with its reliability and wide compatibility, this
makes Bluetooth a suitable option for integration into the swarm platform.



CHAPTER 3. MULTI-AGENT COMMUNICATION 49

Bluetooth Classic was chosen for communication due to its native peer-to-peer architecture,
compatibility, and low overhead. A socket-based full stack was developed from scratch,
avoiding heavy routing and middlewares protocols with their unnecessary features such as
dynamic routing or QoS. This lightweight foundation provides decentralized control over
message flow and enables the implementation of synchronous messaging patterns required
by distributed iterative algorithms. It also allows for custom static routing schemes, giving
full control over the mesh topology.

3.3 Communication architecture
The communication stack implemented in this project is structured in layers, each providing
increasing levels of abstraction. The purpose is not to standardize it with the OSI model,
but to make it flexible and efficient.

Figure 3.1: Protocol stack with OSI model correspondence.

3.3.1 Low-level layer
The lower-level layer of the system relies on Bluetooth Classic. A serial communication
channel is formed by the layers from physical radio layer to the RFCOMM Python sockets.

Bluetooth radio and baseband

The Bluetooth radio layer (L1) handles the wireless transmission over the 2.4 GHz ISM
band using frequency hopping spread spectrum (FHSS), providing robustness against
interference. The baseband manages device discovery, connection establishment, and
low-level packet framing.



CHAPTER 3. MULTI-AGENT COMMUNICATION 50

L2CAP

L2CAP (Logical Link Control and Adaptation Protocol) sits above the baseband and
provides multiplexing of data streams, segmentation and reassembly (default: 1021 bytes /
packet on RPi). While L2CAP is capable of handling multiple logical channels, in this
project a single channel per connection is used. In order to use simultaneous processes
anyway, a multi-process feature has been designed on L3-6 although it may be less efficient
than L2 multi-channel. This is described in Section 3.4.2

Mesh

Bluetooth Classic does not natively support mesh networking. Thus, a static mesh topology
has been designed at a higher abstraction level (L3) by manually managing connections
between nodes using several RFCOMM sockets. Each agent establishes and maintains
connections with its neighbors according to a predefined adjacency matrix.

RFCOMM sockets

On top of Bluetooth Classic, Python RFCOMM sockets are used to form bidirectional
links within the mesh. Each connection allows simultaneous sending and receiving of
messages between two nodes.

Session

Within the Bluetooth() class, a mechanism that establish all predefined links within the
mesh is called at the each start of program. It blocks the program while all link have not
yet been established. This mechanism is detailed in Section 3.4.1.

3.3.2 Middle-level layer
The low-level layer operates with binary data, while the middle level layer uses interpretable
data thanks to a type serialization mechanism. Several communication overlays have been
implemented to support various coordination and routing mechanisms.

Type serialization

This mechanism is the link between the low-level layer and the middle-level layer. It
translates binary data into overlay-specific interpretable data structures. It is described
thoroughly in Section 3.4.2.

Overlays

Although these overlays handle transport-layer functions (such as delivery and synchro-
nization), they are implemented above the session and presentation layers. This departs
from strict OSI layering but brings significant benefits in terms of flexibility and efficiency.
By working directly on interpretable data structures, overlays are easier to design, adapt,
and debug. In this setup, a single Bluetooth instance is shared across all overlays. If they
followed the OSI model strictly, being placed below the session layer, each overlay would
have to be instantiated before the connection, leading to unnecessary memory use and
higher energy consumption.



CHAPTER 3. MULTI-AGENT COMMUNICATION 51

This design allows each overlay to be used as a modular black box, improving modularity
without the cost of strict OSI compliance. The overlays are listed below and detailed in
Sections 3.4.3 to 3.4.6. They are briefly introduced hereafter:

• Synchronous: where agents are able to run distributed iterative algorithms. To do
so, several synchronization waiting loops using message overhead have been designed.

• Asynchronous: where agents react to incoming periodic messages in applications
such that the timing and message order is not important.

• Flooding: a broadcast-based dissemination protocol with acknowledgment back-
propagation.

• Multi-hop unicast: which enables message forwarding across multiple agents to
reach a distant destination through the shortest path.

3.3.3 High-level layer: Framework
At the top of the stack lie the user coding interface to interact with the communication
stack with the highest abstraction level. Some distributed algorithms and applications
have been implemented on it, they are detailed in Chapter 4. They are briefly introduced
hereafter:

• Consensus: Agents agreeing on a state, based on an iterative algorithm.

• Multi-consensus: Double consensus. In this case, they are corresponding to the
phase and frequency of the blinking LEDs of each agent. This is for highlighting the
developed multi-processing feature.

• Target localization: Cooperative estimation of a target’s position using a dis-
tributed iterative algorithm based on gradient descent. Each agent contributes by
measuring its own position and estimating its distance to the target through UWB
multilateration modules.

• Stand Up: Enables asynchronous collective behavior. Each agent stands up as soon
as at least one of its neighbors has already done so.

3.4 Implementation
The whole implementation of the low and the middle-level communication layer are pre-
sented in this section. An overview of all communication-related classes, their relationships
and their applications is illustrated in the block diagram shown in Figure 3.2.

The software architecture is divided into three main categories: communication, applica-
tions and peripheral management. Communication-related classes will be presented in
this section, applications will be analyzed in detail in the next Chapter, and peripheral
management implementation was presented in Chapter 2.



CHAPTER 3. MULTI-AGENT COMMUNICATION 52

Fi
gu

re
3.

2:
Bl

oc
k

di
ag

ra
m

of
th

e
m

ul
ti-

ag
en

t
co

m
m

un
ic

at
io

n
sy

st
em

.
T

he
w

ho
le

so
ur

ce
co

de
is

av
ai

la
bl

e
in

th
is

pr
oj

ec
t’s

G
itH

ub
.

https://github.com/trebelge0/Balboa_network.git


CHAPTER 3. MULTI-AGENT COMMUNICATION 53

3.4.1 Mesh architecture and session management
This section presents the Bluetooth() class, which spans from the mesh layer (L3) to the
session layer (L5). Its structural design is depicted in Figure 3.3.

Figure 3.3: Bluetooth class schema block: Connection and communication system. The
start_network() function establishes all connections, as detailed in 3.5. Once a message is
received, it is processed and stored in Receive data. Message sent are serialized in Send
data using the specified data structure.

The mesh is initialized according to a predefined topology represented by a symmetric
binary adjacency matrix, where Aij = 1 indicates a link between nodes i and j. Each
node corresponds to an agent, and each link represents a connection in the communication
graph, as illustrated in Figure 3.4.

0 1 2 3 4
0 1 1 1 0 1
1 1 1 1 1 1
2 1 1 1 0 1
3 0 1 0 1 1
4 1 1 1 1 0

Figure 3.4: Example of a graph and the corresponding adjacency matrix.

Each device is identified by both its MAC address and a corresponding assigned ID. A
single instance of the Bluetooth() class can serve multiple use cases simultaneously by
specifying it in the message, thanks to its developed support for multi-processing. The
protocol involves two main stages: connection and communication.



CHAPTER 3. MULTI-AGENT COMMUNICATION 54

Connection

Before communication can take place, each agent must establish a connection with each of
its neighbors. A design constraint here is that simultaneous connection attempts between
two devices will fail. To address this, a mechanism ensures that only one side of each
link initiates the connection. Specifically, the device with the lower MAC address always
initiates the connection. This approach leverages the only shared and unique information
between all nodes: their MAC addresses. This mechanism is represented in Figures 3.3
and 3.5.

Figure 3.5: Schema block of connection step with the single side connection attempt
mechanism.

Communication

Once a connection is established, each agent spawns a dedicated thread to listen in server
mode for each connected neighbor. While a traditional publish/subscribe mechanism
typically operates at Layer 7, in this project the messaging do not need that flexibility:
each agent communicate with its fixed neighbors. This has been implemented directly at
Layer 3, remaining closer to the hardware. The implemented system uses a mechanism in
which incoming messages are stored in buffers associated with the sender’s ID and the
designated buffer ID. This structure is illustrated in Figure 3.6.

Figure 3.6: Bidirectional multi-process communication mechanism. Each agent publish
data in its buffer at the corresponding process slot, which will be sent to the neighbors in
the buffer’s slot corresponding to the sender ID.



CHAPTER 3. MULTI-AGENT COMMUNICATION 55

Session management

The program waits until the agent is connected to all its neighbors before allowing any
message exchange. To ensure no message is lost at the start of an algorithm with periodic
exchanges, an additional synchronization mechanism is used: the algorithm only begins
once a first message has been received from each neighbor. This guarantees that all agents
operate their first iteration simultaneously in a distributed architecture, even if some take
longer to become fully ready. This is observable on Figure 3.11: agents are not ready at
the same time but they all begin their first iteration together.

