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ABSTRACT

Data-driven control has emerged as a promising paradigm for dynamical systems, enabling the
construction of feedback controllers directly from historical data without the need for system model
identification. This paper investigates the practical application of data-driven control by comparing it with
traditional model-based control methods on a real balancing robot, the Pololu Balboa 32U4. The study
confirms the unstable nature of the robot through mathematical modeling and underscores the need for
active control to stabilize its motion. Model-based control methods, including LQR, Bessel, and ITAE
pole placement, ensure stability across simulations and experiments. However, a noticeable steady-
state error in reference tracking indicates potential for improvement, particularly in navigation-oriented
applications. Data-driven control shows promise for self-balancing applications, producing promising
results in simulations. In experimental contexts, these methods are effective in scenarios where data
is gathered using slower controllers that manage natural disturbances. However, their effectiveness
decreases with faster controllers due to inaccuracies in sensor data measurement and significant system
noise, which compromise the integrity of the data-driven results. The research identifies avenues for future
exploration to enhance stability and the quality of data-driven results. These include implementing sensor
fusion, using model-based Kalman filters, or exploring alternative non-model-based filtering techniques.
These strategies aim to advance the data-driven approach fo...
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Abstract

Data-driven control has emerged as a promising paradigm for dynamical systems,
enabling the construction of feedback controllers directly from historical data with-
out the need for system model identification. This paper investigates the practical
application of data-driven control by comparing it with traditional model-based
control methods on a real balancing robot, the Pololu Balboa 32U4.

The study confirms the unstable nature of the robot through mathematical model-
ing and underscores the need for active control to stabilize its motion. Model-based
control methods, including LQR, Bessel, and ITAE pole placement, ensure stability
across simulations and experiments. However, a noticeable steady-state error in
reference tracking indicates potential for improvement, particularly in navigation-
oriented applications.

Data-driven control shows promise for self-balancing applications, producing promis-
ing results in simulations. In experimental contexts, these methods are effective
in scenarios where data is gathered using slower controllers that manage natural
disturbances. However, their effectiveness decreases with faster controllers due
to inaccuracies in sensor data measurement and significant system noise, which
compromise the integrity of the data-driven results.

The research identifies avenues for future exploration to enhance stability and the
quality of data-driven results. These include implementing sensor fusion, using
model-based Kalman filters, or exploring alternative non-model-based filtering
techniques. These strategies aim to advance the data-driven approach for the
Balboa 32U4, paving the way for enhanced stability and performance in real-world
applications.
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Nomenclature

Abbreviations

DC Direct Current

HPCB High Power Carbon Brushes

ICR Input Capture Register

IMU Inertial Measurement Unit

ITAE Integral of Time-weighted Absolute Error

LQR Linear-Quadratic Regulator

OCR Output Compare Register

PWM Pulse Width Modulation

Alpha numeric symbols

ℓ Distance between pendulum and wheel centre of mass [m]

L Pole locations in control system design [-]

ua Mean absolute voltage [V]

A System matrix defining the state dynamics [-]

a Coefficient linking torque to voltage [V/Nm]

B Input matrix defining the control input impact [-]

b Coefficient linking rotational speed to voltage [V/(rad/s)]

C Output matrix defining the measurement output [-]

c Voltage offset due to friction [V]
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NOMENCLATURE iv

Cem Electromagnetic torque of DC motor [Nm]

Cr Resistive torque of DC motor [Nm]

d Depth of pendulum [m]

E Matrix of rotational and translational dynamics parameters [-]

F Applied force / Force vector influencing system dynamics [N] / [-]

G Gravity vector affecting the system [-]

g Gravitational acceleration [m/s2]

GR Gear ratio from motor to wheel [-]

h Height of pendulum [m]

I Moment of inertia about the rotation axis [kgm2]

ia Armature current of DC motor [A]

J Cost function for LQR optimization [-]

K Feedback gain matrix [-]

kϕ Torque constant of DC motor [Nm/A]

Kν Viscous damping coefficient of DC motor [Nm/(rad/s)]

La Armature inductance of DC motor [H]

M Transformation matrix used in control algorithms [-]

m Mass [kg]

MRE Mean relative error [-]

n System noise vector / Number of state variables [rad] / [-]

Nu Precompensator gain for control input [-]

Nx Precompensator gain for state variable [-]

Q State weighting matrix in LQR [-]

r(t) Reference trajectory for wheel angle [rad]



NOMENCLATURE v

R Control input weighting matrix in LQR [-]

r Wheel radius [m]

Ra Armature resistance of DC motor [Ω]

ri Internal wheel radius [m]

T Total number of measurements [-]

ts Settling time of the system response [-]

U0 Control input measurements [-]

ua Armature voltage of DC motor [V]

v(t) External input of the dynamical system [-]

x(t) State vector of the dynamical system [-]

x Horizontal position [m]

X0 State vector measurements [-]

X1 State vector measurements [-]

y(t) Output variable of the dynamical system [-]

y Vertical position [m]

Greek letters

∆t Sampling interval for measurements [s]

ϵφ Mean wheel position error [rad]

Λ Diagonal matrix containing system poles [-]

λ Individual pole locations [-]

σθ Standard deviation of angular position [rad]

σφ Standard deviation of wheel position [rad]

σn Standard deviation of system noise [rad]

σv Standard deviation of external input [rad]



NOMENCLATURE vi

τ0 Total torque exerted by the two motors [Nm]

τm Torque provided by each motor [Nm]

θ Pendulum angle relative to the vertical [rad]

φ Wheel rotational angle [rad]

Operators

_† Moore-Penrose pseudoinverse

_̇ Derivative with respect to time

Subscripts

.0 Initial component

.f Friction-related aspects

.N Normal component

.p Pendulum component

.r Related to reference tracking

.T Tangential component

.w Wheel component

.x Related to the horizontal axis / state vector

.y Related to the vertical axis

.Bessel Relating to Bessel pole placement method

.DD Relating to data-driven method

.dt Discrete-time variable

.IT AE Relating to ITAE pole placement method

.LQR Relating to Linear-Quadratic Regulator control

.MB Relating to model-based method

.ss Steady-state value
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Chapter 1

Introduction

1.1 Context
The field of robotics has undergone transformative growth, extending its influence
far beyond its origins in industrial automation. From the assembly lines of the
20th century to the complex social interactions of the 21st century, robotics has
become integral to everyday environments such as homes, offices, and even outdoor
spaces, assuming roles ranging from security and assistance to entertainment and
companionship. This broad integration demands the development of specialized
mechanisms tailored to enhance robotic performance across a variety of applica-
tions. Achieving stable and reliable operation in these diverse contexts is essential,
especially when robots are designed to interact dynamically within public and
domestic environments.

Intelligent mobile robots represent a transformative domain within robotics. These
robots evolve from simple sensor-based entities to sophisticated agents that can
perform tasks such as recognizing features, detecting patterns, learning from ex-
periences, localizing themselves, and constructing maps for navigation. This field
of study disrupts the prevailing trend of increasing specialization in science by
necessitating a comprehensive approach that fuses various disciplines.

This thesis explores a category of intelligent mobile robots, specifically those utiliz-
ing a two-wheeled, inverted pendulum system. Despite their operational challenges,
those robots offer substantial advantages over more traditional mobile platforms.
Their ability to pivot in place and compact design makes them extremely maneu-
verable and well-suited for navigating in confined spaces, making them particularly
valuable in crowded or intricately designed indoor environments.

1



CHAPTER 1. INTRODUCTION 2

However, mastering the complex dynamics and inherent non-linearities of the
wheeled inverted pendulum system is a significant control challenge. The academic
community has developed numerous models and control systems aimed at stabilizing
these mechanisms, each with varying degrees of success and application. In response
to the observed limitations of traditional model-based control strategies, there is
a growing trend toward adopting data-driven control approaches. This emerging
methodology does not rely on a predetermined model and offers a flexible framework
capable of adapting to the robot’s dynamic environment. Data-driven control
promises to enhance the robot’s ability to handle unexpected scenarios and complex
dynamics, marking a significant step forward in the evolution of robotic control
systems.
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1.2 Literature review
Two-wheeled balancing robots present a sophisticated challenge in control theory,
characterized by their nonlinear dynamics. These robots serve as a bridge between
theoretical exploration and practical application, making them a focal point in con-
trol system research. Historical milestones in this area include the development by
Ha and Yuta in 1994 of a mobile balancing robot capable of autonomous high-speed
navigation while maintaining balance [1]. In 2001, Dean Kamen’s introduction of
the Segway Human Transporter marked a significant advancement by employing
a self-balancing mechanism for personal transportation with zero emissions [2].
Further, in 2002, Grasser et al. presented JOE, a scaled-down prototype that used
additional weights to simulate the dynamics of a human rider [3]. Subsequent
research has introduced various models and control strategies, each tailored to meet
specific operational challenges.

This section provides a comprehensive overview of established models and control
systems for two-wheeled balancing robots. Drawing primarily on the review by
Chan et al. (2013) [4], it highlights significant findings from the literature that
are relevant and potentially applicable to this project. Furthermore, it identifies
opportunities for further research, specifically focusing on the advancement of
data-driven control strategies.

1.2.1 Balancing robot model
Various methods can derive the non-linear dynamic model of a two-wheeled robot,
including the Euler-Lagrange equation, Newton’s laws of motion, and Kane’s
method. The Newton method, although comprehensive, often involves computa-
tionally inefficient calculations of irrelevant forces. In contrast, the Euler-Lagrange
method, despite its rigorous formulation, suffers from computational inefficiency due
to complex solutions for the Lagrange multipliers. Kane’s method, which is based
on partial velocities, offers a more streamlined approach as it avoids unnecessary
force calculations and the use of multipliers.

The simplest model confines the robot to straight-line motion in a vertical plane,
characterized by two degrees of freedom: longitudinal displacement and tilt of the
pendulum. Examples of 1-dimensional models include those developed using the
Euler-Lagrange equation by Ha and Yuta (1994)[1], Åkesson et al. (2006)[5], and
others [6, 7], as well as those using Newton’s Law by Ooi (2003)[8] and Li et al.
(2007)[9].
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Certain models include turning mechanisms by introducing two additional states
associated with the yaw angle, allowing the robot’s position to be tracked in Carte-
sian coordinates instead of just longitudinal axis. The non-linear dynamics of such
models are often simplified by ignoring variations in moment of inertia on the yaw
axis as the tilt angle changes, and by decoupling the yaw motions from other states.
Notable research in this area includes work by Grasser et al. (2002) [3], Takei et al.
(2009) [10], and others [11, 12].

Some models consider changes in the moment of inertia around the yaw axis with
varying tilt angles. Pathak et al. (2005) [13] utilized a moment of inertia tensor
matrix to fully account for these dynamics. Simplifications using Kane’s method
have also been proposed, where minor rotational effects are ignored, but significant
changes due to the shifting center of mass are included [14, 15, 16].

In addition to physical models, black-box models, which do not detail the internal
dynamics but aim to accurately replicate the system behavior, have been explored.
Alarfaj and Kantor (2010) [17] and Jahaya et al. (2011) [18] have developed such
data-driven models in the discrete-time domain. A particularly sophisticated ap-
proach is the Takagi–Sugeno fuzzy model, utilized by Qin et al. (2011) [19]. This
model employs a linear combination of linear state-space models, each weighted by
a membership function, to approximate the nonlinear dynamics effectively. This
method offers a powerful means of handling non-linearities by blending multiple
linear models according to fuzzy logic rules.

The various research efforts documented in the literature have been organized and
summarized in Figure 1.1. This table categorizes each study based on the type of
dynamic equations used and whether the models consider longitudinal only or both
longitudinal and yaw motions. The classification further distinguishes between
decoupled and coupled approaches for models that incorporate yaw motion, with
some using simplified methods or a full inertia tensor to describe the dynamics.
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1.2.2 Control systems
Linear control methods

Linear state feedback control using a linearized model of the self-balancing robot
is prevalent due to its simplicity and effectiveness, especially for small tilt angles
where the system behaves more linearly. Various linearization techniques have been
employed, including Jacobian linearization, which has been widely adopted for its
computational simplicity [3, 5, 10, 14].

Once the model is linearized, designing a linear controller to track a reference state
involves simply determining an appropriate feedback gain matrix. One common
method is pole placement, which allows for the adjustment of system response
characteristics like rise time and overshoot, ensuring satisfactory performance
[3, 15, 7, 21, 22].

Linear Quadratic Regulation (LQR) is another popular method for designing opti-
mal control systems. LQR aims to minimize a cost function, providing a balance
between system performance and energy usage, and has been applied in numerous
studies [1, 14, 5, 10, 17].

Comparisons between LQR and pole placement reveal mixed results. Lien et al.
(2006) [6], Ghani et al. (2010) [23] and Wu and Zhang (2011) [24] found advantages
in pole placement for certain performance metrics. In contrast, Ooi (2003) [8]
highlights LQR’s superior robustness. These divergent findings emphasize the need
to tailor control strategies to specific system requirements.

Additionally, the integration of a Kalman filter with an LQR results in a Linear
Quadratic Gaussian (LQG) controller, which optimizes performance under the
assumption of Gaussian noise and disturbances [25]. In the realm of advanced linear
controllers, Hu and Tsai (2008) [12] and Ruan and Chen (2010) [26] developed H∞
controllers, known for their robustness against model inaccuracies and disturbances.
Similarly, Kanada et al. (2011) [27] designed an H2 controller and demonstrated
its effectiveness in comparison to LQR.

PID controllers remain a staple in control engineering due to their simplicity and
the ease of tuning their three parameters. They are often calibrated through trial
and error [28] or using conventional tuning methods such as Ziegler–Nichols [29].
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Non-linear control methods

Non-linear control strategies address the dynamic complexities of two-wheeled
robots, each tailored to specific system requirements. Fuzzy control adapts to
system state variations with less mathematical complexity, using fuzzy logic to
modify control actions effectively. This adaptability is advantageous in systems
with multiple states, such as those described by Chiu and Peng (2006) [30] and
further refined in the Takagi–Sugeno fuzzy model by Qin et al. (2011) [19].

Sliding mode control stands out for its robustness against disturbances and model
uncertainties. By forcing system states towards a desired sliding surface, it sim-
plifies dynamic management, highlighted in studies by Wu et al. (2011) [20] and
complemented by the proportional integral sliding mode approach of Nawawi et al.
(2006) [31], which reduces overshoot and enhances tracking accuracy compared to
traditional methods. Backstepping, for example, is particularly useful for sequential
control strategies, effectively integrating with other controllers to enhance overall
system stability as demonstrated by Thao et al. (2010) [32].

Gain scheduling dynamically adjusts control gains based on system states, main-
taining performance across varying dynamics, a strategy illustrated by Wu, Ma, and
Wang (2010) [33]. Lyapunov-based control strategies provide theoretical stability
assurances, offering a robust alternative to traditional control methods. Kausar
et al. (2011) [34] demonstrated its effectiveness, showcasing superior performance
over conventional LQR methods in maintaining stability. Reinforcement learning,
as implemented by Sun and Gan (2011)[35], enables controllers to learn optimal
strategies through trial-and-error interactions with the environment, optimizing
performance without a predefined model.

Artificial neural networks offer powerful adaptive control capabilities, learning to
handle non-linearities effectively within dynamic environments. This approach
is particularly beneficial in systems where model uncertainties are prevalent, as
shown in implementations by Tanaka et al. (2010) [36] and Ruan and Chen (2010b)
[37], where neural networks manage complex control tasks in real-time. Similarly,
adaptive control strategies, such as those developed by Li et al. (2010) [38], optimize
control parameters in real-time to match changing system conditions, enhancing the
precision and robustness of the control system. Finally, model predictive control,
developed by Azimi and Koofigar (2013) [39], forecasts future system states to
calculate optimal control actions, enhancing decision-making under constraints.

The diagram in Figure 1.2 organizes the range of control methods applied to
two-wheeled balancing robots, as documented in the literature. It categorizes
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the methods into linear, non-linear strategies, listing key research papers for each
approach. Notably, some methods are often combined to leverage complementary
strengths and achieve better overall system performance. This summary serves
both as a quick reference and a guide to the diverse control techniques utilized in
robotic applications.

PID
Takahashi (2001) [28]
Nasir (2011) [29]

Pole Placement
Grasser (2002) [3]
Nawawi (2007) [15]
Han (2008) [7]
Li (2008) [21]
Feng (2011) [22]

LQR
Ha (1994) [1]
Kim (2005) [14]
Akesson (2006) [5]
Takei (2009) [10]
Alarfaj (2010) [17]

LQG
Lupian (2008) [25]

H∞
Hu (2008) [12]
Ruan (2010) [26]

H2
Kanada (2011) [27]

Optimal control methods

Linear
Non-linear

Fuzzy Logic
Control
Chiu (2006) [30]
Qin (2011) [19]

Sliding Mode
Control
Wu (2011) [20]
Nawawi (2006) [31]

Backstepping
Thao (2010) [32]

Lyapunov-based
Control
Kausar (2011) [34]

Gain Scheduling
Wu (2010) [33]

Reinforcement
Learning
Sun (2011) [35]

Neural
Network
Control
Tanaka (2010) [36]
Ruan (2010) [37]

Adaptive
Control
Li (2010) [38]

Model
Predictive
Control
Azimi (2013) [39]

Figure 1.2: Diagram of control methods sorted by linearity and non-linearity.
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1.2.3 Data-driven control
Data-driven control methods facilitate the development of feedback controllers
directly from operational data, eliminating the necessity for detailed system mod-
els. This advantage is crucial in situations where deriving accurate first-principle
models is arduous or leads to unreliable parameter estimations, as noted by Kr-
ishnan and Dorfler (2021) and Dorfler et al. (2023) [40, 41]. These methods
not only streamline controller synthesis by utilizing historical data but also avoid
the propagation of uncertainties inherent in model parameters during control design.

Recent developments have introduced various methodologies for synthesizing data-
driven controllers without system model identification. Static feedback control
and linear quadratic regulators were notably explored by Maupong and Rapisarda
(2016) [42], and De Persis and Tesi (2020) [43], respectively. Furthermore, model
predictive control and minimum-energy control laws have been significantly devel-
oped by Coulson et al. (2019) and Baggio et al. (2019) [44, 45].

Particularly noteworthy is the contribution of Bianchin (2023), who advanced
the understanding of data-driven pole placement and eigenstructure assignment
[46]. His research demonstrates the feasibility of setting closed-loop eigenvalues
precisely at predetermined locations directly from data. This research trajectory is
complemented by the work of Mukherjee and Sayak (2022), who focused on the
placement of closed-loop poles within specified linear matrix inequality regions,
thus enhancing the precision and adaptability of data-driven control systems [47].

1.3 Motivations and objectives
The literature review highlights significant advancements in understanding data-
driven control, an innovative paradigm that enables the creation of feedback
controllers directly from historical data without preliminary system modeling. This
method is poised to outperform traditional model-based control approaches. While
numerous numerical comparisons between traditional and data-driven control meth-
ods have been documented, there remains a significant gap in their experimental
application, particularly regarding the data-driven pole placement method.

This thesis shifts focus towards empirical experimentation to deepen our under-
standing and application of theoretical concepts in real-world scenarios. The
motivation is to test both model-based and data-driven control methods on a real
balancing robot, exploring how data-driven control strategies can be applied to
complex systems.
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1.4 Structure of the manuscript
In order to achieve the objectives, the manuscripts are divided into 3 chapters:

- Chapter 2 : Self-balancing system
This chapter revisits the mathematical model of the self-balancing robot,
beginning with a comprehensive overview of the robot’s components and
functionalities, which is elaborated further in Appendix A. The chapter
progresses to detail the dynamics of the self-balancing system, focusing on
the derivation of equations that describe its behavior and refining the model
of motor torque. A stability analysis is also conducted to emphasize the
necessity of a robust control system. Overall, this chapter establishes a
foundational understanding of the robot’s dynamics, setting the stage for
deeper analyses in subsequent sections.

- Chapter 3 : Model-based control
This chapter investigates model-based control strategies, focusing on the
Linear-Quadratic Regulator (LQR), and pole placement methods such as
Bessel and ITAE. It evaluates their efficacy through numerical simulations
that analyze system dynamics and performance metrics to identify the most
optimal feedback gains. The chapter also assesses how system noise influences
control performance. Furthermore, it details practical experiments conducted
on the Balboa 32U4 robot to validate these control strategies and to compare
their experimental feedback performances against simulation outcomes.

- Chapter 4 : Data-driven control
This chapter delves into deriving feedback gains using data-driven approaches.
It introduces methods such as data-driven pole placement and system identi-
fication. The chapter details numerical simulations to evaluate these methods
under varying conditions, such as changes in data acquisition periods and
chosen pole locations. Additionally, practical experiments conducted on the
Balboa 32U4 robot are described to validate these data-driven strategies,
focusing on the influence of different controller responses and the effectiveness
of various filtering techniques to enhance outcomes.



Chapter 2

Self-balancing system

2.1 Introduction
This chapter revisits the mathematical model of the self-balancing robot, specifically
the Pololu Balboa 32U4. It begins with an overview of the robot, highlighting its
key components and functionalities, with a more detailed description provided in
Appendix A.

The main focus is on refining the mathematical model, particularly the representa-
tion of motor torque to ensure it accurately reflects the relationship between the
input voltage signals and the robot’s response.

The chapter concludes with a stability analysis of the refined model, underscoring
the challenges of maintaining balance and the necessity for a robust control system.
This analysis sets the foundation for understanding the robot’s dynamics, paving
the way for further explorations in chapter 3 and 4.

2.2 System description

2.2.1 Pololu Balboa 32U4
As illustrated in Figure 2.1, the Pololu Balboa 32U4 is a compact and versatile
two-wheeled balancing robot, primarily designed for educational and research
applications. This robot integrates a powerful microcontroller with motor drivers
and a suite of onboard sensors, such as encoders, accelerometers, and gyroscopes.
It operates on six AA batteries, which supply a nominal voltage of 7.2V.

11
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Figure 2.1: Self-balancing robot: Pololu Balboa 32U4.

The Balboa 32U4 boasts sophisticated motor control and sensor feedback systems,
establishing it as an exemplary platform for control theory education. Its integral
sensors facilitate precise real-time tracking of position and orientation, which are
critical for the development and validation of diverse control algorithms.

Utilizing the Pololu Balboa 32U4 enriches hands-on learning, bridging theoretical
principles with practical implementation. It allows for the exploration of both
model-based and data-driven control strategies, demonstrating the transition from
traditional methods to modern techniques in robotics.