3.4.2 Data serialization
This section presents the designed message data structure. The binary low-level format
has been chosen to be generic, offering flexibility for upper-layer processing. A dedicated
serialization mechanism bridges the low-level and middle-level layers. Data serialization
mechanism is responsible for extracting, decoding, and organizing the content from raw
binary messages into interpretable data structures. The middle-level data structure is
optimized for compactness to minimize overhead during transmission. An overview of the
complete structure is shown in Figure 3.7.

Figure 3.7: Data structure used in the multi-agent communication system. In this example,
four processes are encoded into each message to help the receiver identify them. The
network consists of n agents. Here, RPIo has three neighbors: 0, p, and n.

The low-level reception buffer is structured as a two-dimensional array of size: [number
of processes] × [number of agents]. When a message is received, it is stored in its
raw byte form in the corresponding slot based on both the process ID (encoded in the
first byte of the message) and the sender’s ID. Once this indexing is done, the process ID
is no longer stored in the buffer, as it has already served its purpose for sorting. Since
the process is known, the data type and structure can be determined, allowing proper
decoding. The data serialization is based on the python struct library [53].



CHAPTER 3. MULTI-AGENT COMMUNICATION 56

• Async only includes the agent state. It is detailed in Section 3.4.3.

• Sync includes two additional flags: iter and ACK, two unsigned integers that
help maintain optimal temporal synchronization during iterative algorithms. Their
function is detailed in Section 3.4.4.

• Routing overlays Routing-based overlays rely on more extensive data structures
with multiple flags. These are grouped into a Python NamedTuple for clarity and
structure. Details of their implementation and purpose are discussed in Sections 3.4.5
and 3.4.6.

3.4.3 Asynchronous Communication
This messaging protocol is designed for simple, event-independent communication between
agents. At each iteration, it reads the most recently received state from each neighbor,
computes a new state using a user-defined function, and finally sends its updated state.
This structure is suitable for algorithms that do not rely on strict message ordering or
precise timing. A typical example is the Stand Up application, which will be presented in
details in the next chapter. An overview of the class behavior is shown in Figure 3.8.

Figure 3.8: Simplified structure of the asynchronous communication class. The user must
specify the arguments on top. next_msg() is a function executed at each iteration, it must
also return the next state. We can use any state structure by specifying it in msg_struct.

A mechanism ensures that the algorithm only begins once a first message has been received
from all neighbors and all connections are established. Next, a loop updates the state.
Figure 3.9 shows the resulting iteration evolution, agents are allowed to wait longer than
other and they do not wait for other agents at each iteration.



CHAPTER 3. MULTI-AGENT COMMUNICATION 57

Figure 3.9: Iteration progress over time for four Raspberry Pi devices executing an
asynchronous algorithm. Agent 0 started earlier, despite the loop waiting for each agent
to receive its first message. This behavior happens sometimes and is expected. Agent 0
began execution as soon as it has received a message from its only neighbor, agent 1. The
start time of agents 1, 2, and 3 corresponds to the moment when agent 2 sent its first
message to agents 1 and 3. Agent 3 sent its first message before agent 2.

3.4.4 Synchronous communication
This complex messaging protocol is designed to support distributed iterative algorithms.
Unlike asynchronous exchanges, synchronous communication ensures that agents proceed
in lockstep, making it well-suited for algorithms requiring strict message ordering and
iteration control. A simplified overview of the class behavior is shown in Figure 3.10.

Figure 3.10: Synchronous class



CHAPTER 3. MULTI-AGENT COMMUNICATION 58

The synchronous overlay shares a similar structure with the asynchronous one, but
introduces two additional synchronization loops, made possible by the use of two extra
flags in the exchanged messages. This overlay is said to be pseudo-optimal as it acts as
soon as it can thanks to the three synchronization waiting loops, and the only delay that
cannot be replaced by a loop was carefully chosen.

• Wait for neighbors current states (iter): The next state cannot be computed until
the current states of all neighbors are received. Each message includes the iteration,
allowing the system to verify that messages correspond to the expected iteration.

• Wait for acknowledgment (ACK): Before an agent can send its next state, it must ensure
that all neighbors have read the last one. This is achieved through an acknowledgment
mechanism, where agents send the iteration of the last read message.

This acknowledgment mechanism introduces a latency penalty, as a minimal delay of 50
ms is required after each ACK to avoid sending the next message too quickly, which would
risk disrupting the Bluetooth connection. This delay corresponds to the half maximum
RTT for same-size packets margin for security (see Section 3.6.2).

Experimental results are shown in Figure 3.11. A device can only transmit its next state
after receiving all acknowledgments, and no subsequent state transition can occur before
the corresponding acknowledgment has been received. Beside of that, we observe on the
results that the states are successfully synchronized and the time for 30 iterations in that
configuration is approximately 9 seconds, giving approximately 3 iteration per second.

Figure 3.11: Current iteration states over time for three Raspberry Pi devices executing
a synchronous-based algorithm. Solid lines represent the evolution of each agent’s state,
while dots indicate the moments when all neighbors have acknowledged the current state.

3.4.5 Flooding
Flooding is a simple and robust broadcast algorithm. A sender broadcasts a message,
including a list of viewers, to all its neighbors. Each receiver checks whether the message is
new or the viewer list has changed. If so, it forwards the message. This process continues
until all nodes have received the message and the viewer list is complete. An overview of
the class is shown in Figure 3.12.



CHAPTER 3. MULTI-AGENT COMMUNICATION 59

Figure 3.12: Flooding class block diagram, including message structure.

Upon receiving a new message (identified by its ID), an agent becomes busy and waits until
all other agents have seen the message before returning to the ready state. Experimental
results are shown in Figures 3.13 and 3.14. We observe that it takes between 1.5 and 2
seconds to flood a linear network of 6 agents, and that many redundant messages are sent,
which is common in flooding algorithms as discussed in the literature review.

Figure 3.13: Flooding initiated by RPi 0.
Each message is forwarded to all neigh-
bors until the viewer set is complete. Next,
agents return to the ready state after one
final broadcast. A video demonstration is
available here

Figure 3.14: Flooding initiated by RPi 4.
RPi 1 merges the viewer sets and is the
first to become ready. Other agents follow
either through further merging or via RPi
1’s retransmission.

https://uclouvain-my.sharepoint.com/:f:/g/personal/romain_englebert_student_uclouvain_be/EtbAcfAIeeVOoKPKic-fJjoBO-4nR24EMeOsN6qEfi7CbA?e=CDttRo


CHAPTER 3. MULTI-AGENT COMMUNICATION 60

3.4.6 Multi-hop Unicast
This overlay implements a routing mechanism to send a message from a sender to a single,
specific receiver by following the shortest path in the mesh network. The sender determines
this path using a Breadth-First Search (BFS) algorithm. A simplified overview of the class
behavior is shown in Figure 3.15.

Figure 3.15: Multi-Hop Unicast class schema block, including the structure of the messages

Algorithm 2 Breadth-First Search (BFS) for shortest path
Require: Graph G = (V, E), start node s, goal node g
Ensure: Shortest path from s to g, if one exists

Initialize queue with (s, [s])
Initialize visited set as empty
while queue is not empty do

Pop (current, path) from queue
if current = g then

return path
end if
Add current to visited
for all neighbors of current in G do

if neighbor not in visited then
Append (neighbor, path + [neighbor]) to queue

end if
end for

end while
return No path found



CHAPTER 3. MULTI-AGENT COMMUNICATION 61

BFS is well-suited for this application because it finds the shortest path in terms of number
of hops in an unweighted graph. Unlike Depth-First Search (DFS), which explores paths
as deeply as possible before backtracking, BFS guarantees the shortest path if one exists.
In more advanced mesh routing protocols like BATMAN, link quality is used as a metric
to determine optimal paths. In that case, we can use algorithms such as Dijkstra, which
allow weighting the nodes. The pseudo code of BFS algorithm is shown on Algorithm 2.

Experimental results are shown in Figure 3.16. Each intermediate node along the route
forwards the message to the next hop and becomes temporarily busy, waiting for an
acknowledgment. Once the message reaches the destination, an acknowledgment is sent
back to the sender, traversing the same path in reverse. Each node switches back to a
ready state upon receiving this acknowledgment, allowing new messages to be processed.
Unicast is obviously faster than flooding and a minimal number of messages are sent. For a
sending, sender and receiver send 1 message and intermediate nodes send only 2 messages.

Figure 3.16: First, RPi 1 send a message to RPi 3. The graphs circular, the message can
either go through 1-0-5-4-3 or through 1-2-3. RPi 1 choose the shorter way with BFS.
Secondly, RPi 2 send a message to RPi 4. A video demonstration is available here.