For an exhaustive analysis of the Pololu Balboa 32U4, including its mechanical,
electrical, actuator, sensor, and motor specifications, please see Appendix A. This
chapter will focus solely on aspects pertinent to the mathematical modeling of the
robot.

2.2.2 Self-balancing system
The system discussed consists of a rigid pendulum mounted on the axle of a wheel,
driven by a torque along a horizontal track (Figure 2.2). The connection between
the pendulum and the wheel features a revolute joint modeled as ideal—without
friction or clearance. This configuration allows for two degrees of freedom: the
wheel’s horizontal position x and the pendulum’s tilt angle θ relative to the vertical,
where θ = 0 denotes an unstable equilibrium. With only the driving torque τ0 as a
control input, the system qualifies as under-actuated.
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Figure 2.2: Model of the self-balancing system.

In a right-handed coordinate system where positive angles correspond to counter-
clockwise rotations when viewed from the positive end of an axis toward the origin,
the position of the pendulum’s center of mass can be described by the coordinates:

xp = xw + ℓ sin θ, (2.1)
yp = yw + ℓ cos θ. (2.2)

Given that the wheel rolls without slipping, the relationship between the wheel’s
horizontal displacement and its rotation can be mathematically expressed. The
translational velocity of the wheel’s center, ẋw, is directly proportional to its angular
velocity φ̇, as dictated by the wheel’s radius r:

ẋw = rφ̇. (2.3)

Integrating Equation (2.3) determines the horizontal position xw of the wheel:

xw = x0 + rφ. (2.4)

Here, x0 represents the initial horizontal position and φ the cumulative rotation
angle of the wheel. The vertical position yw of the wheel’s center remains constant,
equal to the radius of the wheel, since the wheel maintains contact with the ground:

yw = r. (2.5)
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2.2.3 List of parameters
The parameters of the robot, including their descriptions and values, are detailed
in section 2.3. These parameters are organized in Table 2.1 for geometrical aspects
and Table 2.2 for motor-related specifications.

Table 2.1: List of model parameters.

Symbols Description Values Units

mw Mass of the wheels 0.0042 kg

mp Mass of the pendulum 0.316 kg

r External radius of the wheels 0.040 m

ri Internal radius of the wheels 0.031 m

h Height of the pendulum 0.109 m

d Depth of the pendulum 0.022 m

ℓ
Distance between pendulum and wheel
centre of mass

0.023 m

Ip Moment of inertia of the pendulum1 444.43 × 10−6 kg m2

Iw Moment of inertia of the two wheels2 26.89 × 10−6 kg m2

Table 2.2: List of motor parameters.

Symbols Description Values Units

ua,max Battery nominal voltage 7.2 V

Ra Armature resistance 4 Ω

kϕ Motor constant 0.132 Nm/A

Kν Viscous damping coefficient 1.91 · 10−3 Nm/(rad/s)

Cr Resistance constant torque 14.85 · 10−3 Nm

1The moment of inertia of the pendulum is based on the Huygens-Steiner theorem:
Ip = (h2 + d2)mp/12 + mrℓ2

2The moment of inertia of the two wheels is calculated using the formula for a hollow cylinder:
Iw = (r2 + r2

i )mw/2
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2.3 Mathematical model

2.3.1 Mechanical model
Mechanical systems can be modeled using two primary methodologies: Newtonian
mechanics, which focuses on forces within the system, and Lagrangian mechanics,
which is based on energy principles. The key distinction lies in their approach to
constraints: Newtonian mechanics models each component separately and includes
explicit forces to maintain constraints, while the Lagrangian method systematically
eliminates constraints from the dynamics through an energy-based framework. Al-
though both yield equivalent results, they differ in the insights they provide into the
mechanics involved. This manuscript will employ Newtonian mechanics for deriving
the mathematical model of the self-balancing system, given its straightforward
application to individual body dynamics.

The initial step in analyzing the system involves creating a free-body diagram, as
shown in Figure 2.3. In the diagram, FN denotes the normal force and FT the
tangential force at the point of contact, with Ff representing the friction force.
The forces Fx and Fy are the reaction forces at the revolute joint, which cannot
transmit torque. Consequently, the driving torque τ0 is applied exclusively to the
wheel.

Fx

Fy

mwg

FT Ff
FN

Fx

Fy

mpg

τ0

Figure 2.3: Free-body diagram.

The motion equations for the wheel and pendulum are detailed as follows:

mwẍw = FT − Fx − Ff , (2.6)
0 = FN − Fy − mwg, (2.7)

Iwφ̈ = −rFT + rFf + τ0. (2.8)
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For the pendulum, the dynamic equilibrium is governed by:

mpẍp = Fx, (2.9)
mpÿp = Fy − mpg, (2.10)

Ipθ̈ = −Fxℓ cos θ + Fyℓ sin θ. (2.11)

Incorporating Equations (2.9) and (2.10) into Equation (2.11), and substituting
ẍp and ÿp using the second derivatives of Equations (2.1) and (2.2), the resulting
dynamic equation for the pendulum becomes:

Ipθ̈ + mpℓ2θ̈ + mprℓφ̈ − mpgℓ sin θ = 0. (2.12)

Similarly, substituting Equations (2.6) and (2.7) into Equation (2.8) and applying
the time derivatives of Equations (2.1), (2.2), and (2.3) gives:

Iwφ̈ + r2(mw + mp)φ̈ + mprℓθ̈ cos θ − mprℓθ̇2 sin θ = τ0. (2.13)

2.3.2 Electrical model
To effectively control the self-balancing robot, the system utilizes two small DC
motors. Incorporating these motors into the mathematical model of the system
necessitates a detailed description of their characteristics, particularly how the
applied voltage translates into driving torque.

A schematic of the DC motor’s electrical circuit is depicted in Figure 2.4. In this
diagram, La and Ra represent the inductance and armature resistance, respectively.
The armature current and input voltage are denoted by ia and ua, while τm

represents the motor torque applied to the robot’s wheel.

Ra La
ia

M

+

−

ua(t)
τm(t)

Figure 2.4: Schematic diagram of a DC motor.

Applying Kirchhoff’s laws to the DC motor’s electrical circuit allows for the
derivation of its operational equations:

ua = Ra · ia + La
dia

dt
+ kϕ · φ̇, (2.14)
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where kϕ is the motor constant, and φ̇ represents the motor’s rotational speed.
Given that the electrical time constant is significantly smaller than the mechanical
time constant, the inductance is negligible, simplifying the equation to

ua = Ra · ia + kϕ · φ̇. (2.15)

The expression for the electromagnetic torque generated by a DC motor, which is
directly proportional to the armature current, can be succinctly formulated as:

Cem = kϕ · ia. (2.16)

The motor torque applied to the wheel isn’t solely determined by the electromagnetic
torque due to influences such as viscous damping and friction. The formula for
motor torque, taking these factors into account, is:

τm = Cem − Kν · φ̇ − Cr · sgn(φ̇), (2.17)

where Kν represents the viscous damping coefficient, and Cr denotes the constant
resistive torque from friction and other mechanical resistances opposing motion.

Finally, by substituting Equations (2.16) and (2.17) into Equation (2.15), and
considering that the self-balancing system is operated by two motors (hence,
τ0 = 2 · τm), the input control voltage can be determined as follows:

ua = Ra

kϕ

(
τ0

2 + Kν · φ̇ + Cr · sgn(φ̇)
)

+ kϕ · φ̇. (2.18)

To streamline the formulation, new constants a, b, and c are defined to directly
relate the input voltage to the torque and motor speed:

ua = a · τ0 + b · φ̇ + c · sgn(φ̇), (2.19)

where a = Ra

2kϕ
, b = RaKν

kϕ
+ kϕ, and c = RaCr

kϕ
.

2.3.3 Linearization
Initially, Equation (2.12) and Equation (2.13) are linearized around the operating
point (θ = 0), assuming cos θ ≈ 1 and sin θ ≈ θ for small angle approximations.
These simplifications allow for the transformation of the system dynamics into a
second-order linear matrix form:

E

 φ̈(t)
θ̈(t)

 + Gθ(t) = Fτ0(t), (2.20)
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where

E =
 Iw + r2(mw + mp) mprℓ

mprℓ Ip + mpℓ2

 , G =
 0

−mpgℓ

 , F =
 1

0

 .

In this system, E represents the inertia matrix, G the gravitational vector and F
the control vector of the self-balancing robot.

For the self-balancing robot, the following state vector is employed to stabilize the
system, ensuring that limt→∞ x(t) = 0:

x(t) =


φ(t)
θ(t)
φ̇(t)
θ̇(t)

 .

The state-space equations can be expressed as follows:

ẋ = Ax + Bτ0, (2.21)
y = Cx, (2.22)

where

A =


0 0 1 0
0 0 0 1
0

−E−1F
0 0

0 0 0

 , B =


0
0

E−1G

 , C =
[

1, 0, 0, 0
]

.

Lastly, the electrical model is included, and a refined state-space representation is
provided as follows:

ẋ = Ax + B′ · [ua − bφ̇ − c · sgn(φ̇)] , (2.23)

with constant B′ = 1
a
B.

Note, hereafter, the matrix B′ will be denoted simply as B.
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Parameterization

Utilizing the parameters listed in Table 2.1 and 2.2, the continuous model-based
system, as described by Equation (2.23), is characterized with the matrices A and
B defined as:

A =


0 0 1 0
0 0 0 1
0 −69.4 0 0
0 150 0 0

 , B =


0
0

273
−130

 .

To align with the sensor’s sampling rate of ∆t = 10 ms, the system has been
discretized using MATLAB’s c2d(sys, Ts) function, which transforms continuous
systems into their discrete counterparts based on the specified sampling time Ts.
The resulting discrete state-space representation utilizes matrices labeled with
subscript dt.

Adt =


1 −0.0035 0.01 −1.2e − 05
0 1 0 0.01
0 −0.7 1 −0.0035
0 1.5 0 1

 , Bdt =


0.014

−0.0065
2.7

−1.3

 .

The stability characteristics of the robot are closely tied to the properties of the
system matrix A and its discrete counterpart Adt.

eig(A) = {0, 0, 12, −12}, eig(Adt) = {1, 1, 1.1, 0.88}.

The presence of zero and positive eigenvalues in matrix A and eigenvalues greater
than and equal to one for Adt indicate the system’s inherent instability at the
equilibrium point. This instability is manifested by the robot’s tendency to fall
from an upright position in the absence of active control. Therefore, to maintain
stability, it is essential to design and implement a control system that adjusts
the eigenvalues to reside entirely within the left-half of the complex plane for
continuous-time systems, and inside the unit circle for discrete-time systems.

This manuscript will propose and evaluate two approaches to achieve this stabiliza-
tion: the model-based control approach and the data-driven control approach.



Chapter 3

Model-based control

3.1 Introduction
This chapter explores the implementation of model-based control strategies. It
focuses on determining the feedback gain through various established control
strategies. The discussion begins with the Linear-Quadratic Regulator (LQR),
which utilizes a cost function to optimize the feedback gain. This method is
juxtaposed with pole placement methods such as Bessel and ITAE, which control
pole locations to specifically influence system dynamics and response characteristics.

Further sections conduct numerical simulations to compare these methods con-
cerning system dynamics and responses. This includes an analysis of performance
metrics associated with different feedback gains and the selection of an optimal
feedback gain for each control strategy. Additionally, the impact of system noise
on control performance is examined.

The chapter concludes with practical experiments conducted on the Balboa 32U4.
These experiments serve to validate the model-based control strategies and provide
a comparative analysis of the performances metrics compared to the simulation
results.