3.5 Deployment
An important aspect that has already been introduced is the deployment of the swarm.
Without dedicated tools, interacting with a group of agents can quickly become tedious.
To address this, several scripts have been developed to automate deployment tasks, tailored
specifically to the architecture and configuration of this project. The choice of Bluetooth
for communication has been complemented by WiFi connectivity, which allows all agents
to connect to a common access point (AP) and thus to be accessed collectively from a
central laptop. This dual-network approach enables efficient remote management of the
swarm through a centralized server.

As illustrated in Figure 3.17, a wireless AP can be configured on a mobile phone, a laptop,
or a dedicated router. Once the AP is available, each Raspberry Pi automatically connects
to it and becomes accessible through SSH from any device on the same network. A
collection of deployment scripts have been developed. They run on the laptop and enable
interaction with the swarm through the following actions:

https://uclouvain-my.sharepoint.com/:f:/g/personal/romain_englebert_student_uclouvain_be/EtbAcfAIeeVOoKPKic-fJjoBO-4nR24EMeOsN6qEfi7CbA?e=CDttRo


CHAPTER 3. MULTI-AGENT COMMUNICATION 62

• Firmware update: Synchronizes the entire project directory on selected Raspberry
Pi devices with the local version on the laptop.

• Program execution: Launches specific Python programs on the selected Raspberry
Pis, with the ability to pass individual arguments based on the RPi ID. Each RPi
runs the code within a pre-configured Python virtual environment that includes all
required libraries, including those for hardware interaction (e.g., CircuitPython).

• Data retrieval: During program execution, each RPi logs data locally. Afterward,
the laptop can retrieve and centralize all files from selected agents.

• General command execution: Enables the user to send any terminal command
to a selected subset of RPis.

192.168.32.45

192.168.32.46

192.168.32.47

SSH

Figure 3.17: Deployment setup for interacting with the whole swarm automatically. The
source code is available on this project’s GitHub.

3.6 Performance analysis of the low-level layer
3.6.1 Maximum data size
While Bluetooth Classic handles low-level message fragmentation and reassembly, practical
limitations arise from the message handling in the transport layer (L3). On Raspberry Pi,
the baseband layer supports packets up to 1021 bytes by default, defined by the MTU
(Maximum Transmission Unit). If a message exceeds this size, the L2CAP layer fragments
and reassembles it automatically. However, the RFCOMM socket on top of L2CAP
imposes another limit: recv() operations are capped at 1024 bytes. When sending larger
messages, they are split into multiple chunks, and the receiver must manually reassemble
them in Python.

Future improvements could involve implementing custom fragmentation and reassembly
to support payloads larger than 1024 bytes. This would offer greater flexibility but would
also add complexity, overhead, and latency, as fragmented messages are sent sequentially
over a single channel.

https://github.com/trebelge0/Balboa_network.git


CHAPTER 3. MULTI-AGENT COMMUNICATION 63

3.6.2 Latency and Throughput
The latency of a single message is evaluated by sending a timestamp to one agent, which
then sends it back to the sender. The RTT (Round-Trip Time) is measured based on
the time at which the sender receives its message back. This measurement is therefore
independent of clock differences between agents. The source code of the measurement
program is available on this project’s GitHub.

In Bluetooth Classic, as long as the packet size remains below the baseband MTU (1021
bytes), no fragmentation occurs. Consequently, latency is expected to be relatively indepen-
dent of packet size within this limit. For larger messages, reassembly above the RFCOMM
layer is not automatically handled, making such measurements unreliable. However, if
reassembly were implemented, we would expect latency to increase proportionally with
the number of fragments.

Assuming single-packet transmissions, the throughput T (s) can be estimated as:

T (s) = s
RTT(s)−Reply Time

2
≈ 2 · s

RTT(s)
[bytes/s], (3.1)

where T is the measured latency for a packet of size s, and Reply Time is the time taken
by the receiver to send back the message. We will neglect Reply Time as it is only a few
ms. Due to the overhead of the RFCOMM socket layer, the goodput (i.e., the amount of
useful application-level data) is approximately 70% of T .

Figure 3.19 shows the measured latency and the corresponding throughput. We observe
that latency is dominated by a fixed component and only slightly affected by packet size
(as long as no fragmentation occurs). The maximum throughput is achieved when the
packet size approaches the MTU.

Figure 3.18: Latency (RTT) measurement
histogram, there are 43 RTT measurements
of 200 bytes packets. The mean RTT is 67
ms and the standard deviation is 21 ms.

Figure 3.19: Latency measurement for sev-
eral packet sizes (size < MTU), along with
the resulting throughput and goodput.

The actual goodput G at the application level depends on the overlay used at the middleware
layer, due to protocol-specific overhead. Let size denote the useful payload (in bytes), and
N the number of agents in the mesh. Based on the payload size given in Figure 3.7, the
estimated goodput for each overlay is given by:

https://github.com/trebelge0/Balboa_network.git


CHAPTER 3. MULTI-AGENT COMMUNICATION 64

• Asynchronous: G ≈ 0.7 · size
size+1 · T ,

• Synchronous: G ≈ 0.7 · size
size+5 · T ,

• Flooding: G ≈ 0.7 · size
size+6+N

· T ,

• Unicast: G ≈ 0.7 · size
size+9+N

· T .

These formulas reflect how the relative size of control overhead impacts the efficiency of
message delivery, depending on the chosen communication overlay. As expected, overlays
involving routing (such as Flooding and Unicast) introduce higher overhead, reducing the
effective bandwidth available.

3.7 Summary
Several communication technologies (Wi-Fi, IR, Zigbee, Bluetooth, BLE, etc.), along
with their respective routing protocols (e.g., BATMAN, Babel) and middleware solutions
(e.g., eProsima, MQTT), were reviewed in the literature. In this chapter, the selection of
Bluetooth Classic was justified by comparing it with an alternative WiFi-based design.
Combined with lightweight RFCOMM sockets, this solution offers a compelling trade-off
between energy efficiency, system flexibility, and compatibility with the Raspberry Pi
Zero 2. While this choice significantly increased the development complexity, it enabled
full control over the architecture, from mesh topology management to application-layer
integration.

To support synchronous distributed algorithms such as gradient descent, a dedicated
messaging overlay was developed. It enables low-latency, fully decentralized iterations
between agents. Additional overlays were implemented to support broader communication
needs: the flooding overlay ensures reliable message broadcasting through acknowledgments,
while the multi-hop unicast overlay enables targeted routing via a BFS algorithm. These
mechanisms have been thoroughly tested and are now available as modular black-box
components, ready to be reused in various application scenarios.

While the system imposes some constraints, such as a limit of seven direct Bluetooth
connections per agent and the need for a predefined mesh topology, it offers full control over
network structure and message flow. Although dynamic reconfiguration is not currently
supported, it could be achieved through the flooding overlay if needed.

Ultimately, this communication stack lays a robust and energy-efficient foundation for a
wide range of distributed applications, and proves that lightweight, custom-designed pro-
tocols can rival more complex solutions when carefully tailored to the system’s constraints
and goals.



Chapter 4

Applications

4.1 Introduction
The developed stack is effective and can be used over several applications. Four applications
are presented in this chapter and their results are analyzed. The final application about the
synchronous messaging-based target localization system make use of the UWB localization
module with the designed post-processing techniques. It also make use of the controller,
and the I2C communication interface between the robot and the Raspberry Pi. The source
code for all simulations and experiments is available in this project’s GitHub, and several
applications are demonstrated in the accompanying video recordings, available at this link.
As a reminder, the following classes are involved in these applications:

• Bluetooth() handles the low-level communication. It manages the sockets that
define the mesh structure and is responsible for sending and receiving binary messages
between agents.

• Async() manages a type of middle-level messaging logic. It decodes the received
binary messages from Bluetooth(), based on the application-specific data structure,
and computes the new state using the user-defined function.

• Sync() manages a type of middle-level messaging logic. It decodes the received
binary messages from Bluetooth(), based on the application-specific data structure,
and is capable of executing synchronous iterative algorithms on the distributed
system.

• Balancer() implements the control logic required for the Balboa robot to balance
autonomously.

• Balboa() acts as an I2C interface between the Raspberry Pi and the robot. It sends
commands to the Balboa and request information.

• DWM() is an interface for the Decawave. It asks the Balboa for its measurements,
and it applies some post-processing techniques on it.

65

https://github.com/trebelge0/Balboa_network.git
https://uclouvain-my.sharepoint.com/:f:/g/personal/romain_englebert_student_uclouvain_be/EtbAcfAIeeVOoKPKic-fJjoBO-4nR24EMeOsN6qEfi7CbA?e=CDttRo


CHAPTER 4. APPLICATIONS 66

4.2 Asynchronous
This section presents an application based on the asynchronous messaging. Asynchronous
communication has been detailed in the previous chapter, it allows agents to update
their states based on the latest data received from neighbors, without requiring strict
synchronization. Each asynchronous message contains:

• Process ID: 1 byte,

• Current state: size depends on the application.

4.2.1 Stand-up
This application instructs each robot to stand up if at least one of its neighbors is already
balancing. The behavior propagates through the network like a line of dominoes.

Implementation

Figure 4.1: Stand-up application. The Async() messaging layer updates its mid-level
buffer based on the low-level buffer of the Bluetooth() interface, via the serialization
layer. The Balancer() controller commands the Balboa to stand up through the Balboa()
interface, based on the application-specific standup() function.

A simplified overview of the implementation is shown in Figure 4.1. The standup()
function determines whether the robot should stand up, based on its internal state and the
received states of its neighbors. In this application, the state consists of a single boolean
(1 byte) indicating whether the robot is currently balancing. The total message size is
therefore 2 bytes.



CHAPTER 4. APPLICATIONS 67

As introduced in Section 3.6.2, the goodput of the asynchronous overlay can be estimated
as:

G = 0.7 · 1
2 · T = 0.35 · T,

where T is the total throughput. This means that approximately 35% of the available
bandwidth is effectively used to transmit useful data in this application.

Results

Figure 4.2 shows the evolution of the balancing state over time. Once one Raspberry Pi
stands up, the others follow after a fixed delay. The delay may vary slightly depending on
when each agent receives the information and its current step in the program.

Figure 4.2: State evolution during the stand-up application. RPi 4 is manually commanded
to stand up. A delay of 6 seconds is set between each iteration. Video demonstrations of
the system are available at this link.

4.3 Synchronous
Synchronous communication enforces step-by-step coordination among agents through
strict timing and message order, making it essential for distributed algorithms requiring
temporally aligned updates. As a reminder, the data structure of sent messages for the
synchronous overlay is the following:

• Process ID: unsigned char (1 byte),

• Current iteration: unsigned short (2 bytes),

• Current state: size depending on application,

• Acknowledgment: unsigned short (2 bytes).

https://uclouvain-my.sharepoint.com/:f:/g/personal/romain_englebert_student_uclouvain_be/EtbAcfAIeeVOoKPKic-fJjoBO-4nR24EMeOsN6qEfi7CbA?e=CDttRo


CHAPTER 4. APPLICATIONS 68

4.3.1 Consensus
This first application allows a group of agents to reach agreement over a shared variable
using iterative averaging with their neighbors, inspired by Reza et al. (2007) [54]. Each
agent starts with a local value and updates it at each step using the values received from
its neighbors. The process converges to a value close to the average of all initial values, and
exactly equal to it if the graph is fully connected. The update rule is defined as follows:

xt+1
i = 1

|Ni|+ 1
∑

j∈Ni∪{i}
xt

j, (4.1)

where xt
i is the state of agent i at iteration t, and Ni is the set of neighbors of agent i.

Implementation

Figure 4.3: Block diagram of the consensus application. The Sync() block updates the
middle-level buffer based on the low-level buffer of the Bluetooth() interface using the
serialization layer. Based on this data, the next state is computed by the Average block
implementing formula 4.1.

The state in this application is represented as a single float variable (4 bytes). Thus,
the size of each message is 9 bytes. As introduced in Section 3.6.2, the goodput of the
asynchronous messaging can be estimated by:

G = 0.7 · 4
9 · T = 0.44 · T,

where T is the total throughput. In other words, approximately 44% of the available
throughput is effectively used to transmit useful data.



CHAPTER 4. APPLICATIONS 69

Results

(a) (b)

(c) (d)

(e) (f) (g) (h)

Figure 4.4: State evolution in the consensus application. The mesh-to-graph correspondence
is as follows: (a)-(e), (b)-(f), (c)-(g), and (d)-(h). Initial values are 0.5, 1, 2, 3, 4, and 5. A
video demonstration is available at this link, showcasing the next application that uses
two consensus algorithms to synchronize LEDs in both phase and frequency.

Figure 4.4 shows the convergence of the algorithm across four different topologies. Agents
start at different times because programs are launched sequentially, starting with agent 0.
Each agent first establishes connections with its neighbors, then sends its initial state, and
finally waits to receive the initial state of all its neighbors. An agent starts iterating only
once all these steps are completed. The start time shown in the plots corresponds to the
latest agent becoming ready.

https://uclouvain-my.sharepoint.com/:f:/g/personal/romain_englebert_student_uclouvain_be/EtbAcfAIeeVOoKPKic-fJjoBO-4nR24EMeOsN6qEfi7CbA?e=CDttRo


CHAPTER 4. APPLICATIONS 70

The results show that the start time increases with the number of connections per agent.
The average time per iteration also increases. However, the number of iterations before
convergence decreases. In configurations 4.4b, 4.4c, and 4.4d, the longer connection time
and iteration duration compensate for the reduced number of iterations, leading to an
overall convergence time of about one minute in all cases. The exact values are presented
in Table 4.1.

Table 4.1: Experimental results of the consensus application.

(a) (b) (c) (d)

Start time [s] 10.9 14.5 20.0 46.6

Avg. iteration time [s] 0.28 1.31 3.26 3.55

Consensus value 2.85 2.5625 2.5833 2.5625

Iterations before convergence 10 50 12 6

Convergence time [s] 13 70 60 70

4.3.2 Multi-consensus for LED synchronization
This second synchronization-based application demonstrates how all agents synchronize
their LED blinking in both frequency and phase, using two concurrent consensus processes.
It serves as a demonstration of the underlying low-level multi-process architecture.

Implementation

Each consensus process maintains a float (4 bytes) representing either the frequency or the
phase. The total size of a packet is then 9 bytes, as for consensus application. However,
twice as many packets are exchanged per iteration. The theoretical goodput will be the
same as for consensus application. The simplified implementation is shown on Figure 4.5,
and the Blink() function is detailed in Algorithm 3.

For this application, we define: ∆t the average iteration duration, θ the phase consensus
state, f the frequency consensus state, θ′ the agent own phase computed based on its clock
(clock are synchronized through NTP), f ′ the actual blinking frequency, and θtol the phase
tolerance used to trigger the LED blinking at the appropriate moment.

The Blink() function triggers a blinking cycle whenever θ′ falls within the tolerance window.
Each period is slightly shortened to let the phase evolve. At each blink, the phase θ
is updated with θ′, while also adjusted by the consensus. For convergence, the phase
consensus rate should be two to three times higher than the blinking frequency. Delays
are maximized to reduce CPU usage and free room for concurrent threads.



CHAPTER 4. APPLICATIONS 71

Figure 4.5: Phase and frequency synchronization application. Two consensus are running
simultaneously on two different process slots of the Bluetooth() interface. Both resulting
states are used to temporize the LED blinking, detailed in Algorithm 3.

Algorithm 3 Blink() function
while True do

Compute phase tolerance: θtol ← 1
16·f

Compute current phase: θ′ ← t mod
(

1
f

)
if θ′ ∈ [θ − θtol, θ + θtol] then

Update phase consensus: θ ← θ′

Turn LED off
Wait 1

2f

Turn LED on
Wait 1

3f

end if
Wait θtol

end while



CHAPTER 4. APPLICATIONS 72

Results

(a) (b)

(c) (d)

Figure 4.6: Experimental results of the LED’s synchronization application. (a) Uses
mesh (c) and θtol = 1

16·f = 0.03 s. (b) Uses mesh (d) and θtol = 1
64·f = 0.004 s. A video

demonstration is available at this link.

Figure 4.6 presents the experimental results for two different values of θtol. We observe
that as soon as the frequencies becomes closely aligned, the phases also synchronize. A
phase drift is observed between initial convergence and final stabilization to zero, which is
induced by the use of θtol. As blinking is consistently triggered near the lower bound of the
tolerance interval, the effective blinking period becomes slightly shorter. Such tolerance
is necessary to avoid missing any blinking period, as the execution rate of the blinking
loop is limited. This drift does not prevent phase alignment but slightly affects the actual
blinking frequency. Let ∆θ be the phase drift over one iteration. Given that ∆θ < θtol, we
have:

f ′ = 1
1
f

+ ∆θ
<

f

1 + fθtol

.

https://uclouvain-my.sharepoint.com/:f:/g/personal/romain_englebert_student_uclouvain_be/EtbAcfAIeeVOoKPKic-fJjoBO-4nR24EMeOsN6qEfi7CbA?e=CDttRo


CHAPTER 4. APPLICATIONS 73

The stabilization at zero is due to the modulo operator used in phase computation (see
Algorithm 3), which keeps θ′ ∈ [0, 1

f
]. This acts as a negative feedback loop. When f ′

tends to be slightly higher than f at θ = 0 (due to the phase tolerance), θ′ wraps to 1
f

instead of decreasing below zero. The agent must then wait until it reaches θ′ = 0 again, as
its phase temporarily falls out of the tolerance range (centered in θ = 0). This introduces a
delay and effectively pulls the phase back into alignment, this time near the upper bound
of the tolerance.