3.2 Controller design
With the inherent instability of the modeled system established, the next phase is
to develop a control strategy that not only stabilizes the system but also enables the
robot to adhere to a predefined trajectory r(t), which dictates the desired position
over time. This strategy employs two feedback gains, Kr and Kx, that continuously
adjust the input voltage based on real-time measurements. Kr is designed to ensure

20
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that the robot follows the desired trajectory accurately, whereas Kx stabilizes the
system based on the state measurements x(t). Figure 3.1 depicts this process
through a block diagram illustrating the implemented feedback mechanisms.

Kr A, B, C

Controller

r(t)
ua(t)

y(t)

x(t)

Figure 3.1: Block diagram representing the closed-loop control system.

The configuration of Kr is designed to ensure that the steady-state output corre-
sponds precisely to the reference trajectory (yss = rss), and to achieve zero rate
of change in the state at steady state (ẋss = 0). The steady-state control input
uss and the state xss are defined by uss := Nurss and xss := Nxrss, respectively.
The feedback gain Kr along with the precompensator gains Nx and Nu are derived
from the following equations:

Kr = Nu + Kx · Nx, Nx

Nu

 =
 A B

C 0

−1  0
I

 .

For the balancing robot’s model, these parameters simplify to:

Nx =


1
0
0
0

 , Nu = 0.

The controller operates based on measurements of state variables and consists
of three primary components. The main component applies a feedback gain
Kx directly to the state vector x(t). The additional components are specifically
designed to address and simplify certain motor dynamics as outlined in Equation
(2.23). The first of these components mitigates the impact of motor speed on the
voltage, represented by the coefficient b. The second component compensates the
voltage offset due to friction, which depends on the direction of wheel speed and is
characterized by the coefficient c. Consequently, the full control input ua(t) can be
simplified as:



CHAPTER 3. MODEL-BASED CONTROL 22

ua(t) = −Kx ·


φ(t) − r(t)

θ(t)
φ̇(t)
θ̇(t)

 + b · φ(t) + c · sign(φ̇(t)). (3.1)

Kx can be designed using various parameterization methods. The Linear-Quadratic
Regulator (LQR) approach utilizes cost matrices Q and R to balance the trade-off
between minimizing state variable deviations and controlling input magnitudes.
Alternatively, Bessel and ITAE (Integral of Time-weighted Absolute Error) pole
placement methods focus on settling time to shape the system’s transient response.

3.2.1 Linear-Quadratic Regulator (LQR)
The Linear-Quadratic Regulator (LQR) compute an optimal feedback gains KLQR

by minimizing a quadratic cost function J(x, ua) considering the state vector x(t)
and the control input ua(t). This function balances the trade-off between desired
system performance, quantified by matrix Q, and the control effort, quantified by
matrix R [48]:

J(x, ua) =
∫ ∞

0
(xT (t)Qx(t) + uT

a (t)Rua(t)) dt. (3.2)

For a balancing robot, the careful selection of the positive definite matrices Q and
R is essential. The predominant variable for control feedback involves the cost term
associated with the wheel position and input variable. Altering this ratio results in
varied system behavior. Consequently, Q is fixed while R is varied, treating it as a
free parameter to be tuned. This configuration is expressed as follows:

Q =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , R = Free parameter.

By employing computational tools such as MATLAB’s lqr(A, B, Q, R) function,
the optimal feedback gain KLQR is determined for various cost factor R that will
affect control strategy:
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Table 3.1: Feedback gains KLQR for varying cost factors R.

R KLQR

2 [ -0.5 -7.1 -0.16 -0.63 ]

4 [ -0.25 -5.3 -0.091 -0.46 ]

8 [ -0.13 -4.2 -0.055 -0.36 ]

16 [ -0.062 -3.5 -0.035 -0.3 ]

These results illustrate the impact of varying R on the controller’s aggressiveness,
confirming that lower values lead to a more assertive control strategy.

3.2.2 Pole placement methods
The feedback gain Kx can be computed by strategically fixing the poles at predeter-
mined locations. This section delves into two specialized pole placement methods:
Bessel and ITAE (Integral of Time-weighted Absolute Error).

Bessel pole locations

Originating from Bessel filters, Bessel pole placement method is known for its
near-linear phase response with minimal group delay, beneficial for systems need-
ing rapid yet smooth stabilization. The method strategically places the poles to
minimize overshoot and oscillations while maintaining fast responsiveness [48].

The poles for a system with four state variables and a specified settling time ts can
be calculated using the formula:

LBessel = 1
ts

· [−4.016 ± 5.072i, −5.528 ± 1.655i]. (3.3)

This formulation derives from the Bessel polynomial, expressed as:

yn(x) =
n∑

k=0

(n + k)!
(n − k)!k!

(
x

2

)k

. (3.4)

The polynomial coefficients determine the specific locations of the poles to optimize
the system’s dynamic response.

The poles identified are subsequently utilized to calculate the feedback gain KBessel.
This computation is performed using algorithms such as the Bass-Gura formula
or through MATLAB’s place(A, B, p) function, where p denotes the specified
poles.
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ITAE pole locations

Conversely, the ITAE (Integral of Time-weighted Absolute Error) pole placement
method focuses on minimizing the integral of time-weighted absolute error, making
it highly suitable for systems where steady-state accuracy and minimal long-term
error are priorities. This approach adjusts the pole locations to optimize the
time-weighted performance, thereby improving both the transient and steady-state
behavior of the system [48].
For a given settling time ts with four state variables, the ITAE pole locations could
be defined as:

LIT AE = 1
ts

· [−4.236 ± 12.617i, −6.254 ± 4.139i]. (3.5)

These poles are derived by matching the nth polynomial that minimizes the integral
of time multiplied by the absolute value of the error (ITAE), defined as:

JIT AE =
∫ ∞

0
t |e(t)| dt, (3.6)

where e(t) is the error signal in response to a step function.

Similar to the Bessel method, feedback gains KIT AE are derived using MATLAB’s
place(A, B, p) function to ensure the system meets the timing and performance
specifications.

Comparative analysis

Both methods tailor the system’s response by specifying how quickly and smoothly
the balancing robot should return to equilibrium. To provide a comparative analysis,
feedback gains computed for various settling times using both Bessel and ITAE
methods are summarized in the Table 3.2.

Table 3.2: Feedback gains KBessel and KIT AE for varying settling time ts.

ts KBessel KIT AE

0.8 s [ -0.11 -3.4 -0.045 -0.28 ] [ -0.76 -6.8 -0.17 -0.55 ]

0.9 s [ -0.067 -2.9 -0.031 -0.23 ] [ -0.48 -5.4 -0.12 -0.42 ]

1 s [ -0.044 -2.5 -0.023 -0.2 ] [ -0.31 -4.4 -0.085 -0.34 ]

1.1 s [ -0.03 -2.3 -0.017 -0.17 ] [ -0.21 -3.8 -0.064 -0.28 ]
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These results highlight how each method influences the controller’s responsiveness,
with the Bessel approach typically producing a less aggressive response compared
to ITAE for the same settling time.

3.3 Numerical simulation
To analyze the model-based control, simulations of the system dynamics are per-
formed depending on the input variable. In these simulations a random Gaussian
noise n(t) ∈ Rn is incorporated to emulate measurement and process noise, re-
flecting the real-world inaccuracies in sensor readings and system behavior. This
noise is defined with a standard deviation σn, representing the uncertainty in the
measurements. The system dynamics are governed by the following equation:

ua(t) = −Kx ·


φ(t) − r(t)

θ(t)
φ̇(t)
θ̇(t)

 ,

x(t + ∆t) = Adt · x(t) + Bdt · ua(t) + n(t). (3.7)

During simulations, the coefficient b and the offset term c from Equation (2.23)
are not included because these components are directly compensated within the
feedback loop during actual experimental implementations. However, they are still
considered when calculating the actual voltage required.

3.3.1 System dynamics
The first testing concerns the system dynamics in different circumstances. In these
tests the Bessel and ITAE methods are fixed with a settling time of one second
and a costs factor R = 8 for LQR. Moreover, no noise is implemented n(t) = 0.

The initial response of the robot’s control system to an angular displacement of 10◦

is assessed to understand how different control strategies react. Figure 3.2 illustrates
the unique response characteristics of each method. The Bessel method, which
prioritizes minimizing overshoot, demonstrates a slower response characteristic of its
conservative design. In contrast, the ITAE method exhibits a quicker response but
with significant oscillations. The LQR method, tailored through its cost matrices
Q and R, aims to achieve a balance between state performance and control effort,
resulting in a moderated response. Additionally, the voltage response ua(t) shows
a notable offset of 0.4 V.
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Figure 3.2: Simulation of voltage response ua(t), wheel rotation angle φ(t), and
angular position θ(t) following an initial perturbation where θ(0) = 10◦ under
Bessel, ITAE and LQR control methods.

The initial response analysis provides insights into the characteristics of each
control method. However, reproducing these simulations in experimental settings
is challenging due to the difficulty in obtaining measurements with identical initial
states. To bridge the gap between theoretical simulations and practical experiments,
a structured reference tracking scenario is implemented on the Balboa 32U4 robot.
It includes:

- Initial 10-second stabilization,

- 5-second rightward movement followed by 10-second stabilization,

- 5-second leftward movement concluded with 10-second stabilization.
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Additionally, to simulate the realistic operational environment, Gaussian noise
with a standard deviation of σn = 0.5◦ is introduced into the system. The effects
of this noise on the control outcomes will be analyzed in subsequent sections.
The reference tracking performance, depicted in Figure 3.3, visually compares the
different control strategies over the sequence.

Despite the inherent noise introduced to simulate disturbances, each method adheres
closely to the intended path, showcasing the effectiveness of the feedback gains.
Oscillations are evident due to the noise, yet they are well within controllable
limits.

Figure 3.3: Simulation of voltage response ua(t), wheel rotation angle φ(t), and
angular position θ(t) over a 40-second test period under Bessel, ITAE and LQR
control methods.
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3.3.2 Feedback performance
For each control method, it is preferable to find the optimal feedback to stabilize
the balancing robot. To assess the effectiveness of each feedback gain, specific
performance metrics are utilized. The primary goal is to minimize these metrics
according to the distinctive parameters of each method: settling time for Bessel
and ITAE methods, and cost factor R for LQR.

Performance metrics

Performance metrics are introduced to evaluate the robot’s operational efficiency in
terms of energy consumption, adherence to the reference trajectory, and oscillatory
behavior around the equilibrium point over a specified duration t1. The metrics
are detailed in Table 3.3.

Table 3.3: Performance metrics for evaluating feedback control effectiveness.

Symbol Formula Parameter description

ua
1
t1

∫ t1
0 |ua(t)| dt Mean absolute voltage: Energy

consumption over time.

ϵφ
1
t1

∫ t1
0 φ(t) − r(t) dt Mean wheel position error: Devia-

tion from reference trajectory.

σφ

√
1
t1

∫ t1
0 (φ(t) − r(t) − ϵ2

φ dt Standard deviation of wheel posi-
tion: Variability around the refer-
ence trajectory.

σθ

√
1
t1

∫ t1
0 θ(t)2 dt Standard deviation of angular po-

sition: Oscillations around the
equilibrium position.