Let us analyze the results in Figure 4.6a, where ∆t = 1.56 s and f = 2.1 Hz. We estimate:

∆θ ≈ θ(t = 30)− θ(t = 25)
30− 25 ·∆t = −0.022 s.

It gives f ′ = 2.2 Hz, a difference of 0.1 Hz. After 40 seconds, we have exactly the right
frequency f ′ = f thanks to phase stabilization.
We can also decrease the tolerance, as shown on Figure 4.6b. This reduction in θtol also
reduces ∆θ, but increases the time required for phase stabilization to zero. We have
f = 3.74, ∆θ = −0.001, f ′ = 3.76, giving a slight frequency difference of 0.02 Hz. However,
the convergence to zero time is as high as 160 s. If the tolerance is decreased too much,
the algorithm will start missing some blinking periods, depending also on the frequency.

4.3.3 Target localization
This final application leverages embedded UWB localization modules and the synchronous
messaging to estimate the position of a target in a distributed fashion. Each agent measures
both its own position and its distance to the target using its UWB module. Through a
distributed gradient descent algorithm, all agents collaboratively estimate the target’s
position.

Algorithm

The gradient tracking algorithm aims to minimize a cost function, it is explored in Nedic
et al. (2016) [55]. In this case, the cost function to be minimized corresponds to the
difference between the measured distance and the estimated distance between an agent
and the target:

f t
i (xt

i) = (ϕt
i)2 − ∥xt

i − pt
i∥2, (4.2)

where ϕt
i is the measured distance at iteration t between agent i and the target (using

UWB), xt
i is the estimated target position by agent i, and pt

i is agent i’s estimated own
position obtained via UWB multilateration. We compute the gradient of the cost function
analytically:

gt
i(xt

i) = ∇f t
i (xt

i) = 4 · ((ϕt
i)2 − ∥xt

i − pt
i∥2) · (pt

i − xt
i). (4.3)

However, due to the distributed nature of the system, this gradient cannot be used directly,
as agents need access to neighbors’ states and gradients, which are only available at
iteration t + 1. To address this, we estimate the gradient at the next iteration. Note that
although the gradients are computed using the current position estimates from iteration
t+1, they rely on measurements from iteration t, which introduces a minor latency. In this
static target scenario, however, ϕt

i ≈ ϕt+1
i and pt

i ≈ pt+1
i , making this latency negligible.



CHAPTER 4. APPLICATIONS 74

The resulting iterative update rule used is the following:

xt+1
i =

∑
j∈Ni

wijx
t
j − zt

i − γgi(xt
i), (4.4)

zt+1
i =

∑
j∈Ni

wijz
t
j − γgi(xt

i) + γ
∑

j∈Ni

wijgj(xt
j), (4.5)

gt+1
i (xt+1

i ) = 4 · ((ϕt
i)2 − ∥xt+1

i − pt
i∥2) · (pt

i − xt+1
i ). (4.6)

Where, zt
i is a local variable updated at each iteration, wij is the row-normalized weight

from the adjacency matrix, and Ni is the set of agent i’s neighbors. As the system is
2D, the vectors xt

i, zt
i , gt

i , and pt
i are all of size 2. The adapted distributed version of the

algorithm is given in Algorithm 4.

Algorithm 4 Gradient descent algorithm at iteration t on agent i

Require: Neighbors’ states xt
j, zt

j, gradients gj(xt
j) for j ∈ Ni, adjacency matrix WG,

step-size γ
for all j ∈ Ni do

xt+1
i ← xt+1

i + wij · xt
j

zt+1
i ← zt+1

i + wij · (zt
j + γ · gj(xt

j))
end for
xt+1

i ← xt+1
i − zt

i − γ · gi(xt
i)

zt+1
i ← zt+1

i − γ · gi(xt
i)

gt+1
i ← 4 ·

(
(ϕt

i)2 − ∥xt+1
i − pt

i∥2
)
· (pt

i − xt+1
i )

Implementation

Figure 4.7: Distributed target localization system block diagram. One thread reads
Decawave measurements on the Balboa up to 10 Hz, while another manages synchronous
messaging using gradient descent as the iterative algorithm.



CHAPTER 4. APPLICATIONS 75

The system state consists of the vectors xt+1
i , zt+1

i , and gt+1
i , each represented as 2D vectors

of two floats, resulting in a total of 24 bytes per state update. The complete data packet
size is 29 bytes. As introduced in Section 3.6.2, the goodput G of the synchronous overlay
can be approximated by:

G = 0.7 · 24
29 · T ≈ 0.58 · T,

where T is the total throughput. This implies that roughly 58% of the total throughput is
effectively utilized to transmit meaningful data in this application.

Configuration

The anchor configuration used here is identical to the setup described for Decawave
calibration in Chapter 1, except that one anchor is now designated as the target to be
localized. This setup is illustrated in Figure 4.8.

Figure 4.8: Target localization application configuration. A video demonstration is
available at this link, showcasing the robots balancing while performing target localization.

Simulations

Simulations played a crucial role in tuning the distributed system parameters and validating
its correctness. The step size γ was analyzed as a trade-off between convergence speed
and estimation smoothness. For the tested configuration, convergence was achieved with
γ up to 7× 10−6, found by trial and error. Two cases, γ = 4× 10−6 and γ = 5× 10−7, are
shown in Figure 4.9. The cost function decays exponentially and stabilizes at a similar
final accuracy regardless of γ, but smaller steps significantly increase convergence time
while larger steps cause more oscillations.

Measurement errors were modeled by adding a 5% random error to agent positions and
distances (accuracy bias), and a 2% periodic noise every 5 iterations (precision bias),
shown in Figures 4.9c and 4.9d. Accuracy bias raises the cost function and reduces
localization precision, causing earlier convergence. Precision bias induces ripples in both
cost and position estimates. Although noise levels do not exactly replicate Decawave
errors, their magnitude is representative to illustrate qualitative effects for comparison
with experimental data.

https://uclouvain-my.sharepoint.com/:f:/g/personal/romain_englebert_student_uclouvain_be/EtbAcfAIeeVOoKPKic-fJjoBO-4nR24EMeOsN6qEfi7CbA?e=CDttRo


CHAPTER 4. APPLICATIONS 76

(a) (b)

(c) (d)

Figure 4.9: Simulation results of the target localization system. (a), (c), (d) use γ =
4 · 10−6, (b) uses 5 · 10−7. (c) includes a 5% accuracy bias; (d) adds a 2% precision bias.



CHAPTER 4. APPLICATIONS 77

Results

The target localization algorithm was implemented and tested on the actual distributed
system using the UWB localization hardware and post-processing model developed in
Chapter 1. Experimental results validate the system’s performance. Figure 4.10 and Table
4.2 present the position estimations, cost function evolution, and detailed statistics with
and without post-processing, for two step sizes γ.

In 4.10a, the results without calibration resemble the simulated noisy system shown in
Figure 4.9d. Experiment 4.10b uses identical parameters with post-processing applied,
and 4.10c presents results with post-processing and a smaller time step. In cases 4.10b and
4.10c, accurate calibration substantially reduced the accuracy bias, and filtering smoothed
the position estimates. The results closely match the simulations shown in Figures 4.9a
and 4.9b.

In Figure 4.10d, the evolution of the target position estimation is shown for the worst and
best cases, without calibration and with the parameters from Figure 4.10c, respectively.
Without calibration, agents positions are biased and fluctuate more over time, highlighting
the effectiveness of the calibration method developed in Chapter 2. Furthermore, as
seen in Figures 4.10a, 4.10b, and 4.10c, the estimation is significantly smoother in the
calibrated case, with strong agreement among agents at each time step, and the final
target estimation is more variable and biased without calibration.

Table 4.2: Experimental results for the target localization application corresponding to
Figure 4.10

(a) (b) (c)

Convergence time 8 s 8 s 1 min

Convergence iterations 50 50 400

Average x-position error after convergence -4.4 cm 2.44 cm 1.71 cm

Average y-position error after convergence 0.78 cm -0.66 cm 0.01 cm

Average position error after convergence 4.46 cm 2.52 cm 1.71 cm

Maximum absolute position error 9.18 cm 4.45 cm 2.13 cm

Average cost function after convergence 979,362 94,068 85,798



CHAPTER 4. APPLICATIONS 78

(a) (b)

(c) (d)

Figure 4.10: Experimental results for the target localization system: (a) Without post-
processing, γ = 4×10−6. (b) With post-processing, γ = 4×10−6. (c) With post-processing
and window size 100, γ = 5× 10−7. (d) X-Y graph with results from (a) and (c).



Chapter 5

Conclusions and perspectives

This work led to a fully embedded swarm platform featuring a streamlined communication
stack (25 Kb/s) and improved post-processed localization with sub-10 cm accuracy, all
while maintaining low energy consumption and up to 5 hours of autonomy, culminating in
a target localization system that achieves outstanding accuracy below 2 cm.

Nevertheless, some limitations remain. The reliance on Bluetooth Classic, despite its low
consumption and compatibility with Raspberry Pi, imposes a maximum of 7 simultaneous
connections. The absence of message reconstruction above RFCOMM layer limits the
packets size to 1021 bytes. Moreover, while localization is effective for absolute positioning
at 10 Hz, it does not yet leverage all available onboard sensor data for optimal accuracy.

Several directions could be explored to further improve the platform. First, localiza-
tion could be significantly improved by fusing UWB data with wheel encoder and IMU
measurements using techniques like Kalman filtering. Integrating trajectory planning
capabilities would enable behaviors such as coordinated navigation and collaborative
obstacle avoidance. Another direction is to combine this with control: in a way to use the
communication and localization to inform the navigation of the robots.

At the network level, adding packet segmentation would allow the transmission of larger
payloads across the mesh. Beside of that, optional dynamic mesh adaptation via a periodic
flooding algorithm could be considered to increase autonomy, although it introduces
overhead and complexity typically handled at lower layers. Another quite tricky option
would be to run BLE Mesh directly on the Decawave’s nRF52 chip to improve energy
efficiency and latency. This approach, however, would require reprogramming the Decawave
and managing potential communication bottlenecks on the Raspberry Pi interface. Since
higher data rates might be necessary, SPI could replace UART, which would in turn
require additional hardware such as level shifters.

Overall, this work lays the foundation for a modular and extensible swarm robotics
platform, opening up diverse avenues for future research in decentralized multi-agent
systems. Beyond the technical achievements, this project demonstrates how careful
integration of hardware, communication protocols, and localization strategies can enable
robust collective behavior without relying on centralized control. Such an approach reflects

79



CHAPTER 5. CONCLUSIONS AND PERSPECTIVES 80

the growing importance of distributed intelligence in robotics, particularly for applications
in dynamic, resource-constrained, or infrastructure-free environments. As a future engineer,
this project has also strengthened my ability to approach complex systems, from low-level
implementation to high-level design decisions, while anticipating the needs of scalability,
flexibility, and long-term maintainability. It is my hope that this work will help support
advanced practical applications in the field of swarm robotics.



Appendices

81



Appendix A

Setup of the localization system

Detailed documentation and source code are available in the archive titled "DWM1001C
Software and Documentation Pack", accessible in [50]. This archive will be referenced
in the following bullet points. As the system includes many functionalities and can be
complex to configure, the key steps relevant to this project are summarized below:

1. The first step is to flash the firmware containing the PANS API, which can be found
in the archive within the "on-board" package.

2. The easiest way to configure each device is to use the RTLS (Real Time Localization
System) mobile app, available at the same link [50] under the name "Android
Application (APK file)".

3. The anchors should preferably be placed in a rectangular or equilateral triangle
configuration, depending on their number. Their positions can be estimated using
the auto-positioning function in the RTLS app.

4. The tags need to be attached to the Balboa robots, making use of the level shifter
and the ATMega32U4 TX/RX.

5. In order for the Raspberry Pi to access the Decawave measurements, the Balboa
must first communicate with its own tag. I developed a UART interface based on
the PANS API, implementing only the functions needed for this project. The Balboa
then shares the data with the Raspberry Pi via the I2C bus upon request.

82



Appendix B

Configuration of the agent

Detailed instructions regarding the technical setup are available on the project GitHub
here.

To summarize, the main configuration steps prior to using the communication system are
as follows:

1. Set up a WiFi hotspot (no internet connection required).

2. Flash the Raspberry Pi with Raspberry Pi OS and configure it with the access point
and SSH credentials.

3. Connect to the Raspberry Pi using predefined SSH credentials from a computer
connected to the access point.

4. Enable I2C, UART, and VNC on each Raspberry Pi.

5. Configure I2C and UART on each Raspberry Pi.

6. Install and configure the virtual Circuit Python environment for OLED use, install
all libraries from this project in this virtual environment

7. Pair the Raspberry Pis with each other via Bluetooth.

8. Connect the Raspberry Pi and the Decawave module to the Balboa robot.

9. Use deployment scripts for update firmware, run a program or collect data from all
swarm agents.

83

https://github.com/trebelge0/Balboa_Network/tree/main


Appendix C

Multi-agent deployment scripts

C.1 Deploy the software
The deploy.sh script allows transferring files quickly and easily to multiple Raspberry
Pis on the same LAN. It is a useful alternative to tools like Filezilla, especially when
dealing with many RPis. The script uses scp for secure file transfer.

./deploy.sh <IP1> <IP2> ... <IPn>

Configure the LOCAL_DIR, REMOTE_DIR, USER, and SSH_KEY variables in the script according
to the setup.

C.2 Run a program
The run.sh script allows you to execute the same Python program on multiple Raspberry
Pis via ssh. You can specify the Python file to run and the arguments for each RPi. The
first argument should be the RPi’s ID, which is automatically assigned based on the IP
order.

./run.sh <python_program> <IP1>:<param1>,<param2>,...

Configure the USER and SSH_KEY variables in the script according to the setup.

C.3 Run a command
The command.sh script sends the same command to multiple Raspberry Pis simultaneously.
It is useful for tasks such as restarting or shutting down all RPis in a network.

./command.sh ’command’ <IP1> <IP2> ... <IPn>

Configure the USER and SSH_KEY variables in the script according to the setup.

84



APPENDIX C. MULTI-AGENT DEPLOYMENT SCRIPTS 85

C.4 Fetch data
The fetch_csv.sh script allows you to retrieve files from multiple Raspberry Pis on the
same LAN network. It is helpful for quickly gathering data, such as logs or sensor data,
from several devices.

Usage:

./fetch_csv.sh file_name <IP1> <IP2> ... <IPn>

Configure the DEST_DIR, REMOTE_CSV_PATH, USER, and SSH_KEY variables in the script
according to the setup.



APPENDIX C. MULTI-AGENT DEPLOYMENT SCRIPTS 86

Resources for reproducibility

The full source code of the swarm agent, a tutorial for reproducing the setup and using
the developed deployment tools, the performance measurement scripts, the simulation
code, as well as all plots, their source code, and the associated data are available in the
following repository:
https://github.com/trebelge0/Balboa_network.git

Video Demonstrations

Video recordings of the applications, calibration procedures, and other relevant processes
are available at this link.

Declaration of generative AI tools

During the writing of this thesis, ChatGPT was used as a language assistant to improve
the clarity, structure, and overall quality of the text. All technical content, designs, and
results remain the sole work of the author.

https://github.com/trebelge0/Balboa_network.git
https://uclouvain-my.sharepoint.com/:f:/g/personal/romain_englebert_student_uclouvain_be/EtbAcfAIeeVOoKPKic-fJjoBO-4nR24EMeOsN6qEfi7CbA?e=CDttRo


References

[1] Y.U. Cao et al. “Cooperative mobile robotics: antecedents and directions”. In:
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and
Systems. Human Robot Interaction and Cooperative Robots. Vol. 1. 1995, 226–234
vol.1. doi: 10.1109/IROS.1995.525801.

[2] Schranz M., Umlauft M., Sende M., Elmenreich W. “Swarm Robotic Behaviors and
Current Applications”. In: Front Robot AI 7-36 (2020). doi: doi:10.3389/frobt.
2020.00036.

[3] Gregory Dudek et al. “A taxonomy for multi-agent robotics”. In: Auton. Robots 3
(Dec. 1996), pp. 375–397. doi: 10.1007/BF00240651.

[4] A. Farinelli, L. Iocchi, and D. Nardi. “Multirobot systems: a classification focused
on coordination”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 34.5 (2004), pp. 2015–2028. doi: 10.1109/TSMCB.2004.832155.

[5] Marco Dorigo, Guy Theraulaz, and Vito Trianni. “Swarm Robotics: Past, Present,
and Future [Point of View]”. In: Proceedings of the IEEE 109.7 (2021), pp. 1152–1165.
doi: 10.1109/JPROC.2021.3072740.

[6] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. “Kilobot: A low cost
scalable robot system for collective behaviors”. In: 2012 IEEE International Confer-
ence on Robotics and Automation. 2012, pp. 3293–3298. doi: 10.1109/ICRA.2012.
6224638.

[7] Jorge Soares, Iñaki Navarro, and A. Martinoli. “The Khepera IV Mobile Robot:
Performance Evaluation, Sensory Data and Software Toolbox”. In: Dec. 2015. isbn:
978-3-319-27145-3. doi: 10.1007/978-3-319-27146-0_59.