Parameters analysis

To determine the optimal feedback gains, simulations incorporating Gaussian noise
with a standard deviation of σn = 0.5◦ were performed. These simulations varied
the parameters of each feedback control method and calculated corresponding
performance metrics. Specifically, Bessel method’s settling time was adjusted
between 0.3 and 1.2 seconds, ITAE method’s settling time ranged from 0.6 to 1.9
seconds, and LQR method’s cost factor R spanned from 0.25 to 15.
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Across all three methods presented in Figure 3.4 and Figure 3.5, a consistent trend
emerges. Lower control parameters, indicative of more aggressive control actions,
necessitate higher energy consumption ua to swiftly correct any deviations. This
results in less deviation from the reference signal σφ, demonstrating a trade-off
between energy efficiency and system stability. Conversely, with softer control
settings, σφ increases, indicating that less stringent control actions may lead to
larger oscillations and potentially higher overall energy consumption as the system
requires more corrections to maintain equilibrium.

For the Bessel and ITAE methods, the performance metrics ua, ϵφ, and σθ each
reach a minimum at different settling times ts. Similarly, for the LQR method,
optimal performance in terms of ua and ϵφ is achieved at distinct cost function
values R.

Figure 3.4: Simulation of the performance metrics ua, |ϵφ|, σφ, and σθ as functions
of the settling time ts under Bessel and ITAE methods.
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Figure 3.5: Simulation of the performance metrics ua, |ϵφ|, σφ, and σθ as functions
of the cost factor R under LQR control method.

To determine the optimal feedback gains, performance metrics such as ϵφ, σφ, and
σθ are plotted against the mean absolute control effort ua. Figure 3.6 illustrates the
relationship between these metrics and how they evolve as control parameters like
settling time and cost factor are adjusted. The directional arrows on the graphs
indicate how increasing the control parameters impacts the performance metrics.
The objective is to minimize these metrics, identifying the optimal feedback gains
by selecting configurations that position the plotted points closest to the origin.

Although all three methods yield similar graphical representations, the LQR method
shows the lowest energy consumption, followed by the Bessel method, with ITAE
consuming the most. Conversely, in terms of minimizing σφ, Bessel and ITAE
methods perform better at equivalent energy levels. However, when considering σθ,
LQR shows the least oscillation, followed by Bessel and then ITAE.
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Figure 3.6: Simulation of the performance metrics |ϵφ|, σφ, and σθ as functions of
the control effort ua under Bessel, ITAE, and LQR control methods.
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Table 3.4 lists the optimal control parameters, marked by larger dots of corre-
sponding colors in Figure 3.6. The optimal configurations are a settling time of 0.6
seconds for the Bessel method, 1 second for the ITAE method, and a cost factor of
3 for the LQR method.

Table 3.4: Comparison of optimal control parameters for Bessel, ITAE, and LQR
methods based on different performance metrics trade-off.

Trade-off Bessel ITAE LQR

ua − |ϵφ| 0.61 s 1.1 s Cost factor 3

ua − σφ 0.61 s 1 s Cost factor 3.3

ua − σθ 0.65 s 1 s Cost factor 5.7

3.3.3 System noise
To compute the system dynamics, noise is integrated into the simulation as defined
in Equation (3.7). This noise simulates real-world inaccuracies in sensor readings
and system behavior, affecting performance metrics. In previous simulations, this
was fixed with a standard deviation of σn = 0.5◦. The next set of simulations varies
this noise level and assesses the performance metrics using the optimal feedback
gains previously determined.

Figure 3.7 illustrates that performance metrics deteriorate as noise levels increase.
Notably, the ITAE method exhibits the smallest increase in wheel position error,
suggesting its robustness against noise, though it requires a higher voltage input
to maintain control. In contrast, the LQR method shows the least increase in
angular position oscillation, indicating efficient energy usage and reduced tendency
for overcorrection. However, ITAE displays the greatest increase, likely due to its
predisposition to overcompensate in response to disturbances.
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Figure 3.7: Simulation of increasing noise levels on the performance metrics ua, |ϵφ|,
σφ, and σθ for optimal control parameters under Bessel, ITAE, and LQR control
methods.

3.4 Experimentation
This section details the application of control strategies tested in simulations to the
Balboa 32U4 robot. Each experiment starts with the robot in a vertical position
to maintain consistency across tests and allow direct comparison of the feedback
gain on the performance metrics.

3.4.1 System dynamics
The first experiment implements the optimal control parameters derived from
simulations: a settling time of 1 second for ITAE, 0.6 seconds for Bessel, and a
cost function value of 3 for LQR, across similar 40-second reference tracking scenario.



CHAPTER 3. MODEL-BASED CONTROL 34

Figure 3.8 demonstrates that all three control methods effectively stabilize the
system and accurately follow the reference trajectory, validating the effectiveness
of the control strategies and achieving the primary goal of robot stabilization.
However, a consistent deviation in the wheel rotation angle φ(t) from the reference
r(t) is observed. This deviation is attributed to errors in the angle measurement
θ(t), which does not precisely center around 0◦ and exhibits a drift over time.

Figure 3.8: Experimentation of voltage response ua(t), wheel rotation angle φ(t),
and angular position θ(t) over a 40-second test period under Bessel, ITAE and
LQR control methods.
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A 40-second duration ensures adequate data collection for significant performance
metrics, presented in Table 3.5. These metrics are compared to those from Figure 3.7
to estimate the system’s noise standard deviation σn, approximated at σn = 0.9◦.

Table 3.5: Performance metrics for optimal control parameters under Bessel, ITAE
and LQR control methods to quantify noise standard deviation.

Control method ua |ϵφ| σφ σθ

Bessel 0.82 V 133◦ 37◦ 9.2◦

ITAE 0.78 V 28◦ 48◦ 4.8◦

LQR 0.92 V 37◦ 77◦ 6.5◦

3.4.2 Feedback performance
Upon approximating the system noise, this analysis compares the performance
metrics from both experimentation and simulations, assuming a noise standard
deviation σn = 0.9◦. Refer to Figure 3.9 and Figure 3.10 for visual comparisons.

Initially, across all control methods, significant deviations in mean wheel position
error ϵφ from the simulated values are evident. This discrepancy largely arises from
measurement drifts and inaccuracies in angle detection previously discussed. A
potential solution could involve modifying the reference tracking controller, which
currently only incorporates a proportional gain of the reference signal. Introducing
an additional integral control component might address this steady-state error
effectively.

The ITAE and Bessel methods show similar patterns in mean absolute voltage ua

and the standard deviation of wheel position σφ when compared to their simulated
counterparts, affirming the simulation model’s reliability as a predictive tool. How-
ever, some observed differences are likely due to the system’s inherent non-linearity
and the simplifications employed in the simulations.
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Regarding the standard deviation of angular position σθ, perfectly matching exper-
imental outcomes with simulations is challenging, particularly at extreme control
settings. Lower settings lead to over-oscillations due to excessive responsiveness,
while higher settings cause sluggish responses and increased angular deviations.
Such disparities may also be linked to accelerometer limitations in accurately
measuring rapid angular changes and the physical imbalances in the Balboa robot’s
setup.

Figure 3.9: Comparison of experimentation and simulation of the performance
metrics ua, |ϵφ|, σφ, and σθ as functions of the settling time ts under Bessel and
ITAE control methods.
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The LQR method in Figure 3.10 shows a marked discrepancy between simulation
and experimental results, yet maintaining the expected behavior where increasing
the cost function reduces energy consumption but raises the deviation from the
reference path σφ.

Figure 3.10: Comparison of experimentation and simulation of the performance
metrics ua, |ϵφ|, σφ, and σθ as functions of the cost factor R under LQR control
method.

In Figure 3.11, the graph compares the mean absolute voltage ua and the standard
deviation of wheel position σφ across different control strategies both in experi-
mentation and simulation. Those metrics highlight the sensitivity of the controller
parameters. The overlapping lines indicate a close agreement between experimental
and simulated results, underscoring the effectiveness of the control adjustments.
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Figure 3.11: Comparaison between experimental and simulated performance metrics
σφ as a function of control effort ua under Bessel, ITAE, and LQR control methods.

Table 3.6 presents a comparison of optimal settings derived from both simulations
and practical experiments. This juxtaposition highlights a general alignment
between the simulation and experimentation, although simulations often suggest
more aggressive control strategies. This variance is likely due to simulations not fully
capturing mechanical imperfections and real-world disturbances that can induce
over-oscillations. Consequently, while simulations advocate for tighter controls to
optimize theoretical performance, practical adjustments are made to accommodate
real-world variability and enhance operational robustness.

Table 3.6: Optimal control parameters from simulation and experimentation under
Bessel, ITAE, and LQR control methods.

Control method In simulation In experiment

Bessel 0.6 s 0.7 s

ITAE 1 s 1 s

LQR Cost factor 3 Cost factor 4
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3.5 Summary
Initially, it was essential to characterize the system’s model and determine motor
characteristics. Subsequently, three control methods—LQR, Bessel pole placement,
and ITAE pole placement—were applied to stabilize the balancing robot. The
model-based approach demonstrated its potential as both simulations and experi-
mental tests successfully stabilized the robot and followed a predefined reference
track. However, a noticeable steady-state error was observed, indicating a need
for improvements in the reference tracking method, especially if navigation is the
primary goal of future research.

Various performance metrics were introduced to quantify controller performance.
By comparing these metrics from simulations and experiments, the system noise
was quantified with a standard deviation of 0.9◦. Furthermore, these metrics helped
identify the optimal parameters for each control method. The optimal settling time
for Bessel was 0.6 seconds in simulations and 0.7 seconds in experiments; for ITAE,
both suggested 1 second; and for LQR, simulations recommended a cost factor of
3, while experiments indicated 4. The close alignment of parameters derived from
simulations and experiments validated the model-based approach.



Chapter 4

Data-driven control

4.1 Introduction
This chapter explores the determination of feedback gain through data-driven
techniques, focusing on systems without a predefined model. This approach is es-
pecially useful for systems with complex or partially known dynamics. The chapter
begins by outlining the mathematical formulations used to compute feedback gains
through pole placement and system identification methods.

Subsequent sections will present numerical simulations to assess and compare these
methods. This includes introducing a new performance metric to compare data-
driven feedback with model-based feedback. Initial simulations will be conducted
without external inputs to evaluate the impact of the data acquisition period and
chosen pole locations. Subsequent simulations will introduce external inputs, ex-
amining the effects of its standard deviation, noise standard deviation, and similar
variables as before.

The chapter concludes with practical experiments performed on the Balboa 32U4
robot, aiming to validate the proposed data-driven control strategies. Results
from using a fast-response controller both with and without external inputs will
be analyzed first. Following this, the performance of a controller with a slower
response rate and without external inputs will be examined. The chapter will
also touch upon the effects of applying different filters to improve experimental
outcomes.

40
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4.2 Controller design
The objective of designing a data-driven controller is to establish a discrete feedback
gain KDD that positions the system’s poles within the unit circle to stabilize the
system. This process involves collecting state and input variable measurements at
various time steps. Since the system is inherently unstable, a preliminary controller
with feedback gain Kx is employed to manage the input variable ua(t), thereby
stabilizing the system sufficiently to acquire significant data. The framework for
this data-driven approach is depicted in Figure 4.1, where an unknown model is
initially controlled, followed by data-driven computation based on measurements
of states x(t) and control input ua(t) to derive KDD. An external variable v(t) can
be introduced to the input, influencing system dynamics.

Non-linear
system

Controller: Kx

Data-driven
computation: KDD

ua(t)

x(t)

−

+ +

v(t)
Unknown model

Figure 4.1: Data-driven control system.