[8] Paulo Gonçalves et al. “The e-puck, a Robot Designed for Education in Engineer-
ing”. In: Proceedings of the 9th Conference on Autonomous Robot Systems and
Competitions 1 (Jan. 2009).

[9] Daniel Pickem, Myron Lee, and Magnus Egerstedt. “The GRITSBot in its natural
habitat - A multi-robot testbed”. In: 2015 IEEE International Conference on Robotics
and Automation (ICRA). 2015, pp. 4062–4067. doi: 10.1109/ICRA.2015.7139767.

[10] Sean Wilson et al. “The Robotarium: Globally Impactful Opportunities, Challenges,
and Lessons Learned in Remote-Access, Distributed Control of Multirobot Systems”.
In: IEEE Control Systems Magazine 40.1 (2020), pp. 26–44. doi: 10.1109/MCS.
2019.2949973.

[11] Sean Wilson et al. “The Robotarium: Automation of a Remotely Accessible, Multi-
Robot Testbed”. In: IEEE Robotics and Automation Letters 6.2 (2021), pp. 2922–
2929. doi: 10.1109/LRA.2021.3062796.

87

https://doi.org/10.1109/IROS.1995.525801
https://doi.org/doi:10.3389/frobt.2020.00036
https://doi.org/doi:10.3389/frobt.2020.00036
https://doi.org/10.1007/BF00240651
https://doi.org/10.1109/TSMCB.2004.832155
https://doi.org/10.1109/JPROC.2021.3072740
https://doi.org/10.1109/ICRA.2012.6224638
https://doi.org/10.1109/ICRA.2012.6224638
https://doi.org/10.1007/978-3-319-27146-0_59
https://doi.org/10.1109/ICRA.2015.7139767
https://doi.org/10.1109/MCS.2019.2949973
https://doi.org/10.1109/MCS.2019.2949973
https://doi.org/10.1109/LRA.2021.3062796


REFERENCES 88

[12] Daniel Pickem et al. “The Robotarium: A remotely accessible swarm robotics research
testbed”. In: 2017 IEEE International Conference on Robotics and Automation
(ICRA). 2017, pp. 1699–1706. doi: 10.1109/ICRA.2017.7989200.

[13] Correa M.F.S. et al Rezeck P. Azpurua H. “HeRo 2.0: a low-cost robot for swarm
robotics research”. In: Auton Robot 47 (2023), pp. 879–903. doi: https://doi.org/
10.1007/s10514-023-10100-0.

[14] Agata Barciś, Michał Barciś, and Christian Bettstetter. “Robots that Sync and
Swarm: A Proof of Concept in ROS 2”. In: 2019 International Symposium on Multi-
Robot and Multi-Agent Systems (MRS). 2019, pp. 98–104. doi: 10.1109/MRS.2019.
8901095.

[15] Agata Barciś and Christian Bettstetter. “Sandsbots: Robots That Sync and Swarm”.
In: IEEE Access 8 (2020), pp. 218752–218764. doi: 10.1109/ACCESS.2020.3041393.

[16] Caroline Perry. A self-organizing thousand-robot swarm. https://seas.harvard.
edu/news/2014/08/self-organizing-thousand-robot-swarm. Accessed: 2025-
05-26.

[17] Mahmoud Tarek et al. “Attitude and Orbit Control Algorithms for Swarm Satellites
Used in earth Observation”. PhD thesis. Feb. 2021. doi: 10.13140/RG.2.2.31969.
43362.

[18] Muthu Chellappa, Shanmugaraj Madasamy, and R. Prabakaran. “Study on ZigBee
technology”. In: Apr. 2011, pp. 297–301. isbn: 978-1-4244-8678-6. doi: 10.1109/
ICECTECH.2011.5942102.

[19] Luca Davoli et al. “Design and experimental performance analysis of a B.A.T.M.A.N.-
based double Wi-Fi interface mesh network”. In: Future Generation Computer
Systems 92 (Feb. 2018). doi: 10.1016/j.future.2018.02.015.

[20] Ligang Liu et al. “Performance Evaluation of BATMAN-Adv Wireless Mesh Network
Routing Algorithms”. In: June 2018, pp. 122–127. doi: 10.1109/CSCloud/EdgeCom.
2018.00030.

[21] Sailash Moirangthem and Viswanath Talasila. “A practical evaluation for routing
performance of BATMAN-ADV and HWMN in a Wireless Mesh Network test-bed”.
In: Dec. 2015, pp. 1–6. doi: 10.1109/SMARTSENS.2015.7873617.

[22] J. Chroboczek. RFC 6126: The Babel Routing Protocol. USA, 2011.
[23] Mathias Baert et al. “The Bluetooth Mesh Standard: An Overview and Experimental

Evaluation”. In: Sensors 18.8 (2018). issn: 1424-8220. doi: 10.3390/s18082409.
url: https://www.mdpi.com/1424-8220/18/8/2409.

[24] Elis Kulla et al. “Performance comparison of OLSR and BATMAN routing protocols
by a MANET testbed in stairs environment”. In: Computers Mathematics with
Applications 63 (Jan. 2012), pp. 339–349. doi: 10.1016/j.camwa.2011.07.035.

[25] Dana Turlykozhayeva et al. “Experimental Performance Comparison of Proactive
Routing Protocols in Wireless Mesh Network Using Raspberry Pi 4”. In: Telecom 5
(Oct. 2024), pp. 1008–1020. doi: 10.3390/telecom5040051.

[26] Silicon labs. N1138: Zigbee Mesh Network Performance. https://www.silabs.
com/documents/login/application- notes/an1138- zigbee- mesh- network-
performance.pdf.

[27] Sumit Paul, Danh Lephuoc, and Manfred Hauswirth. Performance Evaluation of
ROS2-DDS middleware implementations facilitating Cooperative Driving in Au-
tonomous Vehicle. Dec. 2024. doi: 10.48550/arXiv.2412.07485.

https://doi.org/10.1109/ICRA.2017.7989200
https://doi.org/https://doi.org/10.1007/s10514-023-10100-0
https://doi.org/https://doi.org/10.1007/s10514-023-10100-0
https://doi.org/10.1109/MRS.2019.8901095
https://doi.org/10.1109/MRS.2019.8901095
https://doi.org/10.1109/ACCESS.2020.3041393
https://seas.harvard.edu/news/2014/08/self-organizing-thousand-robot-swarm
https://seas.harvard.edu/news/2014/08/self-organizing-thousand-robot-swarm
https://doi.org/10.13140/RG.2.2.31969.43362
https://doi.org/10.13140/RG.2.2.31969.43362
https://doi.org/10.1109/ICECTECH.2011.5942102
https://doi.org/10.1109/ICECTECH.2011.5942102
https://doi.org/10.1016/j.future.2018.02.015
https://doi.org/10.1109/CSCloud/EdgeCom.2018.00030
https://doi.org/10.1109/CSCloud/EdgeCom.2018.00030
https://doi.org/10.1109/SMARTSENS.2015.7873617
https://doi.org/10.3390/s18082409
https://www.mdpi.com/1424-8220/18/8/2409
https://doi.org/10.1016/j.camwa.2011.07.035
https://doi.org/10.3390/telecom5040051
https://www.silabs.com/documents/login/application-notes/an1138-zigbee-mesh-network-performance.pdf
https://www.silabs.com/documents/login/application-notes/an1138-zigbee-mesh-network-performance.pdf
https://www.silabs.com/documents/login/application-notes/an1138-zigbee-mesh-network-performance.pdf
https://doi.org/10.48550/arXiv.2412.07485


REFERENCES 89

[28] Giil Kwon et al. “Development of Real-Time Data Publish and Subscribe System
Based on Fast RTPS for Image Data Transmission”. In: 2018. url: https://api.
semanticscholar.org/CorpusID:209411737.

[29] Dinesh Thangavel et al. “Performance evaluation of MQTT and CoAP via a common
middleware”. In: 2014 IEEE Ninth International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP). 2014, pp. 1–6. doi: 10.
1109/ISSNIP.2014.6827678.

[30] Raphael Frank, Thomas Scherer, and Thomas Engel. “Tree Based Flooding Protocol
for Multi-hop Wireless Networks”. In: 2008 Third International Conference on
Broadband Communications, Information Technology Biomedical Applications. 2008,
pp. 318–323. doi: 10.1109/BROADCOM.2008.8.

[31] Federico Ferrari et al. “Efficient network flooding and time synchronization with
Glossy”. In: Proceedings of the 10th ACM/IEEE International Conference on Infor-
mation Processing in Sensor Networks. 2011, pp. 73–84.

[32] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. “Chaos: Versatile and
efficient all-to-all data sharing and in-network processing at scale”. In: Nov. 2013.
doi: 10.1145/2517351.2517358.