Data are captured through sensors at a specified sampling rate ∆t over a period
T × ∆t seconds. These measurements are organized into vectors as follows:

U0 :=
[

ua(0) ua(∆t) . . . ua((T − 1)∆t)
]

∈ R1×(T −1), (4.1)

X0 :=
[

x(0) x(∆t) . . . x((T − 1)∆t)
]

∈ Rn×(T −1), (4.2)

X1 :=
[

x(∆t) x(2∆t) . . . x(T∆t)
]

∈ Rn×(T −1), (4.3)

where n = 4 represents the number of state variables. U0, X0, and X1 encapsulate
control inputs and state vectors at current and subsequent time steps, respectively.
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To calculate the data-driven feedback gain KDD, confirming the controllability
of the system’s unstable states is crucial. When the system model is unknown,
it becomes impractical to directly assess the rank condition of the controllability
matrix. Nevertheless, controllability can be inferred through physical reasoning.
For instance, in a balancing robot, the applied torque to the wheel impacts both
the pendulum angle and the wheel’s orientation, suggesting that the state variables
φ, θ, and their derivatives are likely controllable.

This section explores two data-driven methods to compute KDD, each tailored to
desired pole locations Ldesired. The first method computes based on a transformation
matrix aligned with the desired poles, while the second identifies the system first
and then calculates the feedback gain KDD.

4.2.1 Pole placement method
The pole placement method, as detailed in recent research [46], demonstrates the
feasibility of setting closed-loop eigenvalues precisely at predetermined locations
directly from data. This method has been evaluated through numerical simulations,
showcasing its advantages over traditional model-based approaches.

This approach utilizes a transformation matrix M that is designed to align the
system’s behavior with specified eigenvalues, representing the desired locations for
the system poles. The mathematical formulation of this alignment is expressed as:

0 = (X1 − X0Λ)Mi, ∀i ∈ {1, . . . , n}, (4.4)

where Λ is a diagonal matrix containing the eigenvalues Ldesired, which are the
desired locations of the system poles.

Once M is determined, the data-driven feedback gain KDD is calculated using:

KDD = −U0M(X0M)†, (4.5)

where (X0M)† represents the Moore-Penrose pseudoinverse of X0M .

This computation ensures that the system’s characteristic equation meets the condi-
tion det(Adt − BdtKDD − λI) = 0 for each λ in Ldesired, thus aligning the system’s
dynamics with the desired stability characteristics, as proofed in Appendix B.

4.2.2 System identification method
Following the work of [43], another method worth discussing is the system identifi-
cation approach. This method involves estimating the discrete system matrices Adt
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and Bdt , which articulate the dynamics of the system. The dynamic relationship
is captured by the equation:

X1 =
[

Adt Bdt

]  X0

U0

 . (4.6)

From this relationship, the system matrices are computed as:

[
Adt Bdt

]
= X1

 X0

U0

†

, . (4.7)

With these identified matrices Adt and Bdt, the feedback gain KDD can then be
calculated using a pole placement algorithm, which ensures the poles of the closed-
loop system are placed at the desired locations Ldesired. This can be efficiently
performed using MATLAB’s place function:

KDD = place(Adt, Bdt, Ldesired).

4.3 Numerical simulation
To assess the performance of the data-driven control methods, numerical simulations
are carried out. These simulations incorporate system dynamics similar to those
used in model-based control, employing an input variable ua(t) and introducing
random Gaussian noise n(t) ∈ Rn to simulate real-world disturbances. The input
voltage is adjusted using a feedback gain Kx, where its pole locations are denoted
as Lx, augmented by an external input v(t). The system’s evolution is described
by:

ua(t) = −Kx · x(t) + v(t), (4.8)
x(t + ∆t) = Adt · x(t) + Bdt · ua(t) + n(t). (4.9)

After simulating the system’s states and input variables for a specified period, the
matrices U0, X0, and X1 are constructed as defined in Equations (4.1), (4.2), and
(4.3), respectively.
For the same set of measurements, both the pole placement and system identification
methods are applied using identical pole locations. Since the system operates in
discrete time, it is essential to convert the continuous-time poles L to discrete-time
poles Ldt. This conversion is achieved through the following relationship:

Ldt = exp (∆t · L) . (4.10)



CHAPTER 4. DATA-DRIVEN CONTROL 44

To evaluate the efficacy of these methods, the Mean Relative Error (MRE) is
introduced as a performance metric to minimize:

MRE = 1
n

n∑
i=1

∣∣∣∣∣KDD,i − KMB,i

KMB,i

∣∣∣∣∣ , (4.11)

where KDD represents the feedback gain derived from the data-driven method as
calculated using Equation (4.5) or (4.7), depending on the desired poles Ldesired.
This feedback gain KDDwill give poles LDD. The KMB is the desired feedback gain
computed using a model-based approach for the same poles Ldesired, as detailed in
chapter 3.

Each simulation evaluates the Mean Relative Error (MRE), calculated as outlined
in Equation (4.11). Additionally, the evolution of the poles, denoted by LDD, is
analyzed through the eigenvalues of the expression eig(Adt − Bdt · KDD), where A
and B are the system matrices determined by the model-based approach.

Two simulation approaches are assessed, focusing on the MRE and pole locations.
The first approach evaluates the system without any external input (v(t) = 0),
while the second approach explores the effects of introducing an external input
(v(t)).

4.3.1 Without external input v(t) = 0
In this section, the system operates without external input (v(t) = 0), and mea-
surements of the states X1 and X2 along with the input variable U0 are obtained
using the feedback gain Kx = KBessel(ts = 0.6s). This setup simulates the system’s
response as if controlled by an optimal feedback gain derived from Bessel poles with
a settling time of 0.6 seconds. The system noise n(t) is set to a standard deviation
of 0.05◦, and its impact on the system dynamics will be discussed subsequently.

Influence of data acquisition period

This simulation investigates the impact of the data acquisition period. The desired
poles are set as defined in subsection 3.2.2, with the number of samples markedly
influencing the resultant data-driven feedback gains KDD, computed via Equations
(4.5) and (4.7). The MRE and pole dynamics are analyzed based on the measure-
ment period utilized on the same computational setup.

Figure 4.2 on the left contrasts the evolution of MRE between the pole placement
method and the system identification method. It is observed that the pole placement
method converges with just five samples, while the system identification method
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requires more samples to produce definitive results, accompanied by noticeable
oscillations. Both methods exhibit an MRE baseline of about 3.

The right panel of Figure 4.2 displays pole positions on the real-imaginary axis,
where darker colors represent a higher number of samples. Each color gradient is
associated with a specific data acquisition period, allowing for the identification of
the measurement duration for each pole by its color. The green crosses mark the
target poles Ldesired, showing the intended locations.

This visualization confirms that the pole placement method swiftly stabilizes
to consistent pole values, with most hidden behind the prominent dark orange
point. These poles do not exactly align with Ldesired, leading to a consistent MRE
offset. They correspond to the poles of the feedback gain Kx employed by the
unknown controller, indicating that it is feasible to discern the poles of a system
under an unidentified controller. The poles identified by the system identification
method appear more dispersed, correlating with the MRE variability and tending
to converge close to those determined by the pole placement method. However,
some poles identified through this method lie outside the unit circle, suggesting
they fall outside the stability zone and indicating that the corresponding feedback
gain may not stabilize the system effectively.

Figure 4.2: Simulation results depicting the Mean Relative Error (MRE) and pole
positions under varying data acquisition periods, analyzed using pole placement
and system identification methods without external input.



CHAPTER 4. DATA-DRIVEN CONTROL 46

Influence of pole location

This analysis explores the effect of changing the pole locations Ldesired. A fixed
data acquisition period of 1 second is used, and the pole locations are varied as
follows: Ldesired = LBessel(ts = 0.1 − 1.2s).

Figure 4.3 examines the evolution of the MRE in relation to the settling time that
influences Bessel pole locations. Both the pole placement and system identification
methods show an increasing MRE as the settling time deviates from 0.6 seconds,
which is precisely the settling time used to calculate the internal controller of the
system, denoted as Kx = KBessel(ts = 0.6s).

The graph on the right on Figure 4.3 compares the poles identified by both methods
by varying the desired poles, represented by green crosses. The color coding
corresponds to specific settling times, allowing for identification of the respective
settling time for each desired pole. It is observed that the poles identified using
the pole placement method remain largely unchanged despite variations in settling
time. Conversely, the system identification method exhibits only minor variations.
However, for some settings, it identifies poles outside the stability boundary, which
could potentially destabilize the system.

Figure 4.3: Simulation results depicting the Mean Relative Error (MRE) and pole
positions under varying pole locations, analyzed using pole placement and system
identification methods without external input.
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In the absence of external input v(t) = 0, the feedback gains KDD derived from
Equations (4.5) and (4.7) approximate the actual feedback gain Kx. A sample size
of 100 is generally sufficient for ensuring convergence. The choice of desired poles
appears to minimally impact these results. The pole placement method tends to
converge faster and is less sensitive to the selection of poles compared to the system
identification method.

4.3.2 With external input v(t) ̸= 0
This section analyzes the effect of an external input v(t) added to the input
variable ua(t), quantified by its standard deviation σv. Measurements of the
states X1 and X2 and the input variable U0 are obtained using the feedback gain
Kx = KBessel(ts = 0.6s). The desired poles are set to Ldesired = LBessel(ts = 1s),
using the corresponding model-based feedback gain KMB = KBessel(ts = 1s), and
the system noise n(t) is fixed at a standard deviation of 0.05◦ with 100 samples
corresponding to a data acquisition period of 1 second.

Influence of standard deviation σv

The influence of σv is explored to determine its impact on the system’s response.
The external input aims to ensure sufficient frequency content in the input signal
to excite all system modes, referred to as persistence of excitation.

Figure 4.4 shows the impact of varying σv on system dynamics. Insufficient excita-
tion fails to adequately perturb the system, leading to inaccurate feedback gain
characterization, while excessive excitation may lead to saturation and potentially
destabilize the system. The pole placement method demonstrates higher sensitivity
to variations in excitation compared to the system identification method, which
exhibits greater stability. A standard deviation of σv between 0.5 V and 1 V is
considered optimal. For subsequent tests, the lower bound of σv = 0.5V is selected
to minimize risk of instability.

The right graph in Figure 4.4 illustrates that σv significantly influences pole
positions, with very high or low values displacing poles away from their expected
locations, sometimes even outside the stability boundary. The poles obtained via
the pole placement method show greater dispersion compared to those from the
system identification method.
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Figure 4.4: Simulation results depicting the Mean Relative Error (MRE) and pole
positions under varying standard deviations σv, analyzed using pole placement and
system identification methods with external input.

Influence of noise standard deviation σn

Previously, the noise standard deviation σn was set to 0.05◦. This section examines
its impact on the MRE and the stability of pole locations. In Figure 4.5, the
variation of MRE in response to different levels of noise is assessed. Two notable
trends are observed:

Firstly, an increase in noise leads to higher MRE values, indicating degraded per-
formance; lower noise levels are associated with improved MRE values. Secondly,
the MRE for the system identification method remains generally lower and more
stable across varying noise levels, unlike the pole placement method, which shows
significant spikes in MRE at higher noise levels.

The analysis of pole locations further illustrates that while the poles calculated
via system identification cluster closely around the expected values, those from
the pole placement method are more dispersed and may drift outside the stability
boundary at higher σn levels. This dispersion explains the heightened sensitivity of
the pole placement method to noise.

A noise standard deviation σn of less than 0.2◦ is recommended to ensure reliable
convergence and minimize the risk of instability.
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Figure 4.5: Simulation results depicting the Mean Relative Error (MRE) and
pole positions under varying noise standard deviations σn, analyzed using pole
placement and system identification methods with external input.

Influence of data acquisition period

With established reasonable noise standard deviation and external input param-
eters, the next aspect to explore is the data acquisition period’s influence on
convergence. Figure 4.6 presents a comparison of the convergence times for the two
methodologies. The system identification method converges faster, typically within
approximately 0.4 seconds, compared to about 0.5 seconds for the pole placement
method. Examination of the pole colors reveals an actual convergence of both
methods towards the expected poles.

Table 4.1 presents a summary of the feedback gains achieving the lowest MRE
for each method, alongside the expected gains calculated via the model-based
approach. The pole placement method estimates obtain a MRE of 6%, while the
system identification method achieves a closer estimation of only 4%.

Table 4.1: Simulation comparison of feedback gains derived from pole placement
and system identification methods against model-based predictions.

Feedback method Feedback gain MRE

Model-based [ -0.04 -2.41 -0.021 -0.19 ] /
Pole placement [ -0.04 -2.37 -0.024 -0.19 ] 0.06

System identification [ -0.04 -2.39 -0.023 -0.19 ] 0.04
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Figure 4.6: Simulation results depicting the Mean Relative Error (MRE) and pole
positions under varying data acquisition periods, analyzed using pole placement
and system identification methods with external input.

Influence of pole location

This final simulation compares both data-driven methods by varying the desired
pole locations. Similar to the scenario with no external input, the Bessel poles are
adjusted based on their settling time, with each time represented by a unique color
tint.

Figure 4.7 illustrates the adaptability of both methods to changes in pole locations,
unlike in the previous simulation without external input, where the poles’ positions
are influenced by the chosen poles.

By examining the MRE, it is observed that the values remain within reasonable
limits, and the corresponding poles stay within the stability boundary. This
indicates that for an unknown system, where only the states and input variable
are measured and the internal controller’s feedback is unknown, it is feasible to
determine appropriate feedback gains by merely specifying desired pole locations
without explicitly defining the system model.
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Figure 4.7: Simulation results depicting the Mean Relative Error (MRE) and pole
positions under varying pole locations, analyzed using pole placement and system
identification methods with external input.

4.4 Experimentation
Contrasting with numerical simulations that utilize system dynamics simulated via
matrices derived from a model-based approach, this section employs experimental
measurements from the Balboa 32U4 robot. To ensure sufficient data capture, an
internal controller is implemented, represented by a feedback gain Kx, with its pole
locations denoted as Lx. This controller may vary depending on the specific tests
conducted.

After recording the system’s states and input variables over a designated period, the
matrices U0, X0, and X1 are constructed in accordance with Equations (4.1), (4.2),
and (4.3). Subsequently, using some predetermined desired poles, a data-driven
feedback gain KDD is calculated using either Equation (4.5) or (4.7). The analysis
proceeds by monitoring the MRE and tracking the evolution of the poles, referred
to as LDD, via the eigenvalues of eig(Adt − Bdt · KDD), where A and B are the
system matrices defined by the model-based approach.

The initial experimentation will employ a controller with a rapid response, specif-
ically a feedback gain Kx = KBessel(ts = 0.6s). This setup will facilitate the
examination of the influence of an external input, mirroring the methodology used
in the simulation phase.
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Subsequent experiments will involve a controller characterized by a slower response,
utilizing a feedback gain Kx = KBessel(ts = 0.9s) to assess different system dynamics
under varied control conditions.

4.4.1 Fast response controller
A feedback gain Kx = KBessel(ts = 0.6s) will be initially implemented in the
controller. This configuration, as indicated by the model-based approach, pro-
vides a fast response, minimizing oscillations and enabling rapid system stabiliza-
tion in response to perturbations, including those from an external input v(t).
For these tests, the desired poles used in the data-driven equations are fixed at
Ldesired = LBessel(ts = 1s).

The experiments will first be conducted without any external input (v(t) = 0) and
subsequently with an external input (v(t) ̸= 0).

Without external input v(t) = 0

In the absence of external input, measurements with a fast controller show conver-
gence, as illustrated in Figure 4.8. Both the pole placement and system identifica-
tion methods achieve a MRE that converges around 5, with the pole placement
method exhibiting a more gradual convergence compared to the system identifica-
tion method. However, the poles from both methods do not align with expected
locations, with system identification poles occasionally falling outside the stability
boundary, indicating non-ideal convergence.

To enhance the accuracy of the RME and pole locations, a prefilter to adjust for
consistent voltage offsets c due to friction is applied to the input variable.

Following the application of this prefilter, recalibrated MRE and pole locations
are presented in Figure 4.9, demonstrating significantly improved results. The
poles are closer to the expected ones and mostly within the stability zone, showing
a substantial improvement. However, differences in convergence relative to the
expected poles are still evident. Although the data-driven poles LDD do not align
perfectly with the desired poles Ldesired or the implemented feedback poles Lx,
they are predominantly influenced by Lx, affirming the simulation predictions that
data-driven poles and feedback gains are slightly influenced by the desired poles
Ldesired.



CHAPTER 4. DATA-DRIVEN CONTROL 53

Figure 4.8: Experimental results depicting Mean Relative Error (MRE) and pole
positions under varying data acquisition periods, analyzed using pole placement
and system identification methods. This setup involves a fast-response controller
without external input.

Figure 4.9: Experimental results showing Mean Relative Error (MRE) and pole
positions under varying data acquisition periods, analyzed using pole placement
and system identification methods. This setup involves a fast-response controller,
including prefiltering, without external input.
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With external input v(t) ̸= 0

In subsequent tests, measurements are captured while applying an external input
v(t) to the input variable. This external input is a Gaussian noise with a fixed
standard deviation of σv = 0.5V, as suggested by the simulation.

Figure 4.10 illustrates the challenges encountered under this setup. The system
identification method fails to converge, exhibiting unpredictable spikes in MRE
and resulting in some poles being positioned outside the stability zone. Although
the pole placement method achieves MRE convergence and its poles are relatively
close to the desired locations, there are still instances where the poles fall outside
the stability boundary. Under these conditions, prefiltering the offset does not
ameliorate the outcomes.

As previously analyzed in the model-based approach, the system is subject to
significant noise, denoted by a high noise standard deviation σn, due to inaccurate
angle measurements that exhibit drift over time. Simulations have shown that this
high noise level can lead to divergent results when applying data-driven feedback.
Introducing an external input under these conditions add system noise due to
the fast response, rendering the data non-representative. Consequently, applying
data-driven methods to such data often results in the computation of unstable
feedback gains.

Figure 4.10: Experimental results showing Mean Relative Error (MRE) and pole
positions under varying data acquisition periods, analyzed using pole placement
and system identification methods. This setup involves a fast-response controller
with external input.
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4.4.2 Slow response controller
Given the limitations in exciting all system modes using an external input, a
controller with a slower response is employed. This approach allows more accurate
angle measurements with sufficient time for data acquisition, but also leads to an
increase in oscillations due to natural disturbances. To effectively manage these
dynamics, a feedback gain Kx = KBessel(ts = 1s) is implemented in the controller.

Influence of data acquisition period

The influence of the data acquisition period on system behavior is first analyzed by
setting the desired poles for the data-driven equations to Ldesired = LBessel(ts =
0.6s).

Figure 4.11 shows rapid convergence for the pole placement method, whereas the
system identification method exhibits divergence. Analysis of the poles reveals that
some are outside the stability zone for both methods, indicating that the stability
of the system using these data-driven methods cannot be guaranteed.

Figure 4.11: Experimental results showing Mean Relative Error (MRE) and pole
positions under varying data acquisition periods, analyzed using pole placement
and system identification methods. This setup involves a slow-response controller
without external input.

To enhance these results, the same prefilter used in previous tests is applied to
correct the offset gain. Figure 4.12 demonstrates notable improvements in MRE
for both methods; the system identification method occasionally matches the pole
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placement method’s performance, although the latter is more consistent. These
results contradict the simulations which suggested opposite behaviour for each
method.

Comparison of the poles depicted in Figure 4.12 with earlier findings demonstrates
that the majority of poles now reside within the stability zone. Table 4.2 aggregates
the optimal feedback gains derived from each data-driven method and contrasts
them with the expected model-based gains. Despite certain discrepancies, these
feedback gains sufficiently stabilize the robot. Notably, in this test, the system
identification method achieves a slightly better MRE of 27% compared to 42%
with the pole placement method.

Table 4.2: Experimental comparison of feedback gains derived from pole placement
and system identification methods against model-based predictions.

Feedback method Feedback gain MRE

Model-based [ -0.29 -4.86 -0.28 -0.42 ] /

Pole placement [ -0.08 -3.70 -0.22 -0.22 ] 0.42

System identification [ -0.44 -6.46 -0.30 -0.35 ] 0.27

Figure 4.12: Experimental results showing Mean Relative Error (MRE) and pole
positions under varying data acquisition periods, analyzed using pole placement
and system identification methods. This setup involves a slow-response controller,
including prefiltering, without external input.



CHAPTER 4. DATA-DRIVEN CONTROL 57

The implementation of the offset prefilter significantly enhances system performance
for both fast and low-response controllers. It demonstrates that for data-driven
methods, accurately defining each state variable of the model is crucial for obtaining
conclusive results. An alternative method involves incorporating an additional state
variable to represent the sign of the wheel speed. This modification necessitates
the identification of five new poles. These can also be determined using either the
Bessel or ITAE methods, specifically with a five-pole configurations.

Influence of pole location

The influence of the pole location Ldesired is analyzed using a controller with a
low response rate where a prefilter is applied to mitigate voltage offset. A data
acquisition period of three seconds is used, as this period has previously produced
convincing results.

Figure 4.13 demonstrates that the MRE for various pole locations remains within
appropriate limits, verifying the effectiveness of the method in deriving a feedback
gain appropriate to the specified poles. Some poles fall outside the stability zone,
indicating divergences in calculations or discrepancies in how the system matrices
Adt and Bdt represent the actual model. Consequently, poles derived from these
matrices using eig(Adt − Bdt · KDD) might inaccurately project the actual pole
location.

Figure 4.13: Experimental results showing Mean Relative Error (MRE) and pole
positions under varying pole locations, analyzed using pole placement and system
identification methods. This setup involves a slow-response controller, including
prefiltering, without external input.
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4.5 Summary
After validating the model-based approach, data-driven methods, specifically pole
placement and system identification, were implemented and compared. In the
various simulations and experiments, performance metrics and pole locations were
assessed which require the model-based results.

Simulations implementing data-driven methods with external input provided con-
clusive results. However, experimental trials using the same conditions did not
yield convincing outcomes due to the high noise levels in the system.

Consequently, data-driven methods were applied to a system free from external
noise. In this scenario, two tendencies were observed for fast and slow controllers.

- For fast controllers, the data-driven methods converged to the poles imple-
mented in the controller, independent of the chosen poles. This corresponds
to simulations with no external input

- For slow controllers, the data-driven methods converged to the desired poles,
mirroring the tendency seen in simulations with external input.

In experimental settings, the pole placement method converges more rapidly than
the system identification method, contrasting with the results observed in simula-
tions.