[33] Fabian Mager et al. “Competition: Low-Power Wireless Bus Baseline”. In: Feb. 2019.
[34] Roman Lim et al. “FlockLab: A testbed for distributed, synchronized tracing and

profiling of wireless embedded systems”. In: 2013 ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks (IPSN). 2013, pp. 153–165. doi:
10.1145/2461381.2461402.

[35] Hao Xu et al. “Omni-Swarm: A Decentralized Omnidirectional Visual–Inertial–UWB
State Estimation System for Aerial Swarms”. In: IEEE Transactions on Robotics
38.6 (2022), pp. 3374–3394. doi: 10.1109/TRO.2022.3182503.

[36] Sebastian Sadowski and Petros Spachos. “RSSI-Based Indoor Localization With the
Internet of Things”. In: IEEE Access 6 (2018), pp. 30149–30161. doi: 10.1109/
ACCESS.2018.2843325.

[37] Yuan Cao, Harsha Kandula, and Xinrong Li. “Measurement and Analysis of RSS
Using Bluetooth Mesh Network for Localization Applications”. In: Network 1 (Dec.
2021), pp. 315–334. doi: 10.3390/network1030018.

[38] Luca Schenato and Giovanni Gamba. “A distributed consensus protocol for clock
synchronization in wireless sensor network”. In: 2007 46th IEEE Conference on
Decision and Control. 2007, pp. 2289–2294. doi: 10.1109/CDC.2007.4434671.

[39] Michele Girolami et al. “A Bluetooth 5.1 Dataset Based on Angle of Arrival and
RSS for Indoor Localization”. In: IEEE Access 11 (2023), pp. 81763–81776. doi:
10.1109/ACCESS.2023.3301126.

[40] Shruti Pandey et al. “AprilTag-Based Self-Localization for Drones in Indoor Envi-
ronments”. In: SSRN Electronic Journal (Jan. 2024). doi: 10.2139/ssrn.4815151.

[41] Davide Cannizzaro et al. “A Comparison Analysis of BLE-Based Algorithms for
Localization in Industrial Environments”. In: Electronics 9 (Dec. 2019), p. 44. doi:
10.3390/electronics9010044.

[42] L. Taponecco, A.A. D’Amico, and U. Mengali. “Joint TOA and AOA Estimation for
UWB Localization Applications”. In: IEEE Transactions on Wireless Communica-
tions 10.7 (2011), pp. 2207–2217. doi: 10.1109/TWC.2011.042211.100966.

[43] Regina Kaune. “Accuracy studies for TDOA and TOA localization”. In: 2012 15th
International Conference on Information Fusion. 2012, pp. 408–415.

https://api.semanticscholar.org/CorpusID:209411737
https://api.semanticscholar.org/CorpusID:209411737
https://doi.org/10.1109/ISSNIP.2014.6827678
https://doi.org/10.1109/ISSNIP.2014.6827678
https://doi.org/10.1109/BROADCOM.2008.8
https://doi.org/10.1145/2517351.2517358
https://doi.org/10.1145/2461381.2461402
https://doi.org/10.1109/TRO.2022.3182503
https://doi.org/10.1109/ACCESS.2018.2843325
https://doi.org/10.1109/ACCESS.2018.2843325
https://doi.org/10.3390/network1030018
https://doi.org/10.1109/CDC.2007.4434671
https://doi.org/10.1109/ACCESS.2023.3301126
https://doi.org/10.2139/ssrn.4815151
https://doi.org/10.3390/electronics9010044
https://doi.org/10.1109/TWC.2011.042211.100966


REFERENCES 90

[44] Alwin Poulose and Dong Han. “UWB Indoor Localization Using Deep Learning
LSTM Networks”. In: Applied Sciences 10 (Sept. 2020), p. 6290. doi: 10.3390/
app10186290.

[45] Tommaso Polonelli, Simon Schläpfer, and Michele Magno. “Performance Compar-
ison between Decawave DW1000 and DW3000 in low-power double side ranging
applications”. In: 2022 IEEE Sensors Applications Symposium (SAS). 2022, pp. 1–6.
doi: 10.1109/SAS54819.2022.9881375.

[46] Aurélien Soenen. “From Model-Based to Data-Driven Control: Applications to
Self-Balancing Robots”. Promoter: Gianluca Bianchin. Master’s thesis. Belgium:
École Polytechnique de Louvain, Université Catholique de Louvain, 2024. url:
http://hdl.handle.net/2078.1/thesis:46172.

[47] Advamation mechatronics. Raspberry Pi I2C clock-stretching bug. http://www.
advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html. Accessed: 2025-04-
07. 2013.

[48] Pololu. pololu-rpi-slave-arduino-library. https://github.com/pololu/pololu-rpi-
slave-arduino-library. Accessed: 2025-04-07. 2018.

[49] Qorvo. DWM1001 FIRMWARE APPLICATION PROGRAMMING INTERFACE
(API) GUIDE. https://forum.qorvo.com/uploads/default/original/1X/
dcac22d1c0feaf8238f68d11515ad55dbef1b963.pdf. Accessed: 2025-04-24. 2019.

[50] Inpixon. UWB Localization: Time Difference of Arrival vs Two-Way Ranging. https:
//www.qorvo.com/products/p/MDEK1001. Accessed: 2025-04-08. 2020.

[51] Microchip. ATmega16U4/ATmega32U4 datasheet. https://ww1.microchip.com/
downloads/en/DeviceDoc/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.
pdf. Accessed: 2025-04-10.

[52] Raspberry Pi Dramble. UWB Localization: Time Difference of Arrival vs Two-
Way Ranging. https://pidramble.com/wiki/benchmarks/power-consumption.
Accessed: 2025-04-10.

[53] Python. struct — Interpret bytes as packed binary data. https://docs.python.
org/3/library/struct.html. Accessed: 2025-04-21.

[54] Reza Olfati-Saber, J. Alex Fax, and Richard M. Murray. “Consensus and Cooperation
in Networked Multi-Agent Systems”. In: Proceedings of the IEEE 95.1 (2007), pp. 215–
233. doi: 10.1109/JPROC.2006.887293.

[55] Angelia Nedic, Alex Olshevsky, and Wei Shi. “Achieving Geometric Convergence
for Distributed Optimization Over Time-Varying Graphs”. In: SIAM Journal on
Optimization 27 (July 2016). doi: 10.1137/16M1084316.

https://doi.org/10.3390/app10186290
https://doi.org/10.3390/app10186290
https://doi.org/10.1109/SAS54819.2022.9881375
http://hdl.handle.net/2078.1/thesis:46172
http://www.advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html
http://www.advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html
https://github.com/pololu/pololu-rpi-slave-arduino-library
https://github.com/pololu/pololu-rpi-slave-arduino-library
https://forum.qorvo.com/uploads/default/original/1X/dcac22d1c0feaf8238f68d11515ad55dbef1b963.pdf 
https://forum.qorvo.com/uploads/default/original/1X/dcac22d1c0feaf8238f68d11515ad55dbef1b963.pdf 
https://www.qorvo.com/products/p/MDEK1001
https://www.qorvo.com/products/p/MDEK1001
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
https://pidramble.com/wiki/benchmarks/power-consumption
https://docs.python.org/3/library/struct.html
https://docs.python.org/3/library/struct.html
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1137/16M1084316


UNIVERSITÉ CATHOLIQUE DE LOUVAIN 
École polytechnique de Louvain
Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl


	Acknowledgments
	Abstract
	Nomenclature
	Introduction
	Context
	Literature review
	Background on multi-agent systems
	Platforms for multi-agent systems
	Mesh Wireless Communication
	Focus on middlewares and routing technologies considered
	Localization of a swarm agent

	Motivations and Objectives
	Structure of the manuscript

	Embedded architecture of a swarm agent
	Introduction
	Raspberry Pi
	Overview of the Raspberry Pi models
	Overview of the agent-level communication
	Hardware
	Implementation
	Performance analysis

	Localization System
	Decawave DWM1001
	Hardware
	Implementation
	Error characterization, filtering, and calibration

	Power Consumption of an Agent
	Autonomy Estimation

	Summary

	Multi-agent communication
	Introduction
	Overview
	Infrared (IR)
	Zigbee
	WiFi
	Bluetooth Low Energy (BLE)
	Bluetooth

	Communication architecture
	Low-level layer
	Middle-level layer
	High-level layer: Framework

	Implementation
	Mesh architecture and session management
	Data serialization
	Asynchronous Communication
	Synchronous communication
	Flooding
	Multi-hop Unicast

	Deployment
	Performance analysis of the low-level layer
	Maximum data size
	Latency and Throughput

	Summary

	Applications
	Introduction
	Asynchronous
	Stand-up

	Synchronous
	Consensus
	Multi-consensus for LED synchronization
	Target localization


	Conclusions and perspectives
	Setup of the localization system
	Configuration of the agent
	Multi-agent deployment scripts
	Deploy the software
	Run a program
	Run a command
	Fetch data

	References