It was noted that data prefiltering could significantly enhance results from data-
driven methods. In the case of the balancing robot, voltage offsets caused by friction
were filtered out, an adjustment that could alternatively be managed by integrating
an additional state. This underscores the importance of precisely defining all state
and input variables to achieve significant results with data-driven methods.



Chapter 5

Conclusions and perspectives

This thesis highlights critical aspects of transitioning from classical model-based
control to data-driven control methods in self-balancing robots, using the Pololu
Balboa 32U4 as a test platform. The aim is to bridge the gap between theoretical
mathematics and practical experimentation in active control systems, which are
crucial for managing the unstable dynamics of such robots.

Traditional control techniques such as LQR, Bessel, and ITAE pole placement have
proven effective in ensuring stability in simulation and experimentation, particularly
in tasks like following predefined tracks. However, the presence of steady-state
errors during these tests indicates a need for improvement, particularly for applica-
tions requiring precise navigation.

In contrast, data-driven control offers a robust alternative by deriving control
strategies directly from historical data, eliminating the need for predefined system
models. These methods have produced promising results in simulations. In ex-
perimental contexts, they are effective in scenarios where data is gathered using
slower controllers to handle natural disturbances. However, they are less effective
with faster controllers. This limitation is largely due to inaccuracies in sensor data
measurement and prevalent system noise, which compromise the integrity of the
data-driven results.

For future research, it is crucial to enhance measurement accuracy, potentially
through sensor fusion, to improve both system stability and the quality of data-
driven results. Although implementing Kalman filters could further enhance these
outcomes, this method does require the use of a model. Additionally, investigating
non-model-based filtering techniques could broaden the scope and potential of
data-driven approaches.
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In summary, this research advances the understanding of control strategies for
unstable systems, shedding light on the comparative limitations of model-based
and data-driven approaches and setting the stage for future enhancements that
could facilitate broader real-world applications.
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Appendix A

Detailed description of the robot

A more detailed description of the Pololu Balboa 32U4 robot is presented here,
focusing on its mechanical structure, electrical system, control mechanisms and
sensor integration. The mechanical system features an integrated frame and motor
drivers, while the electrical system supports power distribution and processing
essential for operation.

A.1 Mechanical components
The mechanical system of the Pololu Balboa 32U4 focuses on a highly integrated
design that serves dual purposes as both the robot’s frame and its control board.
This system includes two motor drivers, which are essential for driving the geared
motors. These motors are equipped with magnetic encoders that provide feedback
on wheel movement, critical for balance and control.

The robot utilizes a gearmotor assembly that features a miniature high-power
carbon brushed (HPCB) direct-current (DC) motor. The motor is paired with
a 51.45:1 metal gearbox to enhance precision and durability. Furthermore, the
magnetic wheel of the encoder is directly mounted on the motor’s rotor. The output
shaft of the motor includes a 25-tooth gear wheel that meshes with a 41-tooth
gear wheel connected to the robot’s wheel. This setup ensures effective power
transmission from the motor to the robot’s wheels, which is vital for maintaining
stability and navigating various terrains.

A.2 Electrical components
The electrical system of the Balboa 32U4 is crucial for powering and controlling
the robot’s functionalities. Central to this system is the control board, which is
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seamlessly integrated with the mechanical components of the robot. This control
board includes battery terminal connections that source power from a compartment
housing six AA batteries within the Balboa chassis. During experimental runs, these
batteries provide a nominal voltage of ua,max = 7.2V , with each cell delivering 1.2 V.

The control board efficiently manages and distributes power to various subsystems,
including the microprocessors and motor drivers. The control of the Balboa 32U4’s
motors is executed through an Arduino microcontroller, programmed using Arduino
IDE Version 2.3.1. This environment allows for the compilation and uploading of
control algorithms to the microcontroller via a serial port connection. For real-time
data acquisition during experiments, the robot remains tethered to a computer,
facilitating direct data communication. Data logging and real-time plotting are
managed using CoolTerm, a software tool capable of interfacing directly with the
serial port to capture and visualize experimental results.

A.3 Actuator
The actuators in this robot are micro metal gearmotors HPCB, controlled using
pulse width modulation (PWM) to adjust their speed and direction. The Arduino
code manages this process with an output compare register (OCR), which set the
PWM duty cycles for the motors. The input captur register (ICR) is configured at
a value of 400, establishing the base frequency for the PWM signals.

The duty cycle for each motor is calculated as the ratio of OCR to ICR. This ratio
determines the percentage of the maximum voltage applied ua,max to the motors
during each PWM cycle. Using this ratio, it is possible to calculate the voltage ua:

ua = OCR

ICR
ua,max.

A.4 Sensors
The Pololu Balboa 32U4 employs various sensors critical for the robot’s stabilization
and dynamic navigation capabilities. These sensors collect critical data which is
essential for real-time decision-making and control algorithm execution. It allows
precise measurements of the wheel angle and angular speed via magnetic encoders,
as well as the pendulum angle and angular rate through an inertial measurement
unit (IMU).



APPENDIX A. DETAILED DESCRIPTION OF THE ROBOT 64

Magnetic encoder disc

Each drive motor is equipped with a magnetic encoder disc. This setup consists
of a magnetic disc attached to the extended motor shaft and a pair of Hall effect
sensors mounted on the control board. These encoders provide a resolution of 12
counts per revolution of the motor shaft, capturing both rising and falling edges
across two channels. For the Balboa 32U4, this results in 1012 encoder counts per
complete wheel rotation, calculated as 12 × 51.45 × 41

25 , equating to 161 ticks per
radian.

The Arduino code utilizes functions encoders.getCountsLeft() and encoders
.getCountsRight() to gather the measurements from the encoder for the left
and right wheels, respectively. The wheel angle φ at each sampling moment t is
determined by averaging the counts from both wheels:

φ(t) = encoders.getCountsLeft() + encoders.getCountsRight()
2 · 161 .

Measurements are conducted with a sampling period (∆t) of 10 ms, enabling precise
calculations of wheel speed φ̇ based on encoder feedback. The rate of change of
the wheel angle, or angular velocity, is then computed as:

φ̇(t) = φ(t) − φ(t − ∆t)
∆t

.

Inertial Measurement Unit (IMU)

The Balboa 32U4 is equipped with an integrated Inertial Measurement Unit (IMU),
essential for determining the robot’s orientation and balance. The IMU utilizes the
ST LSM6DS33, which combines a 3-axis accelerometer and a 3-axis gyroscope into
a single module. The accelerometer is primarily used to determine the pendulum
angle θ in a static position, calculated in the Arduino code with the formula:

θ(t) = arctan
(imu.a.z

imu.a.x

)
,

where imu.a.x and imu.a.z are the accelerometer readings along the horizontal
(x-axis) and vertical (z-axis) alignments, respectively. The result from the arctan
function is expressed in radians, which is ideal for further computations.

The gyroscope is tasked with calculating the angular position and speed during
dynamic behavior. With a range of ±1000 degrees per second and a 16-bit output,
a full-scale reading of 1000 translates to a digital value of 32768. The angular
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velocity θ̇(t) is therefore computed as:

θ̇(t) = imu.g.y × 32768
1000 .

Measurements are conducted at a sampling period of ∆t, which facilitates timely
updates of the robot’s angular position:

θ(t + ∆t) = θ(t) + θ̇(t) · ∆t

A.5 Motor parameters
To accurately model the system, defining the operational parameters of the motor
is crucial. According to Figure A.1 for the 50:1 gear ratio motor, at a standard
voltage of ua = 6V , the motor achieves a no-load speed of φ̇no−load = 650RPM and
draws a current of ia,no−load = 150mA. Under stall conditions, the torque peaks at
7.4 kg-cm (0.724 Nm) with a current draw of ia,stall = 1.5A. These characteristics
are pivotal for establishing the torque-to-voltage relationship through parameters
a, b, and c in Equation (A.1).

Figure A.1: Datasheet of 50:1 micro metal gearmotor HPCB 6V [49]

Using the stall condition data and Equation (2.15), the motor’s resistance Ra is
calculated as:

Ra = ua

ia,stall

= 4Ω.
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From the no-load condition, employing the same Equation (2.15), the electromotive
force constant kϕ is derived. It is important to adjust for the additional motor’s
gear ratio in the Balboa (GR = 41/25):

kϕ = ua − Raia,no−load

φ̇no−load

GR = 0.132 Nm/A.

The parameter a is calculated as 15.15 V/Nm. Given the challenges in estimating
the parameters b and c directly from theoretical models, these parameters are
proposed to be determined experimentally. The relationship between the motor
speed φ̇ and the control input ua is captured through experimental data, illustrated
in Figure A.2. Motivated by the experimental observations, a linear model is
proposed for simplifying the motor equation:

ua(t) = b · φ̇(t) + c. (A.1)

Figure A.2: Motor speed measurement with different voltage.

Based on the linear regression analysis of the experimental measurements, initial
values for the parameters were obtained: b = 0.09 V/(rad/s) and c = 0.35 V.
Through minor adjustments to these values, optimized parameters were found that
reduced oscillations in the Balboa 32U4 system, enhancing control over motor
speeds. These adjusted parameters are retained for future tests, as they yield
improved results:

a = 7.5 V/Nm, b = 0.19 V/(rad/s), c = 0.4 V
From these refined values, the friction factor Kν and the resistive torque Cr were
estimated as follows:

Kν = 1.91 · 10−3 Nm/(rad/s), Cr = 14.85 · 10−3 Nm.
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Data-driven pole placement
feedback proof

Consider the transformation matrix M = [m1, . . . , mn] with rank(M) = n. The
relationship

(X1 − λiX0)mi = [A − λiI, B]
[
X0
U0

]
mi

implies that the system (A, B) is controllable, hence rank[A − λiI, B] = n and
[A−λiI, B] has a nontrivial m-dimensional right null space. Therefore, it is feasible
to select the columns of M such that:[

X0
U0

]
mi ∈ N {[A − λiI, B]}.

Given u0,T −1 is persistently exciting of order n+1, it ensures rank[X0, U0]T = n+m,
which permits the choice of mi to fulfill the above condition, thereby proving the
existence of M .

To demonstrate that rank(M) = n, observe:

dimN
{[

X0
U0

]}
≥ mn,

indicating the existence of n linearly independent vectors mi satisfying the given
criteria.

To establish the second part of the claim, consider:

0 = (X1 − λiX0)mi = (AX0 + BU0 − λiX0)mi = (A − λi)X0mi + BU0mi,
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where the last identity stems from X1 = AX0+BU0, which holds because X0, X1, U0
are generated by system measurements. Using the relation −U0mi = KX0mi, and
since rank(M) = n and rank(X0M) = n, (X0M)† acts as a right inverse of X0M .
Substituting this identity yields:

(A − BK − λi)X0mi = 0,

thus substantiating the claim.



Resources for reproducibility

The simulations and data analyses reported in this paper were performed using
MATLAB, python and Arduino IDE. The source code is available to ensure repro-
ducibility of the results and to facilitate further research. The code repository to
replicate the results of this study can be accessed at:

https://github.com/AurelienSoenen/Data-Driven_Balboa32U4.

Additionally, the code used for the experimental tests on the Balboa 32U4 robot is
also available at:

https://github.com/AurelienSoenen/Balboa32U4.

Declaration of generative AI tools

During the preparation of this work the author used ChatGPT 4 for drafting,
editing, and code generation purposes. After using this tool, the author reviewed
and edited the content as needed and takes full responsibility for the content of
the publication.
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